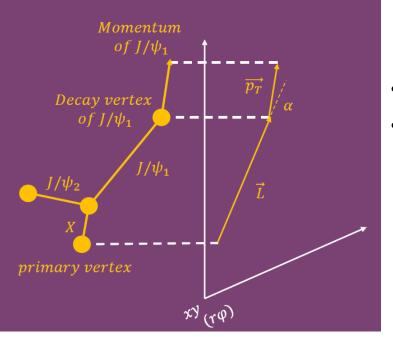


中國科學院為能物招為完備 Institute of High Energy Physics Chinese Academy of Sciences

Double J/ ψ work status


Taozhe YU

2022.9.15

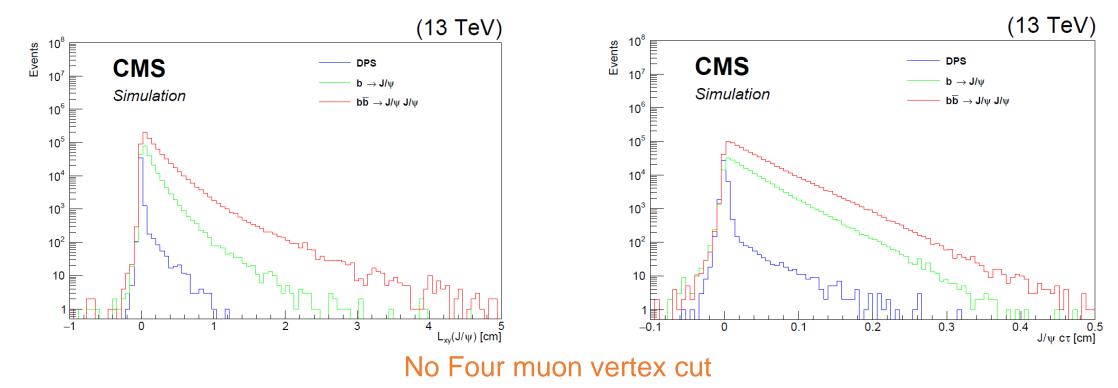
Variable to distinguish prompt and non-prompt J/ψ

The L_{xy} is calculated as $L_{xy}(J/\psi) = \vec{L} \cdot \vec{p}_T(J/\psi)/|p_T(J/\psi)|$

- \vec{L} is the vector from the primary vertex to the J/ ψ decay vertex in the $r \phi$ plane
- $\vec{p}_T(J/\psi)$ is the transverse momentum vector

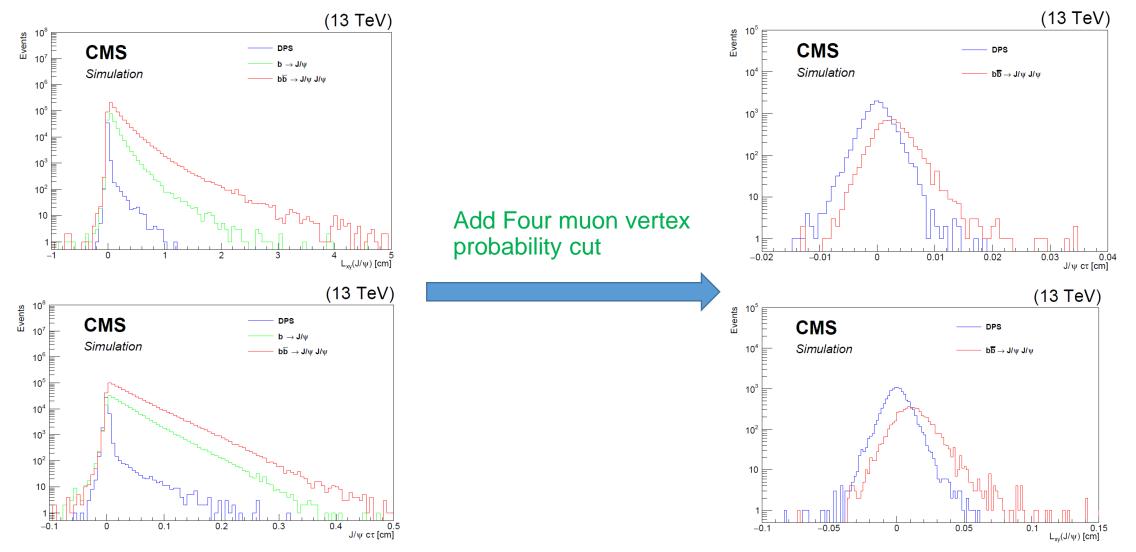
To reduce the dependence on J/ ψ transverse momentum bin size and placement, a new variable $c\tau$, called pseudoproper decay time, is used instead of L_{xy} :

$$c\tau = L_{xy}(J/\psi) \cdot M(J/\psi)/p_T(J/\psi)$$


- L_{xy} or $c\tau$ can be the variable to distinguish prompt and non-prompt J/ ψ
- Using the official sample B meson ->J/ ψ +x and private DPS and $b\bar{b}$ -> J/ ψ J/ ψ + X sample to compare J/ ψ L_{xy} and $c\tau$ distribution:

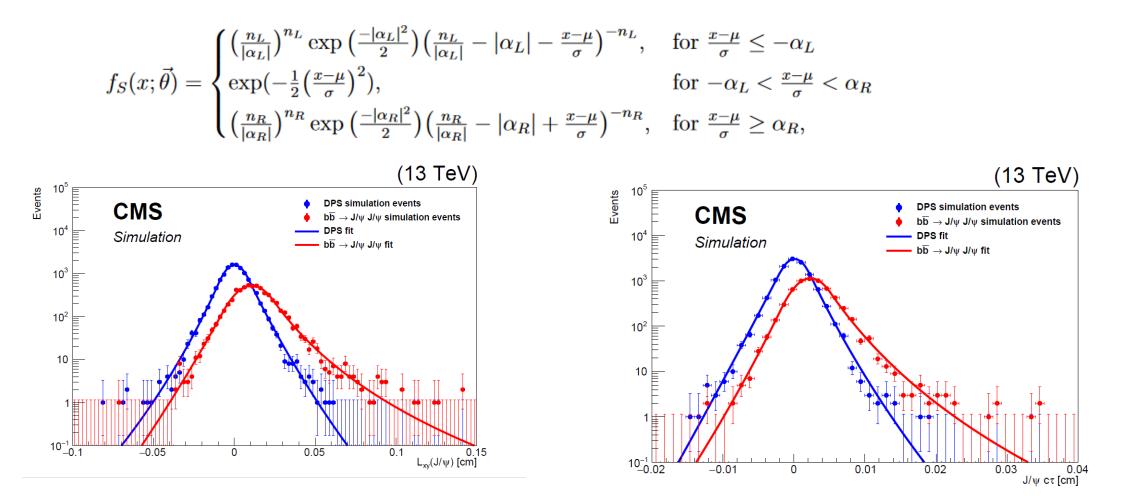
Prompt/Non-prompt	Sample
B meson -> J/ψ + X	/BsToJPsiPhi_JPsiToMuMu_PhiToKK_SoftQCDnonD_TuneCP5_13TeV-pythia8-evtgen/RunIISummer20UL18RECO-106X_upgrade2018_realistic_v11_L1v1-v2/AODSIM
bbbar -> J/ψ J/ψ + X	/Pythia8_BBartoJJ/jinfeng-MC2018_SKIM_JinfengLiu_bDecay-2c13f6522fd88ab3fbb3f545dbe011e8/USER
DPS	/Pythia8_DPStoJJ/jiayis-MC2018_SKIM_JinfengLiu_v2-1631c8025908d8822669ac074a24ab90/USER

Variable distribution without Four mu vertex cut

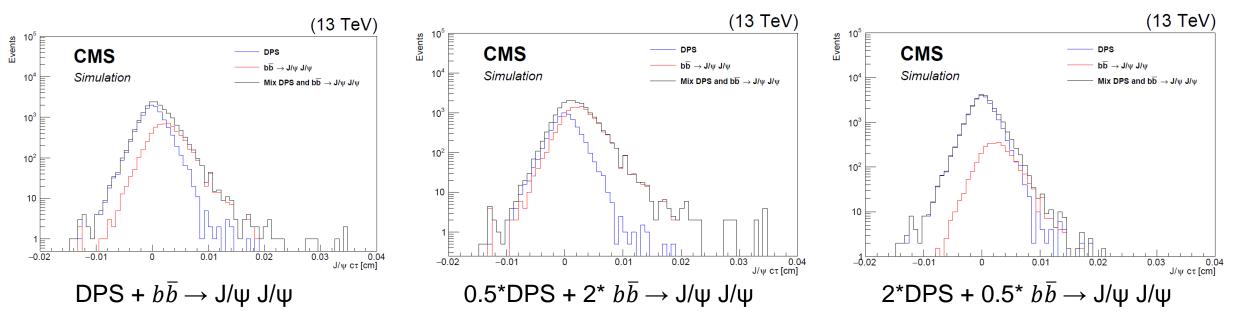


- We plot L_{xy} or $c\tau$ distribution without the four muon vertex cut
- The official B meson ->J/ ψ +x sample have a similar distribution with private $b\overline{b}$ -> J/ ψ J/ ψ + X sample, that validities our private sample

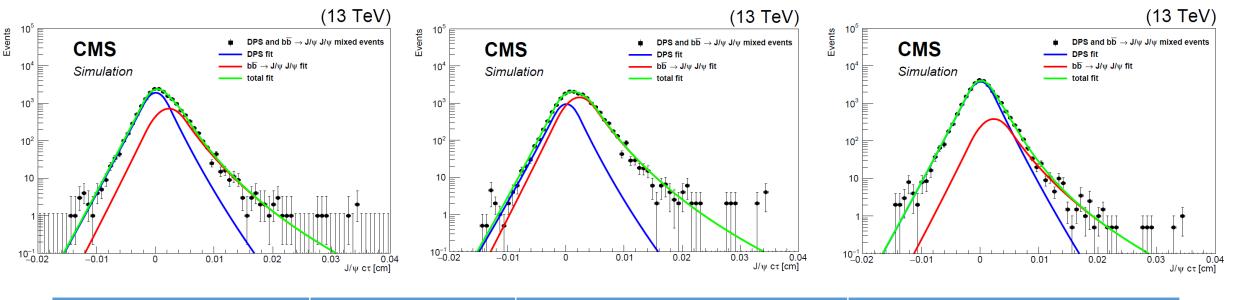
Variable distribution with Four mu vertex cut



• Long distance component may be highly depressed by the vertex requirement


• Using double-sided Crystal Ball (DSCB) function to fit L_{xy} or $c\tau$ distribution

Closure test


	DPS	<i>b̄</i> -> J/ψ J/ψ	total
DPS + $b\bar{b}$ -> J/ ψ J/ ψ	11970	5955	17925
0.5^{*} DPS + $2^{*}b\overline{b}$ -> J/ ψ J/ ψ	5985	11910	17895
$2*DPS + 0.5*b\overline{b} > J/\psi J/\psi$	23940	2977.5	26917.5

- We mix the DPS and $b\bar{b}$ -> J/ ψ J/ ψ in some fraction to produce pseudo-data.
- We the pseudo-data to do closure test

Closure test

	total	DPS fraction	DPS number
DPS + $b\bar{b}$ -> J/ ψ J/ ψ	17925	0.666 ± 0.009	11943.5 ±154.9
0.5^{*} DPS + $2^{*}b\bar{b}$ -> J/ ψ J/ ψ	17895	0.33 ± 0.02	5962.4 ± 368.4
$2*DPS + 0.5*b\overline{b} > J/\psi J/\psi$	26917.5	0.88 ± 0.03	23735.1 ± 909.9

- We fix some parameters(mean, width, alpha) to fit the pseudo-data
- The DPS fraction and DPS events satisfy our expected

中國科學院為能物理研究所 Institute of High Energy Physics Chinese Academy of Sciences

backup

- We transfer to using AOD, so the whole analysis framework were updated
- We add the muon vertex information in the Event Selection

≻Trigger

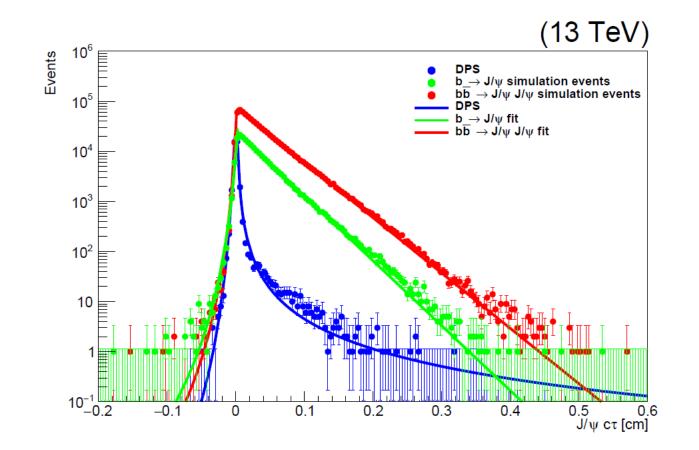
HLT_Dimuon0_Jpsi_Muon

≻Muon

- Standard Soft muon ID
- pT(muon)>=3.5GeV
- |η(muon)|<=2.4
- Do the match with Gen muon
 - DeltaR(Gen muon, RECO muon)<0.03

≻J/ψ Pair

- The vertex probability of the 4 muons is greater than 1%
- $J/\psi1(muon12)$ and $J/\psi2(muon34)$ do not share a common muon


≻J/ψ

- The J/ ψ was reconstructed by two opposite sign muon
- The vertex probability of the 2 muons associated to the J/ψ is greater than 0.5%
- |m(dimuon) 3.092|<0.3

Ctau fit without four muon vertex cut

• B meson ->J/ ψ +x and $b\overline{b}$ -> J/ ψ J/ ψ use the function to fit

double-sided Crystal Ball (DSCB) function and exponential function convolution