Experimental study on primary electrons created by photoelectric effect and simulation of the ionization cluster

Huirong Qi

Yue Chang, Liwen Yu, Xin She, Zhiyang Yuan, Jian Zhang Linghui Wu, Gang Li, Manqi Ruan and some good inputs from LCTPC

August 17, 2022

- Updated progress of TPC prototype
- Experimental studies on primary electrons
- Simulation of the ionization cluster
- Plan and summary

Updated progress of TPC prototype – **NIMA paper publication**

- Paper of TPC prototype integrated with 266nm UV laser tracks has been published in NIMA this month
- One reviewer from ALICE TPC and another reviewer from STAR TPC
- Updated analyses of **the spatial resolution, gain uniformity and dE/dx will be done and released too**.

Nuclear Inst. and Methods in Physics Research, A 1040 (2022) 167241

Performance of TPC detector prototype integrated with UV laser tracks for the circular collider

Z.Y. Yuan ^{c,b,a}, H.R. Qi ^{a,b,c,*}, Y. Chang ^d, L.W. Yu ^e, Y.M. Cai ^{g,f}, H.Y. Zhang ^{a,b,c}, J. Zhang ^{a,b,c}, Q. Ouyang ^{a,b,c}, Y.L. Li ^f, Z. Deng ^f, H. Gong ^f

- ^a Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- ^b State Key Laboratory of Particle Detection and Electronics, Beijing 100049, China
- ^c University of Chinese Academy of Sciences, Beijing 100049, China

^d Nankai University, Tianjin 300071, China

- ^e Liaoning University, Liaoning 110036, China
- ^f Department of Engineering Physics, Tsinghua University, Beijing 100084, China
- ⁸ China Nuclear Engineering Consulting Co., Ltd, Beijing 100000, China

https://doi.org/10.1016/j.nima.2022.167241

Updated progress of TPC prototype – **Oral acceptance**

- Two oral talk **have been acceptance**. (ECFA Workshop 2022 and IEEE 2022)
- ECFA 2022 in Oct.: High resolution pad and pixelated TPC R&D for future e+e- collider
- IEEE 2022 in Nov.: Potential R&D of TPC technology integrated with UV laser for e+e- collider

Updated progress of TPC prototype – **Spatial resolution along drift length**

- The spatial resolution along the drift length has been analyzed cooperated with LCTPC.
- **Prof.** Fujii gave many warm helpings to our group in this summer.
- Some good references
 - **IHEP laser TPC**
 - LCTPC LP TPC
 - Tsinghua GEM TPC
 - ALICE TPC
 - STAR TPC

[A] Purely geometric term (S-shape systematics from finite pad pitch): rapidly disappears as Z

[B] Diffusion, gas gain fluctuation & finite pad pitch term: scales as $1/N_{eff}$, for delta-fun like PRF asymptotically:

[C] Electronic noise term: Z-independent, scales as $\langle 1/N^2 \rangle$

• Experimental studies on ions

Primary electrons

• Experimental studies on ions

Motivation: Need investigate the electrons/ions density at CEPC

- Simulation results by Zhiyang Yuan in his thesis based on CEPC's parameters
- To investigate and create the stable electrons/ions in the specific area
- CEPC or others detector with the massive electrons/ions

Electric field analysis

Cylindrical coordinates

$$\begin{split} \phi(r,\theta,z) &= \sum_{m=-\infty,\infty} \phi_m(r,z) \mathrm{e}^{im\theta}, \\ \phi_m(r,z) &= \int_{-\infty}^{\infty} \Phi_m(r,k) \mathrm{e}^{ikz} dk, \\ \Phi_m(r,k) &= K_m(kr) \int_0^r R_m(r',k) I_m(kr') r' dr' \\ &+ I_m(kr) \int_r^{\infty} R_m(r',k) K_m(kr') r' dr' \\ R_m(r',k) &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \rho_m(r',z') \mathrm{e}^{-ikz'} dz' \\ \rho_m(r',z') &= \frac{1}{2\pi} \oint \frac{\rho(r',\theta',z')}{\epsilon_0} \mathrm{e}^{-\mathrm{i}m\theta} d\theta' \end{split}$$

Resnati F. Modelling of dynamic and transient behaviours of gaseous detectors[J]. 2017.

Ions density in chamber

How to create stable massive electrons in the chamber?

Indirect method to generate electrons

- 55Fe source, X-ray tube, synchrotron radiation
- MPGD detector multiplication method
- Discharge, Ions back flow on the small area

Direct method to generate electrons

- Created the massive electrons on big area
- Photoelectric effect method (<10uJ/cm²)
- Two-photon ionization method (>10uJ/cm²)

Indirect method

Two-photon ionization method (>10uJ/cm²) - Indirect method

- Some gas can absorb the energy of 2 photons from UV laser and ionized
- Wavelength of UV laser: 266nm (almost: 4.66eV×2)
- Threshold of the ionization energy: >10uJ/cm² @MIP

$$n_i(T) = \frac{1}{2} n_0 \sigma_e \sigma_i^* N^2 T^2$$

N is the photon flux σ is the transition cross section n is the ionization density T is the width of the laser pulse

Possible transition channels by two-photon ionization of complex molecules

Photoelectric effect method (<10uJ/cm²) - Direct method

- Explanation of photoelectric effect by A.Einstein
- Each photon carries energy proportional to its frequency $E_{\gamma}=hf=hc/\lambda$
- One electron absorbs only one photon
- Energy of UV can less than 10uJ/cm²
- Stable current of photoelectric needed R&D

Massive electrons R&D Without influence working gas

UV light created the ion disk

- Ions will fill in the drift chamber of TPC to mimic the ions distortion
- Metal mesh polished Aluminum: 600/800/1000/1200/2000 (LPI: Linear Pair)
- Experimental testing of the current at GEM foil

• Current of the background noise (**pA current monitor**)

• Preliminary results: very good stable current obtained

- The different LPI Aluminum's surface tested the different current
- The maximum current reached at 1400LPI Aluminum's surface (**Of course, Very stable**)
- Detector has been studied under the two different mixture gases
 - Very similar trends

- To meet the TPC prototype's drift electric filed (example: ~200V/cm at T2K)
- Scanning the different drift electric field (different voltage of cathode)
 - Verification of the same trend with the drift velocity by Garfield++
 - Verification of the two different mixture gases

ArCO2=90:10

• Simulation of the ionization cluster in space

In Space

- Challenging of the low power consumption electronics (>40mV/fC needed at 2000 of gas gain)
- Pixelated readout

 \rightarrow the reasonable pixilation reveals the underlying cluster structure in 3D chamber

Primary cluster profile along the drift length

- Running 10000 events using Garfiled++
- Drift length: 1m, Incidence angle: 0°
- Operation gas: **T2K gas** @1atm
- Particle: Muon@100GeV/c

Primary cluster profile using **T2K** gas

- Simulation result of the primary cluster using T2K gas
- Mean of N_cluster
 - Pressure: 1atmm, B: 0T, $\cos\theta=0^{\circ}$, Muon, E=100GeV/c

Primary cluster profile using **T2K** gas – $\pi/\kappa/\mu$

- Simulation result of the primary cluster using T2K gas
- Particles: Pion, Muon, Kion, 0.1GeV 100GeV
- Variation of N_cluster(cm) with the different momentum of the specfic incident particle

Primary cluster profile using $Ar/CO_2=90/10$ gas $-\pi/\kappa/\mu$

- Simulation result of the primary cluster using Ar/CO₂=90/10 gas
- Particles: Pion, Muon, Kion, 0.1GeV 100GeV
- Variation of N_cluster(cm) with the different momentum of the specific incident particle

Primary cluster profile under E and B

- To study the N_cluster profile under E and B
- Particles: Muon , 0.1GeV 100GeV
- Verification of the simulation code
 - Successfully create this module
 - Incidence angle: 10°
 - B = 1.0T
 - Momentum = 0.1 GeV/c
 - Radius of curvature: 3.3cm
 - Validation of the results of the calculation and simulation
- Ongoing
 - Starting to investigate the primary cluster profile under the different **E** and **B**

- The codes successfully simulated the primary cluster using the different operation mixture gases, **the different particles** and the different electric/magnetic field.
- Simulation result show that the primary cluster profile along the drift length, and it **could meet** the pixelated readout TPC detector if the pad size will be kept in the rang of 300um 500um.
- Simulation result show that the number of the primary cluster under the different gas pressure, and it **could be optimized and meet the requirements** of the pixelated readout TPC detector if the MPGD readout will run at the low gain.
- The simulation module has been integrated with the different **E** and **B**.

- TPC detector prototype was studied using the UV laser track, ⁵⁵Fe radiation source and the cosmic ray.
 - One paper published in NIMA based on laser TPC prototype
 - Two oral talk have been accepted by ECFA Workshop 2022 and IEEE 2022
- The simulation is starting to study the primary cluster using the different operation mixture gases, the different operation gas pressure and optimization.
- To meet high luminosity of Z pole run, the testing the UV light created the ion disk by photoelectric effect, and the experimental results show good to study.
 - Created the stable massive electrons **without influence** working gas
 - Mimic the same level with CEPC electron/ions density in TPC chamber

Many thanks!