Development of JadePix-3 telescope for beam test

Sheng Dong¹, <u>Yunpeng Lu¹</u>, Hulin Wang², Qun Ouyang¹ 1 Institute of High Energy Physics, CAS 2 Central Normal University of China

Aug. 17, 2022

Outline

- Review on JadePix-3 CMOS Pixel Sensor
- Prototype of beam test telescope
- Initial test with cosmic rays
- Next plan

R&D of silicon pixel sensor for Vertex (in China)

Targeted on high resolution, low power and fast readout.

CPV-2

- JadePix and TaichuPix on 180 nm CIS process
- CPV on 200 nm SOI process

CPV-3

CPV-4

CPV-1

JadePix-3, a major effort on CMOS pixel sensor

- Technological preparation
 - JadePix-1 on the TowerJazz CIS process
 - JadePix-2 and MIC4 on the design schemes
- Collaborative design of a large team
 - Over 10 participants from IHEP, CCNU, SDU, Dalian Minzu U.
- Test work lasted for 1.5 years to fully characterize the chips
 - Highly required expertise on both sensor and electronics
- Highlighted as the achievements of MOST1 project

The pixel matrix of JadePix-3

Full-sized in the ϕ direction

• Matrix coverage: 16 µm × 512 rows = 8.2 mm

Rolling shutter to avoid heavy logic and routing in the columnwise

- Minimum pixel size: 16 μm × 23.11 μm
- Matrix readout time: 512 rows × 192ns/row = **98.3** μs/frame
- 4 parallel sectors, scalable
 - 48 columns/sector × 4 = 192 columns

Sector	Diode	Analog	Digital	Pixel layout
0	2 + 2 µm	FE_V0	DGT_V0	16×26 µm²
1	2 + 2 µm	FE_V0	DGT_V1	16× 26 µm²
2	2 + 2 µm	FE_V0	DGT_V2	16× 23.11 μm²
3	2 + 2 µm	FE_V1	DGT_V0	16×26 μm²

Hit processing flow in JadePix-3

- Row address extracted from the **row selecting sequence** (Rolling shutter)
- Column address with HIT encoded at the bottom of matrix
- Time stamp attached to the HIT address <Format of data frame> • In the form of frame number Head: Buffer status JadePix-3 flow Data: HIT address 1 Data: HIT address 2 row address information extracted Data: HIT address 3 from the row selecting sequence (Rolling shutter) Tail: Frame number col address encoded at the Col. address encoder end of columns Time stamp Time stamp attached to the generated hit address Data buffering & transmission

Test system for single chip

- General-purpose FPGA platform, KC705
 - Well-defined FPGA firmware
 - Debugged Interactively with the JadePix3 chips
- 4 test setup deployed in IHEP, CCNU, USTC, JLU

IPBUS protocol

- Reliable high-performance **control link** for particle physics electronics
- JUMBO PACKAGE feature developed to boost the payload data rate up to 750 Mbps

IPBUS: a flexible Ethernet-based control system

Distribution of System Clock

- System clock fanned out from a Si5338 board to all the detector planes
 - 200 MHz, differential pairs
 - Clock source for the rolling shutter scan
 - Commercially available

Synchronization of Start Up

- Plane 0 configured as Master
 - Convert a software start to a hard-wired signal
- Start from plane 0 to plane 4 via a daisy chain
 - Rolling shutter scan synchronized
 - Data from different planes correlated by their frame number

Hardware

particle track 5 detector planes prepared. 3 detector planes assembled for debugging 4.8 • Sensitive area 8.2 mm * 4.8 mm 8.2 mm • Detector plane spaced 22 mm

Plane 2

Plane 1

Plane 0

22 mm

22 mm

Threshold

- Threshold calibrated with electrical test pulse
 - 200 e⁻ applied to the full matrix

Noise hit rate

- Noise hit rate below 10⁻⁸ /frame/pixel
 - Sensitivity of measurement limited by the test time and environmental radiation
 - Data size proportional to the number of hits, a few bytes / hit
 - \rightarrow long time operation and data analysis on a laptop

Noise Hit Rate

Initial test with cosmic ray

More cosmic ray event

Next Plan

- To complete the integration of 5 detector planes
- Trigger detector
 - Plastic scintillator + SiPM
 - To provide a "gate" signal for the HIT register (short trigger window ~ a few us)
- EUTelescope software for track reconstruction and analysis
 - Need more experts in this area
- Time slot for test beam to be booked or shared
 - Not available yet

