Update

Zhan
2022.10.31

Top mass

- The referee wanted us to provide the figure of 2 d scan of mass vs.

alphas.

- We expect to get the figure like this:

Fig. 6 Expected statistical errors from a simultaneous fit of the top mass and the strong coupling constant, showing the correlation of the two variables and the achieved precision

Eur. Phys. J. C (2013) 73:2530

Top mass

- But we cannot get a closed curve.

The reason is:

The fit method we use is number counting method.
Since the xsec of the lower-left and the upper-right changes mildly, we cannot get a closed curve.

Xiaohu has sent email to them, for we would like to know what knid of method they use to get the closed curve.
$342.00 \mathrm{GeV} 100 \mathrm{fb}-1$

342.25 GeV 100fb-1

342.75 GeV 100fb-1

$343.00 \mathrm{GeV} 100 \mathrm{fb}-1$

343.25 GeV 100fb-1

343.75 GeV 100fb-1

$344.00 \mathrm{GeV} 100 \mathrm{fb}-1$

344.25 GeV 100fb-1

344.75 GeV 100fb-1

Plot $3 \mathrm{D}[\mathrm{z},\{\mathrm{x},-5.70711,5.70711\},\{\mathrm{y},-5.70711,5.70711\}$, Mesh \rightarrow Automatic，MeshFunctions $\rightarrow\{\sharp 3 \&\}\}$

$z=x^{2}+(y-x)^{2}$
$x^{2}+(-x+y)^{2}$
Plot3D［z，\｛x，－0．607737，0．607737\}, $\{y,-0.607737,0.607737\}]$
绘制三维图形

Plot3D $[z,\{x,-0.607737,0.607737\},\{y,-0.607737,0.607737\}$ ，Mesh \rightarrow Automatic，MeshFunctions $\rightarrow\{\# 3 \&\}]$绘制三维園形 两 网格 自动 丽格函数

Unfinished

Still need to be done:

1. Find the best point selection scheme
2. Get the error
$342.75,344.25$, each sqrt(s) is given 50fb-1 (total lum unchanged)
$342.00 \mathrm{GeV} 100 \mathrm{fb}-1$

342.50 GeV 100fb-1

342.25 GeV 100fb-1

342.75 GeV 100fb-1

$343.00 \mathrm{GeV} 100 \mathrm{fb}-1$

343.50 GeV 100fb-1

343.25 GeV 100fb-1

343.75 GeV 100fb-1

344.00 GeV 100fb-1

344.50 GeV 100fb-1

344.25 GeV 100fb-1

344.75 GeV 100fb-1

