Update

Zhan 2022.10.31

Top mass

 The referee wanted us to provide the figure of 2d scan of mass vs. alphas.
We expect to get the figure

Fig. 6 Expected statistical errors from a simultaneous fit of the top mass and the strong coupling constant, showing the correlation of the two variables and the achieved precision

Eur. Phys. J. C (2013) 73:2530

Top mass

• But we cannot get a closed curve. The reason is:

The fit method we use is number counting method.

Since the xsec of the lower-left and the upper-right changes mildly, we cannot get a closed curve.

Xiaohu has sent email to them, for we would like to know what knid of method they use to get the closed curve.

$$z = (y - x)^{2}$$
$$(-x + y)^{2}$$

Plot3D[z, {x, -5.70711, 5.70711}, {y, -5.70711, 5.70711}] 绘制三维图形

Plot3D[z, {x, -5.70711, 5.70711	}, {y, -5.70711,	5.70711},	Mesh -	Automatic,	MeshFunctions -	+ { #3 & }	1
絵制三維图形			网格	l白云h	网格函数		

 $z = x^{2} + (y - x)^{2}$

 $x^{2} + (-x + y)^{2}$

Plot3D[z, {x, -0.607737, 0.607737}, {y, -0.607737, 0.607737}] 绘制三维图形

Plot3D[z, {x, -0.607737, 0.607737},	{y, -0.607737, 0.607737},	Mesh -	Automatic,	MeshFunctions \rightarrow {	[#3 &]]
绘制三维图形		网格	自动	网格函数	

Unfinished

Still need to be done:1. Find the best pointselection scheme2. Get the error

342.00 GeV 100fb-1

342.25 GeV 100fb-1

342.75 GeV 100fb-1

343.00 GeV 100fb-1

343.50 GeV 100fb-1

343.25 GeV 100fb-1

343.75 GeV 100fb-1

344.00 GeV 100fb-1

344.50 GeV 100fb-1

344.25 GeV 100fb-1

344.75 GeV 100fb-1

