

中國科學院為能物昭研究所 Institute of High Energy Physics Chinese Academy of Sciences

AIs for the HBSM pre-approval

Abdualazem Fadol for the analysis team

November 10, 2022

- \Box The analysis TWiki \Rightarrow
- \Box Supporting note in the CDS $\, \Rightarrow \,$
- \Box Recent communication through the CDS $\,\Rightarrow\,$
- □ Pre-approval slides on October 27, 2022.

List of Als to address before unblinding

Required for unblinding

- (1) Add pull/ranking plots for the CR and MET > 200 GeV
- (2) Signal Cutflow starting from raw number.
- (3) Strategy for re-interpretation of analysis: RECAST
- (4) Signal injection tests
- (5) Replying to comments and questions on the CDS before the unblinding.
- (6) You should have a clear strategy on how to deal with large widths in the signals, and how much of your parameter space affects.

Follow-up questions during the pre-approval talk

- (1) Why the resolution up/down is much wider than the nominal? Why is the resolution not getting better? Why is the peak much lower for both Scale up/down?
- (2) Are the sub-regions orthogonal?
- (3) Understanding the asymmetric uncertainties for the signal shape systematic.
- (4) Could you plot the ratio so that we compare and if we could justify the increase in the sensitivity by a higher signal effxacc?
- (5) Description of the 2HDM numbers.

AI(1): Systematic uncertainties on the CR region

 \Box Control region: 80 < $m_{4\ell}$ < 170 GeV; only experimental uncertainties are considered.

AI(1): Systematic uncertainties on the $m_{4\ell} > 200$

- □ For $m_{4\ell}$ > 200 GeV; only experimental uncertainties are considered.
- Comparable to the inclusive $H \rightarrow ZZ \rightarrow 4\ell$ analysis (High mass) note.

AI(1): Pull plot for the CR

 $\hfill\square$ Observed (top) and Asimov data (bottom) with POI fixed to one.

AI(1): Ranking plot for the CR

□ Observed (left) and Asimov data (right) with POI fixed to one.

AI(1): Pull plot for the $m_{4\ell} > 200$ GeV region

Observed (top) and Asimov data (bottom) with POI fixed to one.

AI(1): Ranking plot for the $m_{4\ell} > 200$ GeV region

□ Observed (left) and Asimov data (right) with POI fixed to one.

AI(2) Signal Cutflow starting from raw number

⊥	<mark>2</mark> e2mu	2mu2e	4e	4mu
Total	30000.0	30000.0	30000.0	30000.0
DataPreselection	30000.0	30000.0	30000.0	30000.0
Preselection	20682.0	20682.0	20682.0	20682.0
Trigger	20620.0	20620.0	20620.0	20620.0
Lepton	9013.0	9013.0	3614.0	5489.0
SFOS	4242.0	4657.0	3486.0	5471.0
Kinematics	4237.0	4651.0	3483.0	5464.0
TriggerMatch	4237.0	4651.0	3483.0	5464.0
Z1Mass	4285.0	4673.0	6242.0	9932.0
Z2Mass	4167.0	4606.0	4626.0	7347.0
DeltaR	4151.0	4578.0	4621.0	7295.0
Iso	3689.0	4172.0	4246.0	6434.0
DOSig	3633.0	4099.0	4234.0	6276.0
Vertex	3626.0	4094.0	4224.0	6259.0
Final	3624.0	4084.0	3156.0	4675.0

10

□ For (390, 220) GeV sample (mc16a)

AI(3): Strategy for re-interpretation of the analysis

11

 $\hfill\square$ This is still work in progress.

\Box For the $A \rightarrow ZH \rightarrow 4\ell + X$ signal model:

(<i>m</i> _A , <i>m</i> _H)	Upper limits at 95%				
	No-signal hypothesis	signal=1.0	signal=2.0	signal=10.0	
(320, 220)	0.284	1.333	2.415	11.029	
(500, 400)	0.173	1.261	2.318	10.728	
(2090, 1000)	0.036	1.178	2.270	10.030	

12

\Box For the $R \to SH \to 4\ell + E_{\rm T}^{\rm miss}$ signal model:

(<i>m</i> _A , <i>m</i> _H)	Upper limits at 95%				
	No-signal hypothesis	signal=1.0	signal=2.0	signal=10.0	
(390, 220)	0.305	1.422	2.537	11.017	
(500, 300)	0.135	1.289	2.401	11.090	
(1340, 250)	0.090	1.253	2.341	10.896	

AI(6) Strategy on how to deal with large widths in the signals

□ The *ℓℓbb* (Eur. Phys. J. C. 81 (2021) 396) uses the following:

- $\circ \cos(\beta \alpha) = 0$
- H natural width of 1%
- $\circ~$ A natural width of 10% and 20%
- Exclusion on the m_A - m_H

 \Box For $\ell\ell WW$, exclude m_A -cos $(\beta - \alpha)$

☐ In our case, we need to discuss with Nikos to decide what to do.

(1) Why the resolution up/down is much wider than the nominal? Why is the resolution getting better? Why is the peak much lower for both Scale up/down?

14

□ Resolution: the σ is modified by 1.4%: nominal \cdot (1 + 0.014) (nominal \cdot (1 - 0.014)) for up (down) □ Scale: the μ is modified by 0.23% (up/down)

EG_RESOLUTION_ALL(RMS) & EG_SCALE_ALL(MEAN)

(1) Why the resolution up/down is much wider than the nominal? Why is the resolution getting better? Why is the peak much lower for both Scale up/down?

15

(2) Are the subregion orthogonal?

	<pre>cat1_val[groupName][#]+=weight*scalefactor;</pre>
.f(nbj77==@&&ncj==@&&pt4l>2@&&metsig>2.@)	<pre>cat1_val[groupName][1]+=weight*scalefactor;</pre>
lse if(nbj77==0&&ncj==0&&pt4l>10&&metsig>1.5)	<pre>cat1_val[groupName][2]+=weight*scalefactor;</pre>
lse if(nbj77==@&&ncj>=1&&pt4l>1@&&metsig>3.5)	<pre>cat1_val[groupName][]+=weight*scalefactor;</pre>
lse if(nbj77==@&&ncj>=1&&pt4l> @&&metsig>2.5)	<pre>cat1_val[groupName][4]+=weight*scalefactor;</pre>
lse if(nbj77>= <mark>1</mark>)	<pre>cat1_val[groupName][5]+=weight*scalefactor;</pre>
lse if(ncj>=2&&fabs(m_cjj-mZ)<20)	<pre>cat1_val[groupName][s]+=weight*scalefactor;</pre>
lse if(ncj>=2&&fabs(m_cjj-mZ)>20)	<pre>cat1_val[groupName][7]+=weight*scalefactor;</pre>
lse if(ncj==1)	<pre>cat1_val[groupName][3]+=weight*scalefactor;</pre>
<pre>lse{cat1 val[groupName][9]+=weight*scalefactor;}</pre>	

16

Categories		Representation	$Z_{Sig_1} = s/\sqrt{b}$		
Curtones			$A \rightarrow ZH \rightarrow 4\ell + X$	$R \rightarrow SH \rightarrow 4\ell + E_T^{mass}$	
$E_{\rm T}^{\rm miss}$ categories .	$N_{\text{jets}}^{\text{Central}} = 0$	$p_T^{4\ell} > 20 \& E_T^{miss}$ significance > 2.0	High- E_T^{miss} & $N_{\text{jets}}^{\text{Central}} = 0$	1.10	3.11
		$p_T^{4\ell} > 15 \& E_T^{miss}$ significance > 1.5	Low- E_T^{miss} & $N_{\text{iets}}^{\text{Central}} = 0$	0.28	0.78
	$N_{jets}^{Central} \ge 1$ p	$p_T^{4\ell} > 10 \& E_T^{miss}$ significance > 3.5	High- $E_T^{\text{miss}} \& N_{\text{jets}}^{\text{Central}} \ge 1$	1.35	5.66
		$p_T^{4\ell} > 0 \& E_T^{\text{miss}}$ significance > 2.5	Low- E_T^{miss} & $N_{\text{jets}}^{\text{Central}} \ge 1$	1.39	2.44
Jet categories	$N_{b-jets} \ge 1$		$N_{b-jets} \ge 1$	1.88	-
	$ m_{ii}^{\text{Central}} - m_Z < 20$		$ m_{ii}^{\text{Central}} - m_Z < 20$	2.05	-
	$ m_{ii}^{\text{Central}} - m_Z > 20$		$ m_{ij}^{\text{Central}} - m_Z > 20$	1.89	•
	$N_{jets}^{Central} = 1$		$N_{jets}^{Central} = 1$	1.13	-
Combined significance			4.19	6.90	

Yes, the subregion are orthogonal. The cuts are in a sequential order with "if" and "else if"

(3) Understanding the asymmetric uncertainties for the signal shape systematic

17

 \Box Same shift for up and down variation in the $A \rightarrow ZH \rightarrow 4\ell + X$.

(4) Could you plot the ratio so that we compare and if we could justify the increase in the sensitivity by a higher signal effxacc?

18

□ Upper limits at 95% CL between [0.028 - 0.293] fb on (320, 1300) - (220, 1000) GeV. □ The $A \rightarrow Z(\rightarrow X)H(\rightarrow 4\ell)$ signal (left) and the total $A \rightarrow ZH \rightarrow 4\ell + X$ signal (right).

(4) Could you plot the ratio so that we compare and if we could justify the increase in the sensitivity by a higher signal effxacc?

19

The ratio between $A \to Z(\to X)H(\to 4\ell)$ and $A \to ZH \to 4\ell + X$ is in the range of [1.014-3.365]

- $\hfill\square$ We went through most of the Als we discussed on the pre-approval talk.
- □ We replied to comments and question in the CDS, except the interpretation related comments.
- For these, we should discuss with Nikos to come up with an interpretation strategy.
- $\hfill\square$ A new version of the note is uploaded to the CDS .
- □ To-do:
 - RECAST
 - CKKW/QSF
 - Inefficiency of the trigger
 - Interpretation strategy

Additional slides

21