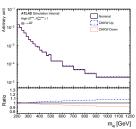
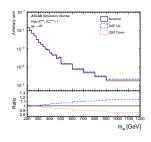





# Weekly update

Abdualazem Fadol


January 9, 2023

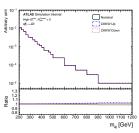

### 4I+MET analysis

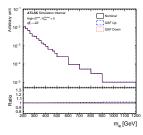
#### Parton shower uncertainties for $gg \rightarrow ZZ$ sample



- ☐ The parton-shower uncertainty is evaluated by varying parameters in the parton-shower tunes such as CKKW and QSF settings, and by using different showering options.
- ☐ The systematic uncertainties are split into systematic effecting the shape and the normalisation.
- ☐ The shape systematic uncertainties:
  - CKKW: 2% to 8%QSF: 2% to 8%
- □ The normalisation systematic uncertainties:
  - CKKW: 5.2%QSF: 27%







### 4I+MET analysis

#### Parton shower uncertainties for $q\bar{q} \rightarrow ZZ$ sample



- ☐ The parton-shower uncertainty is evaluated by varying parameters in the parton-shower tunes such as CKKW and QSF settings, and by using different showering options.
- ☐ The systematic uncertainties are split into systematic effecting the shape and the normalisation.
- ☐ The shape systematic uncertainties:
  - CKKW: 0.3% to 3%QSF: 0.4% to 3%
- □ The normalisation systematic uncertainties:
  - CKKW: 2%QSF: 3%





#### Things to finalise this week

 $\square$  Fix the problem with the 4 $\mu$  channel—This is the last item required for the unblinding.

Table: Cut-flow for the raw events at the preselection for  $(m_R, m_H) = (390, 220)$  GeV mass point. The events are shown for the  $2e2\mu$ ,  $2\mu2e$ , 4e and  $4\mu$  channels using mc16a, mc16d and mc16e.

|                 | 2e2μ     | 2µ2e     | 4e       | 4μ       |
|-----------------|----------|----------|----------|----------|
| Total           | 140000.0 | 140000.0 | 140000.0 | 140000.0 |
| Preselection    | 99342.0  | 99342.0  | 99342.0  | 99342.0  |
| Trigger         | 98962.0  | 98962.0  | 98962.0  | 98962.0  |
| Lepton          | 40806.0  | 40806.0  | 16176.0  | 25743.0  |
| SFOS            | 19107.0  | 21279.0  | 15631.0  | 25616.0  |
| Kinematics      | 19088.0  | 21261.0  | 15622.0  | 25592.0  |
| TriggerMatch    | 19088.0  | 21261.0  | 15622.0  | 25592.0  |
| Z1Mass & Z2Mass | 18799.0  | 20999.0  | 20730.0  | 34571.0  |
| DeltaR          | 18720.0  | 20871.0  | 20706.0  | 34325.0  |
| Iso             | 16392.0  | 18877.0  | 18831.0  | 30096.0  |
| D0Sig           | 16088.0  | 18549.0  | 18701.0  | 29365.0  |
| Vertex          | 16059.0  | 18516.0  | 18660.0  | 29270.0  |
| Final           | 16054.0  | 18477.0  | 13985.0  | 21859.0  |

- ☐ Finalise the validation plots for requesting new samples with large width approximation for A and H widths
- Updating the note with the CKKW and QSF uncertainties and the fixed cutflow table.

## Summary



| I finished all the to-do list that included into the note:  To-do:                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • Estimating CKKW/QSF uncertainties for $q\bar{q}\to ZZ$ and $gg\to ZZ$ backgrounds (We need to generate samples at the truth level for this since the HZZ off-shell samples were deleted.) |
| • Come up with an interpretation strategy for the $A \to ZH \to 4\ell + X$ model (one week)                                                                                                 |
| After a discussion with the conveners, we agreed to include $0.5\%$ uncertainty on the trigger SF (global).                                                                                 |
| I should be able to finalise the validation plots by the end of this week.                                                                                                                  |
| And also discuss with the HZZ conveners about the problem with the cutflow table.                                                                                                           |
|                                                                                                                                                                                             |