

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

4ℓ +MET analysis: unblinded results

Abdualazem Fadol

February 20, 2023

Introduction

- In this analysis, we're searching for heavy resonances in final states
- with four leptons and missing transverse energy or jets.
- Interpret the data in terms of two models:
 - $R \rightarrow SH \rightarrow 4\ell + E_{\rm T}^{\rm miss}$, [1] $A \rightarrow ZH \rightarrow 4\ell + X$, [2,3]

We unblinded the Run-2 dataset with luminosity of 139 fb^{-1} .

Expected and observed 2D limit on the $m_{A/R}$ - m_H plane.

^[1] JHEP 03 (2017) 094

Phys.Rev.Lett.113

^[3] Eur. Phys. J. C (2016)

Benchmark

Data: Run-2 dataset (unblinded now)

Signal samples:

• $A \to ZH \to 4\ell + X$: $A \to Z(\to 2\ell)H(\to 2\ell + X)$ and $A \to Z(\to X)H(\to 4\ell)$ • $R \to SH \to 4\ell + E_{\rm T}^{\rm miss}$: The S decays to neutrinos, and its mass is fixed 160 GeV.

SM backgrounds:

- $\circ~$ The dominant backgrounds are $q\bar{q} \rightarrow ZZ$ and $gg \rightarrow ZZ-$ 85% & 11%.
- Small contribution from VVV, $t\bar{t}V$, $t\bar{t}$, Z + jets, WZ and $q\bar{q} \rightarrow ZZ(EW)$
- The background shapes are taken from simulation for all SM backgrounds.
- Fit range (bin, xmini, xmaxi) \equiv (2000, 200, 1200)

Abdualazem | Unblinded results

Event selection

Triggers:

- o single-lepton
- di-lepton
- o tri-lepton

] <u>Jets</u>:

- o using central jets
- b-jets: 77% efficiency

4*l*+MET specific selection to optimise

0	$R \rightarrow SH \rightarrow 4\ell +$	$E_{\rm T}^{\rm miss}$
0	$A \rightarrow 7H \rightarrow 4\ell +$	x

	Physics Objects								
	Electrons								
Loose Likelihood quality electrons with hit in innermost layer, $E_T > 7$ GeV and $ n < 2.47$									
	Interaction point constraint: $ z_0 \cdot \sin \theta < 0.5 \text{ mm}$ (if ID track is available)								
	MUONS								
	Loose identification with $p_T > 5$ GeV and $ n < 2.7$								
Calc	-tagged muons with $p_T > 15$ GeV and $ \eta < 0.1$, segment-tagged muons with $ \eta < 0.1$								
Stand-alone and silicon-associated forward restricted to the $2.5 < n < 2.7$ region									
Comb	ined, stand-alone (with ID hits if available) and segment-tagged muons with $p_T > 5$ GeV								
Interaction point constraint: $ d_0 < 1 \text{ mm}$ and $ z_0 \cdot \sin \theta < 0.5 \text{ mm}$ (if ID track is available)									
	Jets								
anti-kr iets with bad-loose identification, $p_T > 30$ GeV and $ n < 2.5$ (Central iets only)									
Overlap removal									
	Jets within $\Delta R < 0.2$ of an electron or $\Delta R < 0.1$ of a muon are removed								
	VERTEX								
	At least one collision vertex with at least two associated track								
	PRIMARY VERTEX								
	Vertex with the largest p_T^2 sum								
	Event Selection								
QUADRUPLET	- Require at least one quadruplet of leptons consisting of two pairs of same-flavour								
SELECTION	opposite-charge leptons fulfilling the following requirements:								
	- pT thresholds for three leading leptons in the quadruplet: 20, 15 and 10 GeV								
	- Maximum one calo-tagged or stand-alone muon or silicon-associated forward per quadruple								
	 Leading di-lepton mass requirement: 50 < m_{Z1} < 106 GeV 								
	- Sub-leading di-lepton mass requirement: mthreshold < mZ2 < 115 GeV								
	- $\Delta R(\ell, \ell') > 0.10$ for all leptons in the quadruplet								
	- Remove quadruplet if alternative same-flavour opposite-charge								
	di-lepton gives $m_{\ell\ell} < 5 \text{ GeV}$								
	 Keep all quadruplets passing the above selection 								
ISOLATION	- Contribution from the other leptons of the quadruplet is subtracted								
	- FixedCutPFlowLoose WP for all leptons								
IMPACT	- Apply impact-parameter significance cut to all leptons of the quadruplet								
PARAMETER	- For electrons: $d_0/\sigma_{d_0} < 5$								
SIGNIFICANCE	- For muons: $d_0/\sigma_{d_0} < 3$								
Best	- If more than one quadruplet has been selected, choose the quadruplet								
QUADRUPLET	with highest Higgs decay ME according to channel: 4μ , $2e2\mu$, $2\mu 2e$ and $4e$								
VERTEX	- Require a common vertex for the leptons:								
SELECTION	- χ^2 /ndof < 6 for 4 μ and χ^2 /ndof < 9 for others decay channels								
-									

Specific selection depending on the model

- □ We use the TRExFitter statistical tool to perform the fit.
- □ The fit is performed on the invariant mass of the four-lepton system;
- $\Box\,$ The fit range is between 200 and 1200 GeV with 0.5 GeV as a step for each bin.
- □ A binned maximum-likelihood fit is used to fit signal-plus-background Asimov data.
- \Box For $A \rightarrow ZH \rightarrow 4\ell + X$: seven categories are fitted simultaneously.
- \Box For $A \rightarrow ZH \rightarrow 4\ell + X$: three categories are fitted simultaneously.
- \Box Float $q\bar{q} \rightarrow ZZ$ and $gg \rightarrow ZZ$ with a normalisation that depends on the category.
- □ The VVV and others backgrounds are fixed to the SM prediction.
- $\hfill\square$ All nuisance parameters are floated during the fit.

Fit results Correlation Matrix

 \Box Correlation between nuisance parameters for the $(m_R, m_H) = (420, 250)$ GeV signal

8

□ Well constrained nuisance parameters within $\pm 1\sigma$ for the $(m_R, m_H) = (420, 250)$ GeV signal.

Fit results Background+Signal fit for $A \rightarrow ZH \rightarrow 4\ell + X$

Fit results Background+Signal fit for $R \rightarrow SH \rightarrow 4\ell + E_T^{miss}$

 $A \rightarrow ZH \rightarrow 4\ell + X$: A460H320

Fit results The impact of NPs parameter on the POI

Pre-fit impact on $\sigma(gg \rightarrow F$ $\Delta \sigma(aa \rightarrow R) \times BR$ $\square \theta = \hat{\theta} + \Delta \theta \qquad \square \theta = \hat{\theta} - \Delta \theta \qquad 0.0040.0030.0020.001 \ 0 \ 0.0000.0020.0030.004$ Post-fit impact on $\sigma(qq \rightarrow \Gamma)$ ATLAS Internal $\theta = \hat{\theta} + \Delta \hat{\theta}$ $\theta = \hat{\theta} - \Delta \hat{\theta}$ √s = 13 TeV, 139 fb⁻¹ ---- Nuis, Param, Pull ggZZ_CKKW_Shape_2 ggZZ QSF Shape 2 others Param Shape 2 qqZZ_Param_Shape_2 VVV Param Shape 2 PRW DATASE PDF ZZrel qqZZ_Param_Shape_1 ggZZ CKKW Shape 1 ggZZ_QSF_Shape_1 ET SoftTrk ResoPerp Shape 1 ET_SoftTrk_ResoPara_Shape_1 Z MET SoftTrk Scale Shape 2 ET_SoftTrk_ResoPerp_Shape_2 R390H220 Shape Scale 1 qqZZ_QSF_Shape_2 qqZZ_CKKW_Shape_2 Z MET SoftTrk Scale Shape 1 JES Flavor Composition MUON EFF ISO SYS -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 $(\hat{\theta} - \theta_{a})/\Delta \theta$

R390H220

12

A320H220

Expected and observed upper limits on the (m_H, m_R) plane for the $R \rightarrow SH \rightarrow 4\ell + E_T^{miss}$ model

13

□ Expected upper limits at 95% CL between [0.030 - 0.322] fb on (320, 1300) - (220, 1000) GeV.
 □ Expected upper limits at 95% CL between [0.027 - 0.532] fb on (320, 1300) - (220, 1000) GeV.

Observed local p values on the (m_H, m_R) plane for the $R \rightarrow SH \rightarrow 4\ell + E_T^{miss}$ model

Expected and observed 1D upper limit for the $R \rightarrow SH \rightarrow 4\ell + E_T^{miss}$ model

Expected and observed upper limits on the (m_H, m_A) plane for the $A \rightarrow ZH \rightarrow 4\ell + X$ model

16

□ Expected upper limits at 95% CL between [0.028 - 0.289] fb on (320, 1300) - (220, 1000) GeV.
 □ Observed upper limits at 95% CL between [0.023 - 0.378] fb on (320, 1300) - (220, 1000) GeV.

17

□ The highest excess is observed around $(m_H, m_H) = (385, 515)$ GeV with local significance of 2.5 σ □ $m_H = 385, 625$ and 715

Expected and observed 1D upper limit for the $A \rightarrow ZH \rightarrow 4\ell + X$ model

- \Box We showed the unblinded results for the 4ℓ+MET analysis.
- $\hfill\square$ No significance deviation beyond the Standard Model background was observed.
- $\hfill\square$ There are still a few jobs running for some mass points that will be added soon.

	$q\bar{q} \rightarrow ZZ$	$gg \rightarrow ZZ$	$q\bar{q} \rightarrow ZZ^{*}(EW)$	tīV	VVV	Z + jets	WZ	tī	Data	Expected
Preselection	2518.94±4.23	349.23±0.67	32.77±0.27	47.18±0.44	19.05±0.11	3.85±1.15	4.89±0.31	2.80±0.19	3296.00	2978.72±7.38
High- $E_T^{\text{miss}} \& N_{\text{jets}}^{\text{Central}} = 0$	115.24±1.15	27.74±0.19	0.48±0.03	2.07±0.08	7.48±0.06	0.58±0.07	1.73 ± 0.19	0.64±0.08	177.00	155.96±1.86
Low- $E_T^{miss} \& N_{iets}^{Central} = 0$	177.34±1.04	34.58±0.18	0.49±0.03	0.19±0.03	0.79±0.02	0.33±0.03	0.45±0.08	0.06±0.02	258.00	214.23±1.42
High- E_T^{miss} & $N_{jets}^{Central} \ge 1$	12.93±0.23	2.68±0.06	0.38±0.02	5.31±0.15	4.78±0.06	0.05±0.02	0.75±0.12	0.58±0.07	32.00	27.47±0.74
Low- E_T^{miss} & $N_{iets}^{Central} \ge 1$	44.15±0.46	8.54±0.11	1.18±0.04	1.79±0.09	1.51 ± 0.03	0.11±0.03	0.32±0.08	0.20±0.07	55.00	57.78±0.91
$N_{b-jets} \ge 1$	60.68±0.49	6.79±0.10	1.80±0.06	34.94±0.38	0.50±0.02	0.12±0.03	0.14±0.05	0.95±0.13	135.00	105.91±1.26
$ m_{ii}^{\text{Central}} - m_Z < 20$	44.10±0.29	7.38±0.10	2.16±0.07	0.30±0.04	0.19 ± 0.01	0.00±0.00	0.04±0.03	0.01 ± 0.01	49.00	54.16±0.54
$ m_{ii}^{\text{Central}} - m_Z > 20$	196.51±0.60	27.79±0.19	15.09±0.16	1.35±0.09	1.09 ± 0.02	0.80±0.73	0.31±0.08	0.08±0.02	197.00	243.01±1.89
$N_{intra}^{Central} > 1$	537.70±1.94	82.98±0.33	9.20±0.15	1.06 ± 0.06	1.60 ± 0.03	0.24±0.05	0.69 ± 0.12	0.17 ± 0.04	665.00	633.64±2.71