

ATLAS simulation topics

Fangyi Guo on behalf of ATLAS Simulation group

EGamma workshop 14–17 Mar 2023, CERN

Content

- Run 3 pile-up overlay tuning for TRT.
- ATLAS Fast simulation.
- LAr EM shower shapes.
- EGamma energy scale in mc21.

• MC-MC overlay digitization for pile-up:

• Derive the pile-up simulation by overlaying the pre-mixed events. **MUCH FASTER**!

• TRT overlay tuning:

- Randomly increase HT hits. The probabilities need to be tuned.
- In Run3: more straws use *Ar-based* gas mixture, while the previous parameterizations are developed for *Xe-based* straws only.

Parameterization tuning for Ar straws:

- Consider the added ionization signal over HT from pile-up multiple tracks.
- Depending on: barrel/endcap, particle type (e^{\pm} or not), and detector occupancy.
- MC: Powheg+Pythia8 $Z \rightarrow ee / Z \rightarrow \mu\mu$, Run3 gas geometry, full Digi / overlay.
- Fit the difference to get the correction.

• Corrections have been implemented in Athena [MR].

• Closure test with $Z \rightarrow ll$ MC:

Electrons

Muons

• Physics validation:

EGamma validation

ATLAS fast simulation

Fast simulation is essential for ATLAS study

- AtlFast2(AF2) has been used in countless ATLAS physics analyses in Run1 and Run2.
- Parameterized calorimeter simulation FastCaloSim in AF2 has good average shower description, but can not model complex variables well.
- AtlFast3(AF3): improve physics performance with same CPU as AF2.

AF3 configuration

Run 4 (u=88-140)

Run 5 (u=165-200)

ATLAS fast simulation

FastCaloSimV2 physics validation for Run3 (In progress) [indico]

- Good agreement in kinematic variables.
- Notable difference in shower shapes, energy scale and efficiencies are lower @ gap.
- Can be followed in <u>JIRA</u> (first round in <u>JIRA</u>).

ATLAS fast simulation

- FastCaloGAN:
 - Improved for EM simulation in AtlFast3 & Run3.
 - Better performance for E and η -shapes than FCSV2, but a bit worse in E_{ratio} .
 - Physics validation is coming.

*FSCV2 version is not exactly the one in PhysVal.

ATLAS EM shower shape disagreement between data and MC:

• Can come from: detector geometry, simulation, cross-talk, noise, pile-up, etc. [Guillaume in 2017]

A*TLAS* **Preliminar**

s = 13 TeV. 33.9 fb

Data, rel. 21

Presently is corrected with **fudge factors**.

Decouple the impact: cross talk amplitude

- Cross talk map in Athena and data $Z \rightarrow \mu\mu$ don't match.
- Scale the cross talk amplitude, check the shower shape.
 - η direction can have visible impact.
 - cross talk can not cover the variation in ϕ direction.
- Cross talk can be one of the reasons.

9

Decouple the impact: detector geometry description

- Consider the impact of geometry material:
 - Mismodeling of total weight: increase the lead plate density 4%.
 - Mismodeling of absorber plate thickness: decrease LAr density 3%.
 - Mismodeling of absorber plate corner structure: decrease corner lead density 40%.
- Add 3 more ATLAS config used for syst: ConfigA, ConfigIBL, ConfigPPO.

• Impacts from the geometry are negligible.

Decouple the impact: Geant4 simulation

• Check the impact from range cut and EM options in the physics list.

Decouple the impact: Geant4 simulation

- Can we go closer to data?
 - Tuning the options in G4 10.6 EMZ: e^+ mean scattering angle and a theory based Goudsmit-Saunderson (GS) model for e^{\pm} multiple Coulomb Scattering (MSC).
 - η -shape is closer to data (wider shower), ϕ -shape is not.

EGamma energy scale in mc21

- Energy response difference in latest mc21:
 - Has been observed in early Run3 analysis, e.g. $H \rightarrow \gamma \gamma$. Independent with pile-up.
 - One known issue from mc16 to mc21: sampling fraction.
 - If SF is the only issue, $E_{reco} \sim E_{hit}/SF$ should not change.
 - Also difference between mc21pre and mc21a is not understood.

EGamma energy scale in mc21

• Sampling fraction check for single electron:

- Re-calculate the sampling fraction in mc21 using G4UserAction
 - Sampling fraction is identical to database \rightarrow no bug in computation.
 - Total energy is higher \rightarrow something else in simulation.

0.1 <eta<0.75< th=""><th>50 GeV electrons @ R=1500</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>single electrons from PV 40<e<60 gev<="" th=""><th></th><th></th><th></th><th></th></e<60></th></eta<0.75<>	50 GeV electrons @ R=1500								single electrons from PV 40 <e<60 gev<="" th=""><th></th><th></th><th></th><th></th></e<60>				
											(using recomputed SF)	(using SF in DB)	
	Etot barrel		ELAr barrel		ELAr Hit		SF (ELArHit/ Etot)		ELAr Hit (no PS)/Etrue		Visible HIT / SF	Raw cluster/ Etrue	
mc16 (21.0.X)	49437	+-8	9763	+- 2	9017	+-2	0,18239	+- 0,00004	0,17254	+-0,00001	0,9460	0,9372	+-0.0001
mc21pre (22.0.47)	49434	+-7	9891	+-2	9127	+-2	0,18463	+- 0,00004	0,17475	+-0,00001	0,9465	0,9371	+-0,0001
ratio to mc16	0,9999		1,0131		1,0122		1,0123		1,0128		1,0007	0,9999	(1.0014 if using true SF)
mc21a (22.0.73)	49496	+-5	9904	+-2	9137	+-2	0,18460	+-0,00004	0,17502	+-0,00001	0,9481	0,9419	+-0,0001
ratio to mc16	1,0012		1,0144		1,0133		1,0121		1,0144		1,0025	1,0050	
mc21a (22.0.73) noRR	49485		9900	+-2	9141	+-2	0,18472	+- 0,00004					
ratio to RR	0,9998		0,9996		1,0004		1,0007						
	1				ł				1	1		<u>Guil in Eg</u>	amma mee

ting

2023/3/14

EGamma energy scale in mc21

• Electron energy loss in detector:

• E_e =50 GeV from PV, difference = mc21a – mc16

- About 0.1% more total energy deposition in all ATLAS
- Extra ~0.2% effect from less energy deposited before calorimeter.
- Possibly: O(0.1%) lateral shower leakage difference between mc21a and mc16 (narrower shower shapes in mc21a => smaller cluster leakage in reconstruction level).
- Reason: EM physics list? hadronic component in EM shower?

Summary and Conclusion

- Many interesting topics have been studied in Simulation group:
 - Run3 pile-up overlay in TRT:
 - Corrections are re-tuned with Ar-straws and implemented in latest digitization.
 - Closure test and physics validation show good agreements / expected shifts.
 - Considering to have Run3 data-MC comparison and/or full pile-up digitization comparison.
 - New fast simulation AtlFast3 for Run3:
 - FastCaloSimV2 shows better performance than FastCaloSim, through there are still some disagreement in detailed shower shapes (EM and hadronic).
 - FastCaloGAN is under validation.
 - EM shower shape in LAr:
 - Checked the simulation, geometry and the cross talk.
 - Too complex to have a straight forward answer, still long way ahead.
 - EGamma energy scale in new MC:
 - Should not be mis-computation of sampling fraction, but a pure simulation issue and can not influence Run 3 data after appropriate calibration.
 - Can come from update in G4 10.6 physics list? hadronic component in EM shower? Open issue.
 - Need to be careful for mc23 simulation setup.