

HH $\rightarrow \gamma \gamma + ML$ Unblinding approval request closure

<u>Qiyu Sha</u>

Institute of High Energy Physics CAS, Beijing

ON BEHALF OF THE MULTILEPTON ANALYSIS TEAM

General information

Entry in glance

- Supporting note circulated Dec. 9
- ◆ <u>1st EB meetings</u>
- ◆ 2nd EB meetings
- Unblinding approval
- Unblinding approval closure
- Action items on <u>CDS</u>

Action items from 31st Jan meeting

◆1) Add PS uncertainties on single-Higgs background.

2) Implement shape uncertainty on the continuum background, derived from MC-to-MC comparison.

3) Compare background model from fit to sideband in the SR to the postfit obtained from the baseline method with shape uncertainty.

Change background modeling function to 1st exp-ploy and ensure the background shape is decreasing.

Have updated the INT note (version 0.7)

Add PS uncertainties on single-Higgs background. Done, Table 61 in INT note

Channel	Process	Parton Shower (%)	PDF + α_s (%)	QCD Scale (%)
$\gamma\gamma + 1\ell 0\tau_{had}$	HH signal	2.51	4.46	+13.03
$\gamma\gamma + 0\ell 1\tau_{had}$	HH signal	1.18	4.53	+13.15 -12.35
$\gamma\gamma+2L$	HH signal	2.85	4.47	+13:03 -12:33
$\gamma\gamma + 1\ell 0\tau_{had}$	Single Higgs	8.45	5.86	+3.73
$\gamma\gamma + 0\ell 1\tau_{had}$	Single Higgs	9.34	5.98	+10.49 -7.10
$\gamma\gamma$ +2L	Single Higgs	9.78	5.35	+9.09 -7.67

Table 61: Summary of theoretical uncertainties for the $\gamma\gamma + ML$ channel.

Implement shape uncertainty on the continuum background, derived from MC-to-MC comparison. Done

2023/3/10

Qiyu Sha qsha@cern.ch

Implement shape uncertainty on the continuum background, derived from MC-to-MC comparison.

Done and update the ranking plots in INT note (such as Figure 111) $\gamma\gamma + 0l1\tau_h$:

After applying new background uncertainties and single-higgs parton shower uncertainty.

We can get new results following: (Table 72 in INT note)

Channels	Stats.Only	+ MC stats & Detector systematics	+ Bkg modelling&Theory systematics
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	25.43 ^{36.95} 18.32	25.49 ^{37.05} 18.32	26.6839.53
$\gamma\gamma$ +0 $\ell 1\tau_{had}$	52.58 ^{76.54} 37.89	52.67 ^{76.74} 37.95	54.50 ^{80.98} 39.27
$\gamma\gamma+2L$	37.05 ^{54.86} 26.70	37.11 ^{55.00} 26.74	38.2157.76
$\gamma\gamma + ML$	$17.71^{25.50}_{12.76}$	17.74 ^{25.57} 12.78	18.6727.48

Channels	Stats.Only (Asimov)	+MC stats.(Asimov)	+Systematics (Asimov)	With all uncertainties
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	$25.46^{36.99}_{18.35}$	-	$25.50^{37.09}_{18.37}$	$26.60^{39.43}_{19.17}$
$\gamma\gamma$ +0 $\ell 1\tau_{had}$	52.70 ^{76.71} 37.98	-	52.79 ^{76.91} 38.04	54.97 ^{81.64} 39.61
$\gamma\gamma$ +2L	37.01 ^{54.79} 26.67	-	37.07 ^{54.94} 26.71	38.15 ^{57.66} 27.49
$\gamma\gamma + ML$	$17.72^{25.52}_{12.77}$	-	$17.75_{12.79}^{25.59}$	$18.55_{13.37}^{27.32}$

Compare background model from fit to sideband in the SR to the postfit obtained from the baseline method with shape uncertainty. (have changed background modelling function to 1st exp-ploy)

Can't fit the data sideband directly well. So some directly fit shape need to modify parameter:

The way to modify parameter:

\diamond Ensure the shape is down (at least flat), like $\gamma\gamma + 0l1\tau_h$ Tight BDTG:

Considering the 0 or 1 event in the first bin around 105 just come from low statistic, fit the data sideband begin from ~110 and get the fitting parameter, like following:

2023/3/10

 $\gamma\gamma + 2L$:

Background model from fit to data_2l sideband directly

Postfit obtained from the baseline method with shape uncertainty (Fit to data_0l0tau2j sideband and then apply MC shape uncertainty bin by bin): The red shape is the bkg model with shape uncertainty.

$\gamma\gamma + 1l0\tau_h$ loose BDTG:

Background model from fit to data_1l0tau sideband directly:

Postfit obtained from the baseline method with shape uncertainty(Fit to data_0l0tau1j sideband and then apply MC shape uncertainty bin by bin): The red shape is the bkg model with shape uncertainty.

Qiyu Sha qsha@cern.ch

$\gamma\gamma + 1l0\tau_h$ medium BDTG:

Background model from fit to data 1lOtau sideband directly:

2023/3/10

Qiyu Sha qsha@cern.ch

$\gamma\gamma + 1l0\tau_h$ tight BDTG:

Background model from fit to data_1lOtau sideband directly:

Postfit obtained from the baseline method with shape uncertainty(Fit to data_0l0tau1j sideband and then apply MC shape uncertainty bin by bin): The red shape is the bkg model with shape uncertainty.

 $\begin{array}{c} 1.6\\ 1.4\\ 0.6 < BDTG \\ 0.6 < BDTG \\ 0.6 < BDTG \\ 0.6 < BDTG \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.6 \\ 0.6 \\ 0.4 \\ 0.6 \\ 0.$

$\gamma\gamma + 0l1\tau_h$ loose BDTG:

Background model from fit to data_0l1tau sideband directly:

Postfit obtained from the baseline method with shape uncertainty(Fit to data_0l0tau1j sideband and then apply MC shape uncertainty bin by bin): The red shape is the bkg model with shape uncertainty.

Ol1tau_loose BDTG

$\gamma\gamma + 0l1\tau_h$ Medium BDTG:

Background model from fit to data_0l1tau sideband directly:

Postfit obtained from the baseline method with shape uncertainty(Fit to data_0l0tau1j sideband and then apply MC shape uncertainty bin by bin): The red shape is the bkg model with shape uncertainty.

Qiyu Sha qsha@cern.ch

$\gamma\gamma + 0l1\tau_h$ Tight BDTG:

Background model from fit to data Ol1tau sideband directly: Postfit obtained from the baseline method with shape uncertainty(Fit to data_0l0tau1j sideband and then apply MC shape uncertainty bin by bin): The red shape is the bkg model with shape uncertainty.

0.007000

120.0 Ь

L20.

Ol1tau tight up

121.0 121.5 122.0 122.5

123.0 123.5 124.0 124.5 125.0 125.5 .26.0 126.5 127.0 127.5 128.0

Olltau tight down

Qiyu Sha qsha@cern.ch

data Ol1tau tight

129.0 129.5 30.0

28.

Backup (last action items)

Action items

- Reply to all comments on CDS
- Clarify in the note how the BDT boundaries are chosen
- ◆Add labels making clear what is shown in the data/MC BDT plots in the sidebands.
- Include spurious signal uncertainty in the fit
- Include single higgs uncertainties in the fit and in the INT note.
- Add plots of the shape uncertainty for the continuum background modeling
- Split the background modelling NPs per channel.
- Add plots showing the pulls for all NPs included in the fit in the INT note.
- ♦ yy+2L: Combine the two high BDT regions or all regions in a single one with enough data statistics
- Make the final myy plots for all regions entering the fit including all background systematics.

Have updated the INT note.

Reply to all comments on CDS

Done, some of them are about ML channel. <u>Google doc</u>.

Clarify in the note how the BDT boundaries are chosen

Done, we add more details in the section 10.3 in updated version: Also show in backup

We use 10 bins in BDTG shape and then calculate the significance with different regions for the Tight BDTG region using the Equation 3, the results are shown in Table 50. Although the best value is 0.8 < BDTG, considering the low statistic in this region. Finally, we choose the 0.6 < BDTG. After choosing the tight region, we do the another scan on the remaining BDTG regions, the results are shown in Table 51, and the best region here is the $0 < BDTG \le 0.6$ in both $\gamma\gamma + 0\ell 1\tau_{had}$ and $\gamma\gamma + 1\ell 0\tau_{had}$ channel, so we choose this region as the Medium BDTG region, and the remaining region is the Loose BDTG region.

Tight Region	$\gamma\gamma+0\ell 1\tau_{had}$ channel		$\gamma\gamma$ +1 $\ell 0\tau_{had}$ channel		
	Z-value	data sideband yield	Z-value	data sideband yield	
[0.8, 1]	0.0268	16	0.0486	6	
[0.6, 1]	0.0221	31	0.0464	12	
[0.4, 1]	0.0190	47	0.0430	27	
[0.2, 1]	0.0167	57	0.0406	44	
[0, 1]	0.0150	84	0.0381	57	

Table 50: The significance value used to choose the Tight BDTG region in $\gamma\gamma+0\ell 1\tau_{had}$ and $\gamma\gamma+1\ell 0\tau_{had}$ channel.

Medium Region	$\gamma\gamma$ +0 $\ell 1\tau_{had}$ channel		$\gamma\gamma$ +1 $\ell 0\tau_{had}$ channel		
	Z-value	data sideband yield	Z-value	data sideband yield	
[0.4, 0.6]	0.0026	16	0.0109	15	
[0.2, 0.6]	0.0030	26	0.0128	32	
[0.0, 0.6]	0.0032	53	0.0134	45	
[-0.2, 0.6]	0.0031	78	0.0131	61	
[-0.4, 0.6]	0.0029	119	0.0126	80	

Table 51: The significance value used to choose the Medium BDTG region in $\gamma\gamma + 0\ell 1\tau_{had}$ and $\gamma\gamma + 1\ell 0\tau_{had}$ channel.

2023/3/10

Qiyu Sha qsha@cern.ch

◆Add labels making clear what is shown in the data/MC BDT plots in the sidebands.

Done, Figure 81 in INT note:

Figure 81: The BDTG distribution in different sub-channels (The MC continuum background sample which is composed of $V\gamma\gamma$ and $\gamma\gamma$ +jets is in the sideband region and already apply the background scaling; The MC Signal and Single Higgs are in the signal region): (a) $\gamma\gamma$ +1 ℓ 0 τ_{had} sub-channel; (b) $\gamma\gamma$ +0 ℓ 1 τ_{had} sub-channel; (c) $\gamma\gamma$ +2L (include $\gamma\gamma$ + 1 ℓ 1 τ_{had} , $\gamma\gamma$ + 2 ℓ 0 τ_{had} and $\gamma\gamma$ + 0 ℓ 2 τ_{had}) sub-channel. The *HH* signal distribution is scaled to the total background events and the expected *HH* yield is quoted in the legend.

Include spurious signal uncertainty in the fit

Done, can see the ranking plot Figure 111 in INT note (with 20 NPs)

The ranking plot is combined results.

> Spurious signal test results:

Channel	Region	$\mu_{sp,tight}$ [%]	$Z_{sp,tight}$ [%]	$P(\chi^2)$ [%]	Selected
$\gamma\gamma+1\ell0\tau_{had}$	loose	1.20	1.66	92.70	Yes
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	medium	0.29	0.43	32.27	Yes
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	tight	0.07	0.18	45.88	Yes
$\gamma\gamma + 0\ell 1\tau_{had}$	loose	5.58	6.42	83.43	Yes
$\gamma\gamma + 0\ell 1\tau_{had}$	medium	0.29	0.34	26.40	Yes
$\gamma\gamma + 0\ell 1\tau_{had}$	tight	0.03	0.09	73.97	Yes
$\gamma\gamma+2L$	whole	0.15	0.35	99.29	Yes

Use μ_{sp} S+B function to fit B-only, we can get the fake signal μ_{sp} .

Then use the μ_{sp} as the spurious signal uncertainty like the theory uncertainties and apply this number to the signal sample.

Include single higgs uncertainties in the fit and in the INT note.

Done, in Section 11.2 and 12.4.6, only miss Single Higgs Parton Shower

> Theory uncertainties:

Channel	Process	Parton Shower (%)	PDF + α_s (%)	QCD Scale (%)
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	HH signal	2.51	4.46	+13.03 -12.26
$\gamma\gamma$ +0 $\ell 1\tau_{had}$	HH signal	1.18	4.53	+13.15
$\gamma\gamma$ +2L	HH signal	2.85	4.47	+13:03 -12:33
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	Single Higgs	-	5.86	+3.73 -3.82
$\gamma\gamma$ +0 $\ell 1\tau_{had}$	Single Higgs	-	5.98	+10.49
$\gamma\gamma+2L$	Single Higgs	-	5.35	+9.09 -7.67

Table 60: Summary of theoretical uncertainties for the $\gamma\gamma + ML$ channel.

We don't finish Single Higgs Parton Shower uncertainties yet and will finish it around Feb $14^{\rm th}$.

Add plots of the shape uncertainty for the continuum background modeling

The plots we show before are the shape uncertainty for the continuum background modeling.

We just apply an average value of shape variation to all bins because this value can cover the variation in the signal region which has the most impact on the fit results in all channels. This is a simplified and reasonable method.

> The most variation in the signal region:

Channel	Loose BDTG region	Medium BDTG region	Tight BDTG region
$\gamma\gamma+1\ell 0\tau_{had}$ $\gamma\gamma+0\ell 1\tau_{had}$ $\gamma\gamma+2I$	+2.20% +0.16% +0.61% +0.34%	+0.88% -10.53% +4.55% -8.22% hole BDTG region0.023	+2.36% -7.18% +1.83% -7.07%
yy+2L	vv.	-0.030	0%

Table 57: The most deviation of the background modeling in the signal region which is described in Section 10.4.2 for different categories in the $\gamma\gamma + ML$ analysis.

Split the background modelling NPs per channel.

Done, see the ranking plot in the page 5. Figure 111 in INT note.

- Add plots showing the pulls for all NPs included in the fit in the INT note.
- Done, in section 12.4.6. Figure 112 in INT note (with all NPs).

♦ yy+2L: Combine the two high BDT regions or all regions in a single one with enough data statistics

Combine all regions and redo all analysis about yy+2L. (Two high BDT have 4 data sideband yield)

Also, modify the INT note and provide a new version of unblinding approval request slide following backup.

The final upper limit is changed:

- > 2L with detector sys: $25.16 \rightarrow 37.07$
- > Combined results with detector sys: $14.87 \rightarrow 17.75$

\succ With three BDT regions in yy+2L channel:

Channels	Stats.Only (Asimov)	+MC stats.(Asimov)	45	Systematics (Asimov	v)	+Bkg estimation uncertainties
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	25.46 ^{36.99} _{18.35}	-		25.50 ^{37.09} _{18.37}		25.64 ^{37.29} 18.22
$\gamma\gamma$ +0 $\ell 1\tau_{had}$	52.70 ^{76.71} 37.98	-		52.79 ^{76.91} 38.04		53.30 ^{77.60} 38.40
$\gamma\gamma$ +2L	25.13 ^{38.23} 18.11	-		25.16 ^{38.32} _{18.13}		25.18 ^{38.34} 18.15
$\gamma\gamma + ML$	14.85 ^{21.65} _{10.70}	-	$\overline{\ }$	$14.87^{21.70}_{10.71}$	/	$14.98^{21.86}_{10.80}$

With whole BDT region in yy+2L channel :

Channels	Stats.Only (Asimov)	+MC stats.(Asimov)	+Systematics (Asimov)	With all uncertainties
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	$25.46^{36.99}_{18.35}$	-	$25.50^{37.09}_{18.37}$	$26.60^{39.43}_{19.17}$
$\gamma\gamma + 0\ell 1\tau_{had}$	52.70 ^{76.71} 37.98	-	52.79 ^{76.91} 38.04	54.97 39.61
$\gamma\gamma$ +2L	37.01 ^{54.79} 26.67	-	37.07 ^{54.94} 26.71	$38.15_{27.49}^{57.66}$
$\gamma\gamma + ML$	$17.72^{25.52}_{12.77}$	-	$17.75^{25.59}_{12.79}$	$18.55^{27.32}_{13.37}$

2023/3/10

Qiyu Sha qsha@cern.ch

Make the final myy plots for all regions entering the fit including all background systematics.

Done, Figure 89 in INT note, like following:

Uncertainty in these plots including detector uncertainties, theory uncertainties, spurious signal uncertainties and background modeling uncertainties:

 $\gamma\gamma + 0l1\tau_h: m_{\gamma\gamma}$ distribution in different BDTG regions

Small events lead to these fluctuations which not be covered by background uncertainties.

2023/3/10

Make the final myy plots for all regions entering the fit including all background systematics.

 $\gamma \gamma + 1 l 0 \tau_h : m_{\gamma \gamma}$ distribution in different BDTG regions

2023/3/10

Comments

Given that many people were confused about the fit strategy, could you please add one slide where you explain how the fit is performed? E.g. explain how you derive the continuum background function and how you then use this function to determine the background template in your binned fit.

We use the second-order exponential to fit the $\gamma\gamma + 0l0\tau_h 1/2j$ sideband data in all BDTG regions.

Then use this fit function with fixed parameters to generate fake sample with 1000k random number and reweight to the expect yields. (Yield in sideband region in these fake samples are reweighted to the corresponding data-sideband yield)

Finally, use this fake sample as the background template sample and apply it in the fit.

Comments

Slide 5:

Could you explain a bit better how the spurious signal uncertainty is derived and then included in your binned fit?

Use the μ_{sp} as the spurious signal uncertainty and apply this number to the signal.

Please add the PS uncertainty for single-Higgs (in the table and in the fits).

We don't finish yet. Will finish around Feb 14th.

Slide 7:

Did you try also the other suggested configuration merging only the 2 high BDT regions (obtaining a region with 4 events)?

No. To avoid the same argument as before, we don't try this suggestion with merging 2 high BDT regions.

Comments

Slide 8:

Background uncertainties are small compared to the fluctuations you see in data in some of the regions, how do we justify these large fluctuations?

Small events lead to these fluctuations which not be covered by background uncertainties.

Fluctuations statistically not significant + disagreement in myy around 150 GeV studied and documented in Appendix F.4

Backup

HH $\rightarrow \gamma \gamma + ML$ Unblinding approval request updated version

<u>Qiyu Sha</u>

Institute of High Energy Physics CAS, Beijing

ON BEHALF OF THE MULTILEPTON ANALYSIS TEAM

Updated

- Updated all plots and tables about yy+2L channel.
- Clarify how the BDT boundaries are chosen
- Add labels making clear what is shown in the data/MC BDT plots in the sidebands.
- Update the theory uncertainties.
- Include all uncertainties in the fit and update the ranking plots/pull plots.
- Updated the final myy plots for all regions entering the fit including all background systematics.
- Updated the final results with all uncertainties and the results of yy+2L channel are changed.

General information

Entry in <u>glance</u>

Supporting note circulated Dec. 9

◆ 1st EB meetings

◆ 2nd EB meetings

Editorial Board:

- ARNAEZ, Olivier (Annecy LAPP)
- <u>DUCU, Otilia Anamaria (Bucharest IFIN-HH)</u> (Chair)
- VEATCH, Jason Robert (Cal State)

Introduction

The Run2 HH → multilepton analysis searches the Standard Model(SM) di-Higgs production via two deacy modes:

- $g = \frac{\kappa_t}{K_t} \qquad g = \frac{\kappa_t}{K_t} \qquad g = \frac{\kappa_t}{K_t} \qquad H \qquad \sigma \approx 31.05 \ fb$
- Gluon-gluon Fusion (ggF): Dominant production mode, sensitive to K_t , K_λ

• Vector Boson Fusion (VBF): Used as additional yields to the ggF signal , sensitive to K_{2V} , K_V , K_λ

 $\sigma \approx 1.726 \, fb$

Introduction

 $\gamma\gamma + ML$ final states: 0.14% of HH decays ($HH \rightarrow yy + WW / ZZ / \tau\tau$)

Analysis strategy:

Categorize final states by number of e, μ, τ_h :

- $\gamma\gamma + ML$: 2 photons with light leptons and τ_h , include three sub channels:
 - $\gamma \gamma + 1 l 0 \tau_h$: Events with only one light lepton (*e*, μ) and zero hadronic τ (τ_h).
 - $\gamma \gamma + 0 l 1 \tau_h$: Events with only zero light lepton and one hadronic τ .
 - $\gamma\gamma + 2L$: Events with only two opposite-sign leptons (The capital "L" represents light lepton or hadronic τ).

	bb	WW	TT	ZZ	γγ
bb	34%				
WW	25%	4.6%			
тт	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.0005 %

Signal production strategy:

- $ggF: \underline{600859} \underline{600861} (\gamma \gamma 0l, \gamma \gamma 1l, \gamma \gamma 2l)$
- $VBF: 508676-508678 (\gamma\gamma 0l, \gamma\gamma 1l, \gamma\gamma 2l)$
- Joboptions for ggF and VBF: (Details are shown in the <u>backup</u>)
 - $H \rightarrow yy$ and $H \rightarrow WW / ZZ / \tau \tau$
 - $P_T(L) > 7 \ GeV$
 - Use lepton filters:
 - $\gamma\gamma 0l$: hyyFilter and hXXFilter and not LepOneFilter
 - γγ1l: hyyFilter and hXXFilter and LepOneFilter and not LepTwoFilter
 - $\gamma\gamma 2l$: hyyFilter and hXXFilter and LepTwoFilter

Data and MC samples

Data: Full Run 2 data ($139fb^{-1}$)

MC samples:

• signals:

• *ggF* HH signal:

> Powheg + Pythia8 as nominal samples.(SM case $K_{\lambda} = 1$)

• Backgrounds:

• Single Higgs:

Powheg/MG5_aMC@NLO +Pythia8 including all production modes.

- *MC* continuum background: (Is expected to be a smoothly falling down shape that can be modeled with an analytical function.)
 - $\gamma\gamma + jets$: Sherpa 2.2.4 (ME@NLO+PS)
 - $V\gamma\gamma$: Including $V + \gamma\gamma$ and $t\bar{t} + \gamma\gamma$.
 - $t\bar{t} + \gamma\gamma$: MG5_aMC@NLO +Pythia8
 - $V + \gamma \gamma$: Sherpa 2.2.4 (ME@LO+PS)

>*MC* continuum background will be replaced by the background modeling which is driven by $\gamma\gamma 0l0\tau_h + 1/2 \ jet$ sideband data.

>The $\gamma\gamma 0l0\tau_h + 1/2$ jet MC continuum background are used for the background modeling uncertainty. (X->SH->yy+1/2 leptons analysis which will be reported by Kaili next uses different samples)

• VBF HH signal:

MadGraph5 + Pythia8 as nominal samples.

DSID	Prod. Mode	Generator + Parton shower	PDF	Tune
		Single Higgs		
343981	ggH	Powneg + Pythia8	PDF4LHC15nnlo	AZNLO
346214	VBF	Powheg + Pythia8	PDF4LHC15nlo	AZNLO
345318	W^+H	Powneg + Pythia8	PDF4LHC15nlo	AZNLO
345317	W^-H	Powheg + Pythia8	PDF4LHC15nlo	AZNLO
345319	$qq \rightarrow ZH$	Powneg + Pythia8	PDF4LHC15nlo	AZNLO
345061	$gg \rightarrow ZH$	Powneg + Pythia8	PDF4LHC15nlo	AZNLO
346525	tĪH	Powheg + Pythia8	NNPDF3.0nlo	A14
345315	$b\bar{b}H$	Powheg + Pythia8	NNPDF3.0nlo	A14
346188	tHbj four flavour	MADGRAPH5_AMC@NLO + PYTHIA8	NNPDF3.0nlo	A14
346486	tHW	MADGRAPH5_AMC@NLO + Pythia8	NNPDF3.0nlo	A14
	$\gamma \gamma + jets$, with 0,1 add	litional jets at NLO and 2,3 jets at LO pre	cision.	
364352	$\gamma \gamma + jets (m_{yy} \text{ range: } 90\text{-}175 \text{ GeV})$	Sherpa 2.2.4 (MEPS@NLO)	NNPDF3.0nnlo	
		$V + \gamma \gamma$		
364862	ееүү	Sherpa 2.2.4 (MEPS@LO)	NNPDF3.0nnlo	
364865	μμγγ	Sherpa 2.2.4 (MEPS@LO)	NNPDF3.0nnlo	
364868	ττγγ	Sherpa 2.2.4 (MEPS@LO)	NNPDF3.0nnlo	
364871	ννγγ	Sherpa 2.2.4 (MEPS@LO)	NNPDF3.0nnlo	
364874	evγγ	Sherpa 2.2.4 (MEPS@LO)	NNPDF3.0nnlo	
364877	μνγγ	Sherpa 2.2.4 (MEPS@LO)	NNPDF3.0nnlo	
364880	τνγγ	Sherpa 2.2.4 (MEPS@LO)	NNPDF3.0nnlo	
		τīγγ		
345868	$t\bar{t}\gamma\gamma$ (non-all-hadronic)	MadGraph5_aMC@NLO + Pythia8	NNPDF2.3L0	A14
345869	$t\bar{t}\gamma\gamma$ (all-hadronic)	MadGraph5_aMC@NLO + Pythia8	NNPDF2.3LO	A14

2023/3/10

Object definition

Di-photon triggers: (The trigger matching is applied)

- HLT_g35_loose_g25_loose (2015/2016).
- HLT_g35_loose_g25_medium_L12EM20VH (2017/2018).

Object definition: (Default setting in HGam framework)

Electrons:

- $P_T > 10 \ GeV$, $|\eta| < 2.37$, crack region excluded (1.37 < $|\eta| < 1.52$), Medium LH ID, $|d_0|/\sigma_{d_0} < 5$, $|\Delta Z_0 \times \sin \theta| < 0.5 \ mm$.
- Isolation requirements: topoEtCone20 < 0.02 × P_T and ptcone20 < 0.15 × P_T .

≻ Muons:

- $P_T > 10 \text{ GeV}$, $|\eta| < 2.7$, Medium ID, $|d_0|/\sigma_{d_0} < 3$, $|\Delta Z_0 \times \sin \theta| < 0.5 \text{ mm}$.
- Isolation requirements: Loose_FixedRad.

$> \tau_{had}$:

- $\circ~P_T>20~GeV$, $|\eta|<2.5,$ crack region excluded, Charge = \pm 1.
- JetID RNN Loose, N_{track} = 1 or 3 (Have a efficiency of 60%(45%) for one-(three-) prong τ_{had} decays).
- Electron veto: passEleBDT; Muon overlap removal: passMuonOLR

>Jets:

- AntiK4EMPFlow
- $\circ~P_T>20~GeV$, $|\eta|<2.5$
- JVT WP tight, Jet cleaning WP: LooseBad
- B-tagging with DL1r@77% fixed-cut WP

2023/3/10

>share the same object definition with kaili's SH analysis except τ_{had} .)
Event selection

Channel definitions:

>share the same event selections with SH analysis except the purple part.

Channel	Light lepton selection	$\sum \ell$ charge	$\mathrm{n} au_{\mathrm{had}}$	$\Sigma \tau_{had}$ charge	Photons	Njets	N _{b-jets}
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	1	±1	0	0	2	-	0
$\gamma\gamma$ +0 $\ell 1\tau_{had}$	0	0	1	±1	2	-	0
$\gamma\gamma+2L$	$n_\ell + n_{\tau h} = 2$	$0, \pm 1$	$n_\ell + n_{\tau h} = 2$	$0, \pm 1$	2	-	0

Event selection:

- Mass window: 105 GeV $< m_{\gamma\gamma} < 160$ GeV.
- 2 tight isolated photons with $E_T^{\gamma} > 35$ (25) GeV and $\frac{P_T^{\gamma}}{m_{\gamma\gamma}} > 0.35$ (0.25) for the leading (subleading) photon.
- B-veto: $N_{b-jets} = 0$. (At 77% WP and to be orthogonal to HH->bb $\gamma\gamma$)
- $E_T^{miss} > 35 \ GeV$ except $1\mu 0\tau$ channel.
- $P_{T_yy} > 50 \ GeV$.
- $m_{ll} > 12 \ GeV$ in $2l0\tau$ channel. (We use this selection just for harmonizing with ML channel.)
- MVA used to further separate signal and background.
- Signal and control region:
 - > Signal region: 120 GeV $< m_{\gamma\gamma} < 130$ GeV.
 - \geq Control region: Sideband region (Whole region except 120 GeV < $m_{\gamma\gamma}$ < 130 GeV)

Cut-flow checks

Cut-flow checks in whole mass region(105 GeV $< m_{\gamma\gamma} < 160$ GeV):

• Total of signal means initial number of events: $L * \sigma(HH) * Br(HH \rightarrow yy + WW/ZZ/\tau\tau)$

Selection Criteria	Signal	Single Higgs	$V\gamma\gamma$	$\gamma\gamma$ +jets
Total	6.38	8609.49	7920.16	2877250.00
Two tight photons	2.57	6254.33	1485.34	942950.00
b-jet veto	2.25	6045.58	1278.27	912626.00
$p_{\rm T}^{\gamma\gamma} > 50 { m GeV}$	2.13	1855.20	641.85	230422.00
$E_{\rm T}^{\rm miss} > 35 \text{ GeV}$ except $\gamma \gamma + 1 \mu 0 \tau_{\rm had}$ channel	1.38	494.88	457.10	49882.10
$\gamma\gamma+1\ell0\tau_{had}$	0.39	18.04	167.54	62.89
$\gamma\gamma$ +0 ℓ 1 τ_{had}	0.18	7.70	32.22	810.01
$\gamma\gamma$ +2L (Include $m_{\ell\ell} > 12 \text{ GeV in } \gamma\gamma$ +2 $\ell 0\tau_{had}$ channel)	0.14	1.07	9.65	3.82

Selection Criteria	$V\gamma\gamma$ and $\gamma\gamma$ +jets from MC	Sideband data
Total	2544027.47	5585600
Two tight photons	754340.44	937470
b-jet veto	729958.81	911352
$p_{\rm T}^{\gamma\gamma} > 50 { m GeV}$	184570.23	198921
$E_{\rm T}^{\rm miss} > 35 {\rm GeV} {\rm except} \gamma\gamma + 1\mu 0\tau_{\rm had} {\rm channel}$	40217.28	51505
$\gamma\gamma+1\ell 0\tau_{had}$	185.34	313
$\gamma\gamma + 0\ell 1\tau_{had}$	673.61	696
$\gamma\gamma$ +2L (Include $m_{\ell\ell}$ > 12 GeV in $\gamma\gamma$ +2 $\ell 0\tau_{had}$ channel)	10.86	16

Cut-flow checks in sideband region:

\mathbf{r}	าวว	12	110	
24	נבר	ן כ ו	UL V	

MVA: Boosted Decision Tree with the GradientBoost algorithm(BDTG)

- Use 4-folds cross-validation training which gives a better and smoother ROC curve.
- Training sample and test sample are separated by the event number which is reproducible for each simulation events.
- For each fold, the training method stays the same.
- For BDTG, the training parameters are listed as the following:
 - Number of trees: 1000
 - Maximal depth of trees: 2
 - Boost type: Gradient
 - Bagged Boost is used. (Bagged sample fraction: 0.5)
 - nCuts: 20

/ariables used for BDTG training:		1.00	0.01	
 The "H" represents the SM Higgs which decays to di-photon 	Variable	$\gamma\gamma+1\ell0\tau_{had}$	$\gamma\gamma + 0\ell 1\tau_{had}$	$\gamma\gamma+2L$
• The capital "L" represents light lepton or hadronic τ	$p_{\mathrm{T}}(H)$	\checkmark	\checkmark	\checkmark
• $p_{r}(H)$: transverse momentum of H	$\phi(H)$			\checkmark
• $p_{\Gamma}(H)$: the answerse momentum of H .	$\phi_0(L_1)$	\checkmark	\checkmark	\checkmark
 φ(H): φ of H. φ₁(L₁): polar angle difference between the leading lepton and H. 	$p_{\mathrm{T}}(L_1)$	\checkmark	\checkmark	\checkmark
• $\varphi_0(L_1)$: point angle dimensive between the reading lepton and Π .	$p_{\mathrm{T}}(L_2)$			\checkmark
• $p_{\rm T}(L_1)$: transverse momentum of the subleading lepton.	E_T^{miss}	\checkmark	\checkmark	\checkmark
$p_{\rm T}(L_2)$. transverse momentum of the subleading reprod.	$\phi(E_T^{\text{miss}})$			\checkmark
• L_T : missing transverse momentum.	$\phi_0(\gamma_1)$	\checkmark	\checkmark	
• $\phi(E_T)$. ϕ of missing transverse momentum.	$\eta(\gamma_1)$		\checkmark	
• $\varphi_0(y_1)$: point angle difference between the reading y and H.	N _{icen}	\checkmark	\checkmark	\checkmark
• $\eta(y_1)$. η of the feature y .	$\min \Delta \Phi(E_{\pi}^{\text{miss}}, i, L)$	\checkmark		\checkmark
• N_{jcen} . number of central jets. • min $\Delta \Phi(E^{\text{miss}} = I)$; minimum polar angle difference between E^{miss} ists and the lepton	$\Delta \Phi(E_{\rm miss}^{\rm miss}, \gamma \gamma)$	1	1	1
• $\operatorname{MMZ}\Phi(E_T, f, L)$. Infinitial polar angle difference between E_T , jets and the repton.	$\Delta \Phi(E^{\text{miss}}, LL)$	•	•	1
• $\Delta \Phi(E_T^{\text{miss}}, I_L)$; polar angle difference between E_T^{miss} and di-photon system.	$\Delta P(L_T, EL)$			×
• $\Delta \Phi(E_T, T, LL)$: point angle difference between E_T and di-repton system.	$\Delta R(LV)$	×		v
• $\Delta R(LV)$: angle difference between t and E_T system.	$\Delta \mathbf{K}(\mathbf{y}\mathbf{y},\mathbf{w})$	~		
• $\Delta R(\gamma \gamma, w)$: angle difference between $\gamma \gamma$ and w system.	$\eta(w)$	\checkmark		/
• $\eta(W)$: η of W.	$\Delta m(L,)$			 ✓
• $\Delta m(L, L)$: mass of di-lepton system.	$\Delta R(L,L)$			\checkmark
• $\Delta R(L, L)$: angular difference between two leptons.	$\Delta \phi(L,L)$			\checkmark
• $\Delta \phi(L, L)$: polar angle difference between two leptons.	$\Delta R(LL, \gamma \gamma)$			\checkmark
• $\Delta R(LL, \gamma \gamma)$: angular difference between di-lepton system and di-photon system.	$pt(j_1)$			\checkmark
• $pt(j_1)$: transverse momentum of leading jet.				

The method of choosing BDTG variables in different channels:

pt_lep

lep_phi0

pt_H

- > We select ~ten best variables with the best separation power from a pool of ~30 candidate variables.
- > We check the correlations of these variables and ensure that they are all small. (And ensure these variables have little correlation with $m_{\gamma\gamma}$)

$\gamma \gamma + 0 l 1 \tau_h$: (other channels are shown in the <u>backup</u>) Separation power:

Variable	Rank	Separation power
$p_{\mathrm{T}}(H)$	1	45.52%
E_T^{miss}	2	29.89%
$p_{\mathrm{T}}(L_1)$	3	18.51%
$\phi_0(L_1)$	4	10.97%
$\Delta \Phi(E_T^{\text{miss}}, \gamma \gamma)$	5	10.70%
$\phi_0(\gamma_1)$	6	4.76%
Nicen	7	2.81%
$\eta(\gamma_1)$	8	2.72%

Correlation Matrix:

ROC-value: 0.941 Background rejection versus Signal efficiency 0.8 0 7 MVA Method 0.3 RDTG 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 Signal efficiency Correlation Matrix (signal) Linear correlation coefficients in % 100 80 y1_phi0 60 40 y1_eta 20 N_j_central -20

pt H lep phin pt lep met N i central eta Y1 phio Dphi metro.

Overtraining plots with ks test values for 4 folds:

iyu Sha gsha@cern.ch

-40

-60

-80

100

$\gamma\gamma + 0l1\tau_h$: (other channels are shown in the <u>backup</u>)

- Consider a rough background scaling:
 - > Apply a scale factor on MC continuum background ($\gamma\gamma$ +*jets* and $V\gamma\gamma$) which corresponds to the ratio between MC continuum background

sideband yields and the data sideband yields:

> After background scaling, the BDTG and most of input variables distribution show here:

Channel	Scale factor
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	1.68
$\gamma\gamma$ +0 $\ell 1\tau_{had}$	1.03
$\gamma\gamma+2L$	1.47

Variable	Rank	Separation power
$p_{\mathrm{T}}(H)$	1	45.52%
E_T^{miss}	2	29.89%
$p_{\mathrm{T}}(L_1)$	3	18.51%
$\phi_0(L_1)$	4	10.97%
$\Delta \Phi(E_T^{\text{miss}}, \gamma \gamma)$	5	10.70%
$\phi_0(\gamma_1)$	6	4.76%
Nicen	7	2.81%
$\eta(\gamma_1)$	8	2.72%

BDTG regions

BDTG distribution in different channels:

- > The signal distribution is scaled to the total background events and the expected HH yield is quoted in the legend.
- > The MC continuum background ($\gamma\gamma$ +*jets* and $V\gamma\gamma$) is in the $m_{\gamma\gamma}$ sideband region and after background scaling:

Three regions are defined in $\gamma\gamma + 0l1\tau_h$ and $\gamma\gamma + 1l0\tau_h$ channel by splitting the BDTG output distribution:

- > The optimal value of the BDTG cuts is obtained by maximizing the expected significance, using the equation:
- > To ensure there are enough sideband data events in each BDTG regions: (The details are shown in the next page.)

Loose BDTG region:	$BDTG \leq 0$
Medium BDTG region:	$0 < BDTG \le 0.6$
Tight BDTG region:	0.6 <i>< BDTG</i>

$$Z = \sqrt{2 \times \left[(B+S) \times \left(ln \frac{S+B}{B} - S \right) \right]}$$

BDTG regions

Three regions are defined in $\gamma\gamma + 0l1\tau_h$ and $\gamma\gamma + 1l0\tau_h$ channel by splitting the BDTG output distribution:

> Consider $\gamma\gamma + 2L$ channel have too low data statistics, just use the whole BDTG region in this channel.

Loose BDTG region:	$BDTG \leq 0$
Medium BDTG regio	$0 < BDTG \le 0.6$
Tight BDTG region:	0.6 <i>< BDTG</i>

The method of choosing regions:

- > Use 10 bins in BDTG distribution and then calculate the significance with different regions which are shown in the left table. (Table 50)
- Although the best value is 0.8 < BDTG, considering the low statistic in this region, we choose the second one as the Tight BDTG region which is 0.6 < BDTG.</p>
- > Then we do another scan on the remaining BDTG region and the results are shown in the right table. (Table 51)
- > We can find the best region is the $0 < BDTG \le 0.6$ both in two channels. So this is the Medium BDTG region.
- > The remaining region is the Loose BDTG region.

Tight Region	$\gamma\gamma+0\ell 1\tau_{had}$ channel		$\gamma\gamma$ +1 $\ell 0\tau_{had}$ channel		
	Z-value	data sideband yield	Z-value	data sideband yield	
[0.8, 1]	0.0268	16	0.0486	6	
[0.6, 1]	0.0221	31	0.0464	12	
[0.4, 1]	0.0190	47	0.0430	27	
[0.2, 1]	0.0167	57	0.0406	44	
[0, 1]	0.0150	84	0.0381	57	

Table 50: The significance value used to choose the Tight BDTG region in $\gamma\gamma+0\ell 1\tau_{had}$ and $\gamma\gamma+1\ell 0\tau_{had}$ channel.

Medium Region	$\gamma\gamma$ +	$0\ell 1\tau_{had}$ channel	$\gamma\gamma$ +1 $\ell 0\tau_{had}$ channel	
	Z-value	data sideband yield	Z-value	data sideband yield
[0.4, 0.6]	0.0026	16	0.0109	15
[0.2, 0.6]	0.0030	26	0.0128	32
[0.0, 0.6]	0.0032	53	0.0134	45
[-0.2, 0.6]	0.0031	78	0.0131	61
[-0.4, 0.6]	0.0029	119	0.0126	80

Table 51: The significance value used to choose the Medium BDTG region in $\gamma\gamma+0\ell 1\tau_{had}$ and $\gamma\gamma+1\ell 0\tau_{had}$ channel.

MC Backgrounds:

- Single Higgs
- *MC* continuum background: (Is expected to be a smoothly falling down shape that can be modeled with an analytical function.)
 - $\gamma\gamma + jets$
 - $V\gamma\gamma$: Including $V + \gamma\gamma$ and $t\bar{t} + \gamma\gamma$.

Consider MC Continuum background sample and data in sideband disagree:

Need to perform the background modeling.

Backgrounds modeling by using sideband data:

- The $m_{\gamma\gamma}$ shape is evaluated in $\gamma\gamma + 0l0\tau_h$ sideband data instead of three sub-channels, due to limited statistics.
- Use $\gamma \gamma 0 l 0 \tau_h + 1/2 j e t s$ to mimic the kinematic performance of $\gamma \gamma + 1L$ (Include $\gamma \gamma + 0 l 1 \tau_h$ and $\gamma \gamma + 1 l 0 \tau_h$) and $\gamma \gamma + 2L$.
- Several functional forms are evaluated by fitting di-photon mass spectrum in the $\gamma\gamma 0l0\tau_h + 1/2$ jets sideband data.
- > Consider the different $m_{\gamma\gamma}$ shape in different BDTG region(loose, medium and tight), need to use different functions to fit them.
- > Because the tight BDTG region has too low statistics to fit (less than 80 in $\gamma\gamma 0l0\tau_h + 1$ jets data sideband).
 - Medium and tight BDTG regions are merged to high BDTG region. ($BDTG \ge 0$)
 - Correspondingly, rename loose BDTG region to low BDTG region. (BDTG < 0)

> Then use different functions to fit the $m_{\gamma\gamma}$ shape in different regions and use the chi-square value to evaluate them.

- Dof means degree of freedom.
- Use 45 bins in sideband

$$\frac{\chi^2}{n_{\text{dof}}} = \frac{\sum_{1}^{45} \frac{\left(x_{MC} - x_{\text{data ,SB}}\right)^2}{x_{\text{data ,SB}}}}{45 - \text{dof}}$$

Fit results

$\gamma\gamma + 0l0\tau_h 2j$ in whole BDTG region:

Function	dof	$\frac{\chi^2}{n_{dof}}$ in $\gamma\gamma 0\ell 0\tau_{had}$ +1jet	$\frac{\chi^2}{n_{dof}}$ in $\gamma\gamma 0\ell 0\tau_{had}$ +2jet
3 rd polynomial	3	556.11	281.60
2 nd exponential	2	538.74	272.83
1 st Chebyshev-polynomial	1	563.50	281.79
2 nd Chebyshev-polynomial	2	543.18	275.11
3 rd Chebyshev-polynomial	3	553.06	280.46
4 th Chebyshev-polynomial	4	567.53	287.22
5 th Chebyshev-polynomial	5	585.92	292.19

In low BDTG region, the best function is second-order exponential:

 $e^{c_1 \cdot m_{\gamma\gamma}^2 + c_2 \cdot m_{\gamma\gamma}}$

Fit results

$\gamma \gamma + 0l0\tau_h 1j$ in high BDTG region ($BDTG \ge 0$):

Function	dof	$\frac{\chi^2}{n_{dof}}$ in $\gamma\gamma 0\ell 0\tau_{had}$ +1jet
3 rd polynomial	3	5.00
2^{nd} exponential	2	4.88
1 st Chebyshev-polynomial	1	4.67
2 nd Chebyshev-polynomial	2	4.88
3 rd Chebyshev-polynomial	3	5.03
4 th Chebyshev-polynomial	4	6.03
5 th Chebyshev-polynomial	5	5.72

In low BDTG region, the best function is first-order Chebyshev-polynomial.

>Consider none of these fit functions works well in this region due to the low statistic, for harmonize, we also use second-order exponential in the high BDTG region.

>We use second-order exponential to fit the $\gamma\gamma + 0l0\tau_h 1/2j$ sideband data in all BDTG regions.

```
2023/3/10
```

Before background modeling:

After background modeling: (Continuum background modeling agree with sideband data)

Spurious signal test

The potential bias due to the mis-modeling of background in estimated via the spurious signal test:

- Calculations of different BDTG categories in each sub-channel are treat independently.
- The conditions of the test:

Fitted signal yield

 $S_{spur} < 10\% N_{s,exp}$ where $N_{s,exp}$ is the expected number of signal yields in that category $(\mu_{sp} = S_{spur}/N_{s,exp})$,

 $S_{spur} < 20\%\sigma_{sig}$, where σ_{sig} is the statistical uncertainty on the fitted number of signal yields when fitting the signal+background model to a background-only Asimov dataset ($Z_{sp} = S_{spur}/\sigma_{sig}$).

$$P(\chi^2) > 5\%, \chi^2 = \sum_{k=1}^{45} \frac{(x_{MC} - x_{data,SB})^2}{x_{data,SB}}$$

> Spurious signal test results:

Channel	Region	$\mu_{sp,tight}$ [%]	$Z_{sp,tight}$ [%]	$P(\chi^2)[\%]$	Selected
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	loose	1.20	1.66	92.70	Yes
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	medium	0.29	0.43	32.27	Yes
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	tight	0.07	0.18	45.88	Yes
$\gamma\gamma$ +0 $\ell 1\tau_{had}$	loose	5.58	6.42	83.43	Yes
$\gamma\gamma$ +0 $\ell 1\tau_{had}$	medium	0.29	0.34	26.40	Yes
$\gamma\gamma$ +0 $\ell 1\tau_{had}$	tight	0.03	0.09	73.97	Yes
$\gamma\gamma+2L$	whole	0.15	0.35	99.29	Yes

Table 55: The spurious signal test results for all channels with the 2^{nd} order exponential polynomial function.

Systematic uncertainties

Background modeling uncertainties:

- The shape differences between the $\gamma\gamma 0l0\tau_h + 1/2 jets$ and three sub-channels ($\gamma\gamma + 0l1\tau_h$, $\gamma\gamma + 1l0\tau_h$ and $\gamma\gamma + 2L$) lead to additional uncertainties in the estimations of background yields for individual categories.
- This uncertainty can be only evaluated by the continuum background MC samples, due to the low statistics in data sideband.

> The average of the relative deviation for all bins is chosen as the background modeling uncertainties:

Channel	Loose BDTG region	Medium BDTG region	Tight BDTG region
$\gamma \gamma + 1 \ell 0 \tau_{had}$	±3.37%	±15.73%	±11.22%
$\gamma\gamma + 0\ell 1\tau_{had}$	±0.75%	±14.67%	±10.67%
$\gamma\gamma+2L$	WI	hole BDTG region : ±0.03	3%

> $\gamma\gamma + 0l1\tau_h$ and $\gamma\gamma + 1l0\tau_h$ In loose BDTG region:(BDTG<0) Other regions are shown in <u>backup</u>

Systematic uncertainties

Experimental uncertainties:

- Luminosity: 1.7 %
- Pile-up reweighting
- Photon: efficiency, energy scale, resolution, trigger uncertainties provided by Egamma CP group.
- Muon: efficiency, energy scale, resolution, object reconstruction, identification and isolation
- Electron: efficiency, energy scale, resolution
- Tau: trigger, identification, reconstruction, energy scale
- Jet : JER(Jet energy resolution), JES(Jet energy scale), vertex tagging
- Flavour tagging: b-jets, c-jets, light-jets and extrapolations
- MET: scale, resolution

> The detail list of experimental uncertainties is shown in <u>backup</u>.

Systematic uncertainties

Theory systematic uncertainties:

Signal:

- QCD
- PDF+ α_s
- Parton Shower uncertainty

Background (only single Higgs, the background modeling is driven by data sideband)

- QCD
- PDF+ α_s
- Parton Shower uncertainty (not finished yet, need to find the Herwig sample of Single Higgs.)

Channel	Process	Parton Shower (%)	PDF + α_s (%)	QCD Scale (%)
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	HH signal	2.51	4.46	+13.03
$\gamma\gamma$ +0 $\ell 1\tau_{had}$	HH signal	1.18	4.53	+13.15 -12.35
$\gamma\gamma+2L$	HH signal	2.85	4.47	+13:03 -12:33
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	Single Higgs	-	5.86	+3.73 -3.82
$\gamma\gamma$ +0 $\ell 1\tau_{had}$	Single Higgs	-	5.98	+10.49 -7.10
$\gamma\gamma+2L$	Single Higgs	-	5.35	+9.09 -7.67

Table 60: Summary of theoretical uncertainties for the $\gamma\gamma + ML$ channel.

Fit procedure

Framework: TRexFitter, limit cross checked by quickStats

- > Binned likelihood fit to the $m_{\gamma\gamma}$ distributions, the binning of $m_{\gamma\gamma}$ is chosen to be 2.5GeV.
 - Signal modeling: number counting.
 - Single Higgs background modeling: number counting.
 - > Continuum background modeling (sideband data driven) instead of the MC $\gamma\gamma$ +*jets* and $V\gamma\gamma$ samples.

Consider experimental uncertainties and background modeling uncertainties in the fit.

>Number of bins in SR for three sub-channels: 4. (4 bins in $120 < m_{\gamma\gamma} < 130$ region)

 $\gamma\gamma + 0l1\tau_h$: (other channels are shown in the <u>backup</u>) $m_{\gamma\gamma}$ distribution in different BDTG regions:

Fit results

> Performed a signal + background fit with part of systematic MC.

> Asimov dataset are assumed in all signal regions for the upper limit setting.

			$\langle \rangle$					\frown	
Channels	Stats.Only (Asimov)	+MC stats.(Asimov)	+Systematics (Asimov)	+Bkg estimation uncertainties	Channels	Stats.Only (Asimov)	+MC stats.(Asimov)	+Systematics (Asimov)	With all uncertainties
$\gamma\gamma$ +1 $\ell 0\tau_{had}$	25.46 ^{36.99} _{18.35}	-	25.50 ^{37.09} _{18.37}	25.64 ^{37.29} 18.22	$\gamma\gamma$ +1 $\ell 0\tau_{had}$	25.46 ^{36.99}	-	25.50 ^{37.09}	$26.60^{39.43}_{19.17}$
$\gamma\gamma$ +0 $\ell 1\tau_{had}$	52.70 ^{76.71} 37.98	-	52.79 ^{76.91} 38.04	53.30 ^{77.60} 38.40	$\gamma\gamma + 0\ell 1\tau_{had}$	$52.70_{37.98}^{10.95}$	-	$52.79^{76.91}_{38.04}$	54.97 ^{81.64}
$\gamma\gamma+2L$	25.13 ^{38.23} 18.11	-	25.16 ^{38.32} _{18.13}	25.18 ^{38.34} 18.15	$\gamma\gamma+2L$	37.01 ^{54.79} 26.67	-	$37.07_{26.71}^{54.94}$	38.15 ^{57.66} 27.49
$\gamma\gamma + ML$	14.85 ^{21.65} _{10.70}	-	14.87 ^{21.70} _{10.71}	14.98 ^{21.86} 10.80	$\gamma\gamma + ML$	$17.72^{25.52}_{12.77}$	-	17.75 ^{25.59} _{12.79}	$18.55^{27.32}_{13.37}$

Have similar limit to preliminary ML channel result.For comparison:

> Multilepton channel (in progress).

Channels	Stats. Only (Asimov)	+ MC stats.(Asimov)	+ Systematics (Asimov)
2ℓSS	$32.34_{26.25}^{51.69}$	33.55 ^{47.38} 24.17	35.8 ^{50.77} 28.85
3ℓ	$26.11_{18.82}^{37.12}$	28.34 20.43	29.2942.2
$b\bar{b}4\ell$	$27.77_{20.02}^{41.59}$	$28.85_{20,79}^{44.01}$	$28.97^{44.28}_{20.87}$
1ℓ + $2\tau_{had}$	$32.97^{47.30}_{23.74}$	36.34 ^{51.76} 26.18	$37.56_{27.06}^{53.65}$
$2\ell + 2\tau_{had}$	$33.10^{48.77}_{23.88}$	33.73 ^{49.55} _{24.30}	$34.10_{24.55}^{50.20}$
$2\ell SS+1\tau_{had}$	$42.60_{30.70}^{61.10}$		$44.70_{32.2}^{64.50}$
Multilepton	$11.18^{15.89}_{8.05}$	$11.76^{16.76}_{8.47}$	$12.18^{17.40}_{8.78}$

Summary

Analysis status:

- > The analysis strategy is established and well defined
- > Expected upper limit on the signal strength in $\gamma\gamma+ML$ channel: 18.41 times its SM value.
- > The limit is comparable with preliminary results from ML channels, the combined limit is around 10xSM.

Documentation status

- Supporting note circulated 12.9, comments are being implemented.
- > New supporting note under preparation:
 - >Updated final results: Include background modeling and background modeling uncertainties.
 - >Working on CDS comments received during circulation.

> Paper can be prepared quickly.

From our side: ready for unblinding.

>ML channels will follow as soon as the new ML sample production is ready.

Thank you!

Backup

JobOption $\gamma\gamma + 0l ggF: (600859)$

<pre># # Pythia8 showering setup # # initialize Pythia8 generator configuration for showering runArgs.inputGeneratorFile=runArgs.inputGeneratorFile include("Pythia8_i/Pythia8_A14_NNPDF23L0_EvtGen_Common.py")</pre>	<pre># # Dipole option Pythia8 # genSeq.Pythia8.Commands += ["SpaceShower:dipoleRecoil = on"] # # EVGEN Configuration</pre>
<pre># # Edit merged LHE file to remove problematic lines # include("Pythia8_i/Pythia8_Powheg.py") fname = "merged_lhef0.events" f = open(fname, "r") lines = f.readlines() f.close() f = open(fname, "w') for line in lines: if not "#pdf" in line: f.write(line) f.close() include("Pythia8_i/Pythia8_Powheg_Main31.py") # configure Pythia8 genSeq.Pythia8.Commands += ["25:oneChannel = on 0.353 100 24 -24 ", # WW decay "25:addChannel = on 0.431 100 23 23 ", # ZZ decay "25:addChannel = on 0.431 100 23 23 ", # ZZ decay "25:addChannel = on 0.41 100 15 -15 ", # tautau decay "25:addChannel = on 0.5 100 22 22 ", # yy decay "24:mMin = 0", # W minimu mass "23:mMax = 99999", # Z maximum mass "23:mMax = 99999", # Z maximum mass "1meShower:mMaxGamma = 0"] # Z/gamma* combination scale #</pre>	<pre>wyenConfig.generators += ["Powheg", "Pythia8"] evgenConfig.description = "SM diHiggs production, decay to multi-lepton, with Powheg-Box-V2, at NLO + full top mass." evgenConfig.keywords = ["hh", "SM", "SMHiggs", "nonResonant", "ggF", "multlepton"] evgenConfig.contact = ['Shuiting Xin <shuiting.xin@cern.ch>'] evgenConfig.incvertsPerJob = 10000 evgenConfig.inputFilesPerJob = 10 # #</shuiting.xin@cern.ch></pre>
# Dipole option Pythia8 #	

JobOption

$\gamma \gamma + 1l \, ggF: (600860)$

#-----# Pythia8 showering setup # initialize Pythia8 generator configuration for showering runArgs.inputGeneratorFile=runArgs.inputGeneratorFile include("Pythia8_i/Pythia8_A14_NNPDF23L0_EvtGen_Common.py") #-----# Edit merged LHE file to remove problematic lines #----include("Pythia8_i/Pythia8_Powheg.py") fname = "merged lhef. 0.events" f = open(fname, "r") lines = f.readlines() f.close() f = open(fname, 'w') for line in lines: if not "#pdf" in line: f.write(line)

include("Pythia8_i/Pythia8_Powheg_Main31.py")

f.close()

```
# configure Pythia8
genSeq.Pythia8.Commands += [ "25:oneChannel = on 0.353 100 24 -24 ",  # WW decay
    "25:addChannel = on 0.043 100 23 23 ",  # ZZ decay
    "25:addChannel = on 0.104 100 15 -15 ",  # tautau decay
    "25:addChannel = on 0.5 100 22 22 ",  # yy decay
    "24:mMin = 0",  # W minimum mass
    "24:mMax = 99999",  # W maximum mass
    "23:mMin = 0",  # Z maximum mass
    "23:mMax = 99999",  # Z maximum mass
    "TimeShower:mMaxGamma = 0" ] # Z/gamma* combination scale
```

#				
# Dipole op	ion Pythia8			
#				
genSeq.Pyth	a8.Commands += ["SpaceShower:dipoleRecoil	=	on"]

#
Dipole option Pythia8
<pre># genSeq.Pythia8.Commands += ["SpaceShower:dipoleRecoil = on"]</pre>
*
EV/CEN Configuration
EVEN CONTIGUTATION
" evgenConfig.generators += ["Powheg", "Pythia8"]
evgenConfig.description = "SM diHiggs production, decay to multi-lepton, with Powheg-Rox-V2, at NLO + full top mass."
evgenConfig.keywords = ["hh", "SM", "SMHiggs", "nonResonant", "ggF", "multlepton"]
evgenConfig.contact = ['Shuiting Xin <shuiting.xin@cern.ch>']</shuiting.xin@cern.ch>
evgenConfig.nEventsPerJob = 10000
evgenConfig.maxeventsfactor = 1.0
evgenConfig.inputFilesPerJob = 12
#
" " Generator Filters
#
from GeneratorFilters.GeneratorFiltersConf import ParentChildFilter
<pre>filtSeg += ParentChildFilter("hyyFilter", PDGParent = [25], PDGChild = [22])</pre>
<pre>filtSeq += ParentChildFilter("hXXFilter", PDGParent = [25], PDGChild = [15,23,24])</pre>
for constantiles constantiles caf inset wikities the
from Generatorritters.generatorritters.confilmport mutilitecculadritter
filter Languestian Languester ("Leponerice")
filtseq.Lephneritter.Nictudenaurads = 1
filtseq.LepheFilter.MipDt = 7000
filtse, LenneFilter, MinVisPtHadTau = 15000
filtse, LeoneFilter, MaxEta = 3
<pre>filtSeq += MultiElecMuTauFilter("LepTwoFilter")</pre>
filtSeq.LepTwoFilter.IncludeHadTaus = True
<pre>filtSeq.LepTwoFilter.NLeptons = 2</pre>
filtSeq.LepTwoFilter.MinPt = 7000
filtSeq.LepTwoFilter.MinVisPtHadTau = 15000
filtSeq.LepTwoFilter.MaxEta = 3
filtSeq.Expression = "hyyFilter and hXXFilter and LepOneFilter and not LepTwoFilter"

JobOption

$\gamma \gamma + 2l \, ggF: (600861)$

#-----# Pythia8 showering setup #-----# initialize Pythia8 generator configuration for showering runArgs.inputGeneratorFile=runArgs.inputGeneratorFile include("Pythia8_i/Pythia8_A14_NNPDF23L0_EvtGen_Common.py") #-----# Edit merged LHE file to remove problematic lines #----include("Pythia8_i/Pythia8_Powheg.py") fname = "merged lhef. 0.events" f = open(fname, "r") lines = f.readlines() f.close() f = open(fname, 'w') for line in lines: if not "#pdf" in line: f.write(line)

include("Pythia8_i/Pythia8_Powheg_Main31.py")

f.close()

configure Pythia8
genSeq.Pythia8.Commands += ["25:oneChannel = on 0.353 100 24 -24 ", # WW decay
 "25:addChannel = on 0.043 100 23 23 ", # ZZ decay
 "25:addChannel = on 0.104 100 15 -15 ", # tautau decay
 "25:addChannel = on 0.5 100 22 22 ", # yy decay
 "24:mMin = 0", # W minimum mass
 "24:mMax = 99999", # W maximum mass
 "23:mMin = 0", # Z maximum mass
 "23:mMax = 99999", # Z maximum mass
 "TimeShower:mMaxGamma = 0"] # Z/gamma* combination scale

#
Dipole option Pythia8
#
genSeq.Pythia8.Commands += ["SpaceShower:dipoleRecoil = on"]

# Dipole option Pythia8	
#	
genSeq.Pythia8.Commands +	<pre>F= ["SpaceShower:dipoleRecoil = on"]</pre>
#	
# EVGEN Configuration	
# evgenConfig.generators evgenConfig.description evgenConfig.keywords evgenConfig.contact evgenConfig.nEventsPerJol	<pre>+= ["Powheg", "Pythia8"] = "SM diHiggs production, decay to multi-lepton, with Powheg-Box-V2, at NLO + full top mass." = ["hh", "SM", "SMHiggs", "nonResonant", "ggF", "multlepton"] = ['Shuiting Xin <shuiting.xin@cern.ch>'] p = 10000</shuiting.xin@cern.ch></pre>
evgenConfig.maxeventsfact	tor = 1.0
evgenConfig.inputFilesPer	-Job = 12
<pre># # Generator Filters # # Generator Filters.Ger filtSeq += ParentChildFil filtSeq += ParentChildFil from GeneratorFilters.Ger filtSeq += MultiElecMuTau filtSeq.LepOneFilter.Incl filtSeq.LepOneFilter.Nlg filtSec.Mathematic filtSec.Mathem</pre>	<pre>heratorFiltersConf import ParentChildFilter lter("hyyFilter", PDGParent = [25], PDGChild = [22]) lter("hXXFilter", PDGParent = [25], PDGChild = [15,23,24]) heratorFiltersConf import MultiElecMuTauFilter uFilter("LepOneFilter") ludeHadTaus = True</pre>
filtSeq.LepOneFilter.Minf filtSeq.LepOneFilter.Min\ filtSeq.LepOneFilter.MaxE	otons = 1 Pt = 7000 /isPtHadTau = 15000 :ta = 3
<pre>filtSeq.LepOneFilter.Minf filtSeq.LepOneFilter.Minf filtSeq.LepOneFilter.MaxE filtSeq.LepTwoFilter.Incl filtSeq.LepTwoFilter.NLeg filtSeq.LepTwoFilter.MinF filtSeq.LepTwoFilter.MinF filtSeq.LepTwoFilter.MaxE</pre>	<pre>btons = 1 bt = 7000 /isPtHadTau = 15000 ita = 3 uFilter("LepTwoFilter") LudeHadTaus = True btons = 2 bt = 7000 /isPtHadTau = 15000 ita = 3</pre>
<pre>filtSeq.LepOneFilter.Minf filtSeq.LepOneFilter.Minf filtSeq.LepOneFilter.MaxE filtSeq.LepTwoFilter.Incl filtSeq.LepTwoFilter.NLep filtSeq.LepTwoFilter.Minf filtSeq.LepTwoFilter.Minf filtSeq.LepTwoFilter.MaxE filtSeq.LepTwoFilter.MaxE</pre>	<pre>btons = 1 bt = 7000 /isPtHadTau = 15000 :ta = 3 uFilter("LepTwoFilter") ludeHadTaus = True btons = 2 bt = 7000 /isPtHadTau = 15000 :ta = 3 uFilter and bYFilter and LepOneFilter and pat LepTupFilter"</pre>

 $\frac{\text{JobOption}}{\gamma\gamma + 0l \, VBF: (508676)}$

import MadGraphControl.MadGraph_NNPDF30NL0_Base_Fragment from MadGraphControl.MadGraphUtils import *

beamEnergy=-999 if hasattr(runArgs,'ecmEnergy'): beamEnergy = runArgs.ecmEnergy / 2. else:

raise RuntimeError("No center of mass energy found.") # Due to the low filter efficiency, the number of generated events are set to safefactor times maxEvents # to avoid crashing due to not having enough events # Also putting protection to avoid from crashing when maxEvents=-1 #---safefactor=30 nevents=5000*safefactor if runArgs.maxEvents > 0: nevents=runArgs.maxEvents*safefactor mode=0 # Setting parameters for param_card.dat #..... parameters = {} parameters['NEW'] = {'CV': '1.0000000', # CV 'C2V': '1.0000000', # C2V 'C3': '1.0000000'} # C3 #-----# Setting higgs mass to 125 GeV for param_card.dat #----parameters['MASS']={'25':'1.250000e+02'} #MH # Setting some parameters for run card.dat #---extras = { 'lhe_version':'2.0', 'cut decays':'F'. 'scale':'125', 'dsort o2fact1':'125'. 'dsgrt_g2fact2':'125', 'nevents':int(nevents)} #-----# Setting higgs mass to 125 GeV for param_card.dat #----parameters['MASS']={'25':'1.250000e+02'} #MH #-----# Setting some parameters for run card.dat #-----extras = { 'lhe_version':'2.0', 'cut decays':'F', 'scale':'125', 'dsgrt g2fact1':'125', 'dsqrt_q2fact2':'125' 'nevents':int(nevents)} #-----# Generating non-resonant VBF-Only HH process with MadGraph # Parameters are set above #..... process=""" import model sm define $p = g u c d s u \sim c \sim d \sim s \sim$ define $j = g u c d s u \sim c \sim d \sim s \sim$ import model /cvmfs/atlas.cern.ch/repo/sw/Generators/madgraph/models/latest/HHVBF_UF0 generate p p > h h j j \$\$ z w+ w- / a j QED=4 output -f""" process_dir = new_process(process) # Using the helper function from MadGraphControl for setting up the run_card # https://gitlab.cern.ch/atlas/athena/-/tree/master/Generators/MadGraphControl # Build a new run card.dat from an existing one # Using the values given in "extras" above for the selected parameters when setting up the run_card

Using the helper function from MadGraphControl for setting up the param card # https://gitlab.cern.ch/atlas/athena/-/tree/master/Generators/MadGraphControl # Build a new param card.dat from an existing one # Used values given in "parameters" for CV, C2V, C3 # Higgs mass is set to 125 GeV by "higgsMass" #----modify_param_card(process_dir=process_dir,params=parameters) # Printing cards #---print_cards() # Generate events #----generate(process_dir=process_dir,runArgs=runArgs) #-----# Move output files into the appropriate place, with the appropriate name #----arrange_output(process_dir=process_dir,runArgs=runArgs,lhe_version=2,saveProcDir=True) #-----# EVGEN Configuration #-----evgenConfig.generators = ["MadGraph", "Pythia8"] evgenConfig.description = "SM diHiggs production, decay to multi-lepton, with Powheg-Box-V2, at NLO + full top mass." evgenConfig.keywords = ["hh","SM", "SMHiggs", "nonResonant", "VBF", "multilepton"] evgenConfig.contact = ['Varsha Senthilkumar <varsha.senthilkumar@cern.ch>'] evgenConfig.nEventsPerJob = 10000 #evgenConfig.tune = "MMHT2014" #------# Pvthia8 showering #----include("Pythia8 i/Pythia8 A14 NNPDF23L0 EvtGen Common.py") include("Pythia8_i/Pythia8_MadGraph.py") *# configure Pythia8* genSeq.Pythia8.Commands += ["25:oneChannel = on 0.353 100 24 -24 ", # WW decay "25:addChannel = on 0.043 100 23 23 ", # ZZ decay "25:addChannel = on 0.104 100 15 -15 ", # tautau decay "25:addChannel = on 0.5 100 22 22 ", # yy decay "24:mMin = 0", # W minimum mass "24:mMax = 99999", # W maximum mass "23:mMin = 0", # Z minimum mass "23:mMax = 99999", # Z maximum mass "TimeShower:mMaxGamma = 0"] # Z/gamma* combination scale "TimeShower:mMaxGamma = 0"] # Z/gamma* combination scale # Dipole option Pythia8 #----genSeq.Pythia8.Commands += ["SpaceShower:dipoleRecoil = on"] # #-----# # Generator Filters # #----from GeneratorFilters.GeneratorFiltersConf import ParentChildFilter filtSeq += ParentChildFilter("hyyFilter", PDGParent = [25], PDGChild = [22]) filtSeq += ParentChildFilter("hXXFilter", PDGParent = [25], PDGChild = [15,23,24]) from GeneratorFilters.GeneratorFiltersConf import MultiElecMuTauFilter filtSeq += MultiElecMuTauFilter("LepOneFilter") filtSeq.LepOneFilter.IncludeHadTaus = True filtSeq.LepOneFilter.NLeptons = 1 filtSeq.LepOneFilter.MinPt = 7000 filtSeq.LepOneFilter.MinVisPtHadTau = 15000 filtSeq.LepOneFilter.MaxEta = 3

2023/3/10

modify_run_card(process_dir=process_dir,runArgs=runArgs,settings=extras)

If not set in "extras", default values are used

ha@ce filtSeq.Expression = "hyyFilter and hXXFilter and not LepOneFilter'

$\frac{\text{JobOption}}{\gamma \gamma + 0 l \, VBF: (508677)}$

<pre>import MadGraphControl.MadGraph_NNPDF30NLO_Base_Fragment from MadGraphControl.MadGraphUtils import *</pre>	
if herettr(runtros lecmEnerov));	
heamEnergy = runArcs ermEnergy / 2	
also:	
<pre>raise RuntimeError("No center of mass energy found.")</pre>	
#	
" # Due to the low filter efficiency, the number of generated events are set to safefactor times maxEven	nts
# to avoid crashing due to not having enough events	,,
# Also putting protection to avoid from crashing when mayEvents=_1	
#	
" safefactor=30	
nevents=5000*cafefartor	
if runking mayEvants > 0.	
novents-runkrds may Events*selefactor	
neventa-runkings.maxiventa sareractor	
mode=0	
#	
# Setting parameters for param_card.dat	
#	
parameters = {}	
parameters['NEW'] = {'CV': '1.0000000', # CV	
'C2V': '1.0000000', # C2V	
'C3': '1.0000000'} # C3	
#	
#	
# # Setting higgs mass to 125 GeV for param_card.dat #	
<pre>#</pre>	
# # Setting higgs mass to 125 GeV for param_card.dat #	
#	
<pre>#</pre>	
<pre>## # Setting higgs mass to 125 GeV for param_card.dat #</pre>	
<pre>#. # Setting higgs mass to 125 GeV for param_card.dat #. parameters['MASS']={'25':'1.250000e+02'} #MH #. # Setting some parameters for run_card.dat #. extras = { 'lhe_version':'2.0',</pre>	
<pre>#. # Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0',</pre>	
<pre># # # Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH # # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125',</pre>	
<pre>## Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125',</pre>	
<pre>## Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':'125',</pre>	
<pre>#. # Setting higgs mass to 125 GeV for param_card.dat #. parameters['MASS']={'25':'1.250000e+02'} #MH #. # Setting some parameters for run_card.dat #. extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':'125', 'nevents':int(nevents)}</pre>	
<pre>#. # Setting higgs mass to 125 GeV for param_card.dat #. parameters['MASS']={'25':'1.250000e+02'} #MH #. # Setting some parameters for run_card.dat #. extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':'125', 'nevents':int(nevents)}</pre>	
<pre>## Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH! # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':'125', 'nevents':int(nevents)} # # Generating non-resonant VME-Dalv MH gracess with MadGraph</pre>	
<pre>## Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH # # Setting some parameters for run_card.dat # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':'125', 'dsqrt_q2fact2':'125', 'nevents':int(nevents)} # Generating non-resonant VDF-Only HH process with MadGraph # Parameters are set above</pre>	
<pre># # Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':'125', 'dsqrt_q2fact2':'125', 'nevents':int(nevents)} # # Generating non-resonant VBF-Only HH process with MadGraph # Darameters are set above #</pre>	
<pre>## Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact2':'125', 'dsqrt_q2fact2':'125', 'nevents':int(nevents)} # # process=:***********************************</pre>	
<pre>## Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH! # # Setting some parameters for run_card.dat # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':'125', 'nevents':int(nevents)} # # Generating non-resonant VMF-Only HH process with MadGraph # Parameters are set above # process=""" import model sm define p = g u c d s u- c- d s-</pre>	
<pre>## Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH # # Setting some parameters for run_card.dat # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':'125', 'dsqrt_q2fact2':'125', 'dsqrt_q2fact2':'125', 'nevents':int(nevents)} # # Generating non-resonant VBF-Only HH process with MadGraph # Generating are set above # # Generating some set above # Gener</pre>	
<pre>## Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH # # Setting some parameters for run_card.dat # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':'125', 'dsqrt_q2fact2':'125', 'dsqrt_q2fact2':'125', 'nevents':int(nevents)} # # Generating non-resonant VBF-Only HH process with MadGraph # Parameters are set above process=""" import model sm define j = g u c d s u - cc d - s- define j = g u c d s u - cc d - s- import model sm define j = g u c d s u - cc d - s- import</pre>	
<pre>#</pre>	
<pre>#</pre>	
<pre>## Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH # # Setting some parameters for run_card.dat # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':'125', 'dsqrt_q2fact2':'125', 'nevents':int(nevents)} # # Generating non-resonant VWF-Only HH process with MadGraph # Parameters are set above # # Decesser*** import model sm define p = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s u - c- d - s- define j = g u < d s</pre>	
<pre>## Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #NH! # # Setting some parameters for run_card.dat # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':'125', 'dsqrt_q2fact2':'125', 'dsqrt_q2fact2':'125', 'nevents':int(nevents)} # # Generating non-resonant VDF-Only HH process with MadGraph # Parameters are set above # Common to the set of the set</pre>	
<pre>## Setting higgs mass to 125 GeV for param_card.dat #</pre>	
<pre>## Setting higgs mass to 125 GeV for param_card.dat #</pre>	
<pre># # Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':'125', 'nevents':int(nevents)} # # Generating non-resonant VWF-Only HW process with MadGraph # Parameters are set above process:"* import model sn define p = g u c d s u-c-d s= define j = g u c d s u-c-d s= define j = g u c d s u-c-d s= define j = g u c d s u-c-d s= import model sn define p = g u c d s u-c-d s= define j = g u c d s u-c-d s= import model sn define p = g u c d s u-c-d s= define j = g u c d s u-c-d s s u-c-d s= define j = g u c</pre>	
<pre>## Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':'15', 'revents':int(nevents)} #</pre>	
<pre># # Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':'125', 'nevents':int(nevents)}</pre>	
<pre>## Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'cut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':125', 'dsqrt_q2fact2':'125', 'dsqrt_q2fact2':'125', 'nevents':int(nevents)} #</pre>	
<pre># # Setting higgs mass to 125 GeV for param_card.dat # parameters['MASS']={'25':'1.250000e+02'} #MH # # Setting some parameters for run_card.dat # extras = { 'lhe_version':'2.0', 'vcut_decays':'F', 'scale':'125', 'dsqrt_q2fact1':'125', 'dsqrt_q2fact2':'125', 'dsqrt_q2fact2':'125', 'dsqrt_q2fact2':'125', 'nevents': int(nevents)} # # # # # # # # # # # # # # # # # # #</pre>	

Using the helper function from MadGraphControl for setting up the param_card # https://gitlab.cern.ch/atlas/athena/-/tree/master/Generators/MadGraphControl # Build a new param_card.dat from an existing one # Used values given in "parameters" for CV, C2V, C3 # Higgs mass is set to 125 GeV by "higgsMass" #----modify_param_card(process_dir=process_dir,params=parameters) #_____ # Printing cards print_cards() # Generate events #_____ generate(process_dir=process_dir,runArgs=runArgs) #-----# Move output files into the appropriate place, with the appropriate name #----arrange output(process dir=process dir,runArgs=runArgs,lhe version=2,saveProcDir=True) # EVGEN Configuration #----evgenConfig.generators = ["MadGraph", "Pythia8"] evgenConfig.description = "SM diHiggs production, decay to multi-lepton, with Powheg-Box-V2, at NLO + full top mass." evgenConfig.keywords = ["hh","SM", "SMHiggs", "nonResonant", "VBF", "multilepton"] evgenConfig.contact = ['Varsha Senthilkumar <varsha.senthilkumar@cern.ch>'] evgenConfig.nEventsPerJob = 10000 #evgenConfig.tune = "MMHT2014" # Pythia8 showering include("Pythia8_i/Pythia8_A14_NNPDF23L0_EvtGen_Common.py") include("Pythia8_i/Pythia8_MadGraph.py") # configure Pythia8 genSeq.Pythia8.Commands += ["25:oneChannel = on 0.353 100 24 -24 ", # WW decay "25:addChannel = on 0.043 100 23 23 ". # ZZ decay "25:addChannel = on 0.104 100 15 -15 ", # tautau decay "25:addChannel = on 0.5 100 22 22 ", # yy decay "24:mMin = 0", # W minimum mass "24:mMax = 99999", # W maximum mass "23:mMin = 0", # Z minimum mass "23:mMax = 99999", # Z maximum mass "TimeShower:mMaxGamma = 0"] # Z/gamma* combination scale "TimeShower:mMaxGamma = 0"] # Z/gamma* combination scale # Dipole option Pythia8 genSeq.Pythia8.Commands += ["SpaceShower:dipoleRecoil = on"] # # Generator Filters from GeneratorFilters.GeneratorFiltersConf import ParentChildFilter filtSeq += ParentChildFilter("hyyFilter", PDGParent = [25], PDGChild = [22]) filtSeq += ParentChildFilter("hXXFilter", PDGParent = [25], PDGChild = [15,23,24]) from GeneratorFilters.GeneratorFiltersConf import MultiElecMuTauFilter filtSeq += MultiElecMuTauFilter("LepOneFilter") filtSeq.LepOneFilter.IncludeHadTaus = True filtSeq.LepOneFilter.NLeptons = 1 filtSeq.LepOneFilter.MinPt = 7000 filtSeq.LepOneFilter.MinVisPtHadTau = 15000 filtSeq.LepOneFilter.MaxEta = 3 filtSeg += MultiElecMuTauFilter("LepTwoFilter") filtSeq.LepTwoFilter.IncludeHadTaus = True filtSeq.LepTwoFilter.NLeptons = 2 filtSeq.LepTwoFilter.MinPt = 7000 filtSeq.LepTwoFilter.MinVisPtHadTau = 15000 filtSeq.LepTwoFilter.MaxEta = 3 filtSeq.Expression = "hyyFilter and hXXFilter and LepOneFilter and not LepTwoFilter"

2023/3/10

modify param card(process dir=process dir.params=parameters)

Higgs mass is set to 125 GeV by "higgsMass"

uyu sha qsha@cern.ch

....

#---

import MadGraphControl.MadGraph_NNPDF30NL0_Base_Fragment from MadGraphControl.MadGraphUtils import * # Generate events beamEnergy=-999 $\frac{\text{JobOption}}{\gamma\gamma + 0l \, VBF: (508678)}$ generate(process dir=process dir,runArgs=runArgs) if hasattr(runArgs,'ecmEnergy'): beamEnergy = runArgs.ecmEnergy / 2. #----else: # Move output files into the appropriate place, with the appropriate name raise RuntimeError("No center of mass energy found.") #----arrange_output(process_dir=process_dir,runArgs=runArgs,lhe_version=2,saveProcDir=True) # Due to the low filter efficiency, the number of generated events are set to safefactor times maxEvents, # to avoid crashing due to not having enough events #-----# Also putting protection to avoid from crashing when maxEvents=-1 # EVGEN Configuration #-----#----safefactor=30 evgenConfig.generators = ["MadGraph", "Pythia8"] nevents=5000*safefactor evgenConfig.description = "SM diHiggs production, decay to multi-lepton, with Powheg-Box-V2, at NLO + full top mass." if runArgs.maxEvents > 0: evgenConfig.keywords = ["hh", "SM", "SMHiggs", "nonResonant", "VBF", "multilepton"] nevents=runArgs.maxEvents*safefactor evgenConfig.contact = ['Varsha Senthilkumar <varsha.senthilkumar@cern.ch>'] mode=0 evgenConfig.nEventsPerJob = 10000 #evgenConfig.tune = "MMHT2014" # Setting parameters for param card.dat #-----parameters = {} # Pythia8 showering parameters['NEW'] = {'CV': '1.0000000', # CV #-----'C2V': '1.0000000', # C2V include("Pythia8 i/Pythia8 A14 NNPDF23L0 EvtGen Common.py") 'C3': '1.0000000'} # C3 include("Pythia8_i/Pythia8_MadGraph.py") #-----# configure Pythia8 # Setting higgs mass to 125 GeV for param_card.dat genSeq.Pythia8.Commands += ["25:oneChannel = on 0.353 100 24 -24 ", # WW decay parameters['MASS']={'25':'1.250000e+02'} #MH "25:addChannel = on 0.043 100 23 23 ", # ZZ decay "25:addChannel = on 0.104 100 15 -15 ", # tautau decay #-----"25:addChannel = on 0.5 100 22 22 ", # yy decay # Setting some parameters for run_card.dat "24:mMin = 0", # W minimum mass #-----"24:mMax = 99999", # W maximum mass extras = { 'lhe version':'2.0', "23:mMin = 0". # Z minimum mass 'cut_decays':'F', "23:mMax = 99999", # Z maximum mass "TimeShower:mMaxGamma = 0"] # Z/gamma* combination scale 'scale':'125', "TimeShower:mMaxGamma = 0"] # Z/gamma* combination scale 'dsqrt_q2fact1':'125', 'dsgrt g2fact2':'125', 'nevents':int(nevents)} #-----#-----# Generating non-resonant VBF-Only HH process with MadGraph # Dipole option Pythia8 # Parameters are set above #-----#----genSeg.Pythia8.Commands += ["SpaceShower:dipoleRecoil = on"] process=""" import model sm define $p = g u c d s u \sim c \sim d \sim s \sim$ # #----define j = g u c d s u~ c~ d~ s~ # # Generator Filters import model /cvmfs/atlas.cern.ch/repo/sw/Generators/madgraph/models/latest/HHVBF UF0 # #----generate p p > h h j j \$\$ z w+ w- / a j QED=4 from GeneratorFilters.GeneratorFiltersConf import ParentChildFilter output -f""" filtSeg += ParentChildFilter("hyyFilter", PDGParent = [25], PDGChild = [22]) filtSeg += ParentChildFilter("hXXFilter", PDGParent = [25], PDGChild = [15,23,24]) process dir = new process(process) from GeneratorFilters.GeneratorFiltersConf import MultiElecMuTauFilter # Using the helper function from MadGraphControl for setting up the run card filtSeg += MultiElecMuTauFilter("LepTwoFilter") # https://gitlab.cern.ch/atlas/athena/-/tree/master/Generators/MadGraphControl filtSeq.LepTwoFilter.IncludeHadTaus = True # Build a new run_card.dat from an existing one filtSeq.LepTwoFilter.NLeptons = 2 # Using the values given in "extras" above for the selected parameters when setting up the run_card filtSeq.LepTwoFilter.MinPt = 7000 # If not set in "extras", default values are used filtSeq.LepTwoFilter.MinVisPtHadTau = 15000 filtSeq.LepTwoFilter.MaxEta = 3 modify_run_card(process_dir=process_dir,runArgs=runArgs,settings=extras) filtSeq.Expression = "hyyFilter and hXXFilter and LepTwoFilter" # Using the helper function from MadGraphControl for setting up the param card # https://gitlab.cern.ch/atlas/athena/-/tree/master/Generators/MadGraphControl # Build a new param_card.dat from an existing one # Used values given in "parameters" for CV, C2V, C3 # Higgs mass is set to 125 GeV by "higgsMass"

65

Investigation on $m_{\gamma\gamma}$ disagreement (Appendix F.4)

What happens in the m_gammagamma >150 GeV <155 GeV bin? (that peak)

The disagreement is below 2 sigma, we do some check:

- This peak goes down with smaller bins(in the left plots)
- When we check the BDTG shape in (150,155)GeV.(Right one)
- ▶ the most events are in the low BDTG \Rightarrow not HH signal like.

0.5

-0.8 -0.6 -0.4 -0.2 0

0.2 0.4 0.6

0.8

BDTG

2023/3/10

0.5

-0.8 -0.6 -0.4 -0.2 0

0.2 0.4 0.6 0.8

BDTG

$\gamma\gamma + 1l0\tau_h$: Separation power:

Variable	Rank	Separation power
$p_{\mathrm{T}}(H)$	1	31.15%
$\Delta R(\gamma\gamma, W)$	2	11.75%
$\Delta \Phi(E_T^{\text{miss}},\gamma\gamma)$	3	8.34%
$E_T^{\rm miss}$	4	7.04%
$\phi_0(L_1)$	5	6.51%
$\min\Delta\Phi(E_T^{miss}, j, L)$	6	5.03%
$\Delta R(Lv)$	7	4.68%
N _{jcen}	8	3.31%
$\eta(W)$	9	3.20%
$\phi_0(\gamma_1)$	10	3.12%
$p_{\mathrm{T}}(L_1)$	11	1.81%

Correlation Matrix:

Overtraining plots with ks test values for 4 folds:

Signal (training sample)

Background (training sample)

0.4 0.6 0.8

BDTG_fold3 response

TMVA overtraining check for classifier: BDTG_fold1

TMVA overtraining check for classifier: BDTG_fold3

Signal (test sample)

Background (test sample)

-0.8 -0.6 -0.4 -0.2

-Kolmogorov-Smirnov test: signal (background) probability = 0.349 (0.012)

0 0.2

TMVA overtraining check for classifier: BDTG_fold2

Correlation Matrix (background) Linear correlation coefficients in % 100 ninDphi_metjl -3 -10 -29 Dphi metvy Dr Iv Dr_yyW 1 -11 -16 -34 20 eta_W y1_phi0 N_j_central -20 -16 -19 met -40 pt_lep 100 -60 lep_phi0 -80 pt_H 1 29 32 21 -13 -11 pt H lep_phillep met N i vi phille W V yw Dr Iv Dphi minDphi

Correlation Matrix (signal)

2023/3/10

Qiyu Sha qsha@cern.ch

ř

dN/

(I/N)

1.5

0.5

n

$\gamma \gamma + 1l1\tau_h : (\gamma \gamma + 2L \text{ include } 1l1\tau_h, 2l0\tau_h, 0l2\tau_h)$

		-
Variable	Rank	Separation power
$p_{\mathrm{T}}(H)$	1	33.92%
$\Delta \Phi(E_T^{\text{miss}}, LL)$	2	17.63%
$\Delta \phi(\ell,\ell)$	3	16.60%
$\Delta R(L\nu)$	4	15.80%
$\Delta R(LL, \gamma \gamma)$	5	14.67%
$\phi_0(L_1)$	6	13.40%
$\Delta R(\gamma\gamma, W)$	7	13.16%
$\Delta \Phi(E_T^{\text{miss}},\gamma\gamma)$	8	11.54%
$E_T^{ m miss}$	9	8.51%
$\min \Delta \Phi(E_T^{\text{miss}}, j, L)$	9	8.26%
$p_{\mathrm{T}}(L_1)$	11	4.80%
$\phi(H)$	12	2.15%

Separation power:

Correlation Matrix:

2023/3/10

ROC-value: 0.937

Linear correlation coefficients in %

4 2 -47

-40

-60

-80

-3 100

Overtraining plots with ks test values for 4 folds:

Dphi_metyy Dphi_metll

Dphi_

Dr_yyW

Dr_lv

Dr_yyll

met

pt_H

phi_H

lep_pt_1

lep_phi0_1

ninDphi_metjl

Correlation Matrix (signal)

$\gamma\gamma + 2l0\tau_h : (\gamma\gamma + 2L \text{ include } 1l1\tau_h, 2l0\tau_h, 0l2\tau_h)$

Variable	Rank	Separation power
$\Delta m(LL)$	1	31.78%
$E_T^{ m miss}$	2	29.40%
$p_{\mathrm{T}}(H)$	3	29.35%
$\Delta \Phi(E_T^{\text{miss}},\gamma\gamma)$	4	25.37%
$\Delta \Phi(E_T^{\text{miss}}, LL)$	5	24.88%
$\Delta R(Lv)$	6	22.14%
$\Delta R(LL)$	7	20.43%
$\Delta \phi(LL)$	8	16.06%
$\phi_0(L_1)$	9	9.86%
N _{jcen}	10	4.04%
$\min \Delta \Phi(E_T^{\text{miss}}, j, L)$	11	2.42%

Separation power:

Correlation Matrix:

ROC-value: 0.971

Correlation Matrix (signal) rrelation coefficients in % Dr II ninDphi_metjl Dphi_metyy Dphi_metll Dr_lv Dphi_II m_ll -20 N_j_central -40 met -60 lep_phi0_1 pt_H 100 1 -30 1 PLH lep_phill N_i centres Dphi_ll Dr_lv Dphi_men_men_Dphi_n

Overtraining plots with ks test values for 4 folds:

$\gamma \gamma + 0l2\tau_h : (\gamma \gamma + 2L \text{ include } 1l1\tau_h, 2l0\tau_h, 0l2\tau_h)$

Separation p	power:
--------------	--------

Variable	Rank	Separation power
$p_{\mathrm{T}}(H)$	1	44.16%
$\Delta \Phi(E_T^{\text{miss}}, LL)$	2	28.34%
$p_{\mathrm{T}}(L_1)$	3	25.49%
$p_{\mathrm{T}}(L_2)$	4	18.84%
$E_T^{\rm miss}$	5	17.64%
$\phi_0(L_1)$	6	14.40%
$\Delta \Phi(E_T^{\text{miss}},\gamma\gamma)$	7	12.54%
$\phi(E_T^{\rm miss})$	8	11.15%
N _{jcen}	9	9.90%

ROC-value: 0.965

100

40

20

-20

-40

-60

-80

Overtraining plots with ks test values for 4 folds:

TMVA overtraining check for classifier: BDTG_fold3

Correlation Matrix:

2023/3/10

Linear correlation Matrix (signal) Linear correlation coefficients in % Dphi_metty -1 -3 -1 -3 -3 -45 100 -45 Dphi_metty -1 -3 -1 -3 -1 2 100 -45 100 Dphi_mettl -21 1 -5 3 -1 2 100 -45 -45 100 -45 -45 100 -45

pt_H lep_phi0_tep_pt_tep_pt_phi0_tet_phi_met N_central_metril

lep_phi0_

pt_H

$\gamma\gamma + 1l0\tau_h$:

Consider a tough background scaling:

Apply a scale factor on MC continuum background (γγ+jets and Vγγ) which corresponds to the ratio between MC continuum background

sideband yields and the data sideband yields:

2023/3/10

Qiyu Sha qsha@cern.ch

$\gamma\gamma + 2L$:

Consider a tough background scaling:

Apply a scale factor on MC continuum background ($\gamma\gamma+jets$ and $V\gamma\gamma$) which corresponds to the ratio between MC continuum background \geq

sideband yields and the data sideband yields:

After background scaling, the BDTG and most of input variables distribution show here:

$\gamma\gamma$ +	1l	$1\tau_h$	$\gamma\gamma$ +	2 <i>l</i>	$0\tau_h$
Variable	Rank	Separation power	Variable	Rank	Separation power
$p_{\mathrm{T}}(H)$	1	33.92%	$\Delta m(LL)$	1	31.78%
$\Delta \Phi(E_T^{\text{miss}}, LL)$	2	17.63%	Fmiss	2	29 40%
$\Delta \phi(\ell,\ell)$	3	16.60%	L_T	2	20.35%
$\Delta R(Lv)$	4	15.80%	$p_{\rm T}(n)$		29.33%
$\Delta R(LL,\gamma\gamma)$	5	14.67%	$\Delta \Phi(E_T^{\text{miss}}, \gamma \gamma)$	4	25.37%
$\phi_0(L_1)$	6	13.40%	$\Delta \Phi(E_T^{\text{miss}}, LL)$	5	24.88%
$\Delta R(\gamma\gamma, W)$	7	13.16%	$\Delta R(L\nu)$	6	22.14%
$\Delta \Phi(E_T^{\text{miss}},\gamma\gamma)$	8	11.54%	$\Delta R(LL)$	7	20.43%
E_T^{miss}	9	8.51%	$\Delta \phi(LL)$	8	16.06%
$\min \Delta \Phi(E_T^{\text{miss}}, j, L)$	9	8.26%	$\phi_0(L_1)$	9	9.86%
$p_{\mathrm{T}}(L_1)$	11	4.80%	N_{jcen}	10	4.04%
$\phi(H)$	12	2.15%	$\min \Delta \Phi(E_T^{\text{miss}}, j, L)$	11	2.42%

Variable	Rank	Separation power
$p_{\mathrm{T}}(H)$	1	44.16%
$\Delta \Phi(E_T^{\text{miss}}, LL)$	2	28.34%
$p_{\mathrm{T}}(L_1)$	3	25.49%
$p_{\mathrm{T}}(L_2)$	4	18.84%
E_T^{miss}	5	17.64%
$\phi_0(L_1)$	6	14.40%
$\Delta \Phi(E_T^{\text{miss}},\gamma\gamma)$	7	12.54%
$\phi(E_T^{\rm miss})$	8	11.15%
N _{jcen}	9	9.90%
Systematic uncertainties

>In Medium BDTG region: (0<BDTG<0.6)</pre>

In Tight BDTG region: (0.6<BDTG)</p>

Systematic uncertainties list

	Luminosity: 1.7 %
	Pile-up reweighting
	Muon
	Electron
\triangleright	Tau

NP Name	Description	au-leptons	
Event	TAUS_TRUEHADTAU_EFF_TRIGGER_STATDATA161718		
Event	TAUS_TRUEHADTAU_EFF_TRIGGER_STATDATA1718		
ATLAS_LUMI_Run2	Uncertainty on the total integrated luminosity (1.7%)	TAUS_TRUEHADTAU_EFF_TRIGGER_STATDATA2016	
ATLAS_PU_PRW_DATASF	Pile-up reweighting	TAUS_IKUEHADIAU_EFF_IKIGGER_SIAIDAIA2018	
electrons	TAUS_TRUEHADTAU_EFF_TRIGGER_STATMC161718		
EL EEE TRIC TOTAL INDCOD DUUS UNCOD	alastron triscon	TAUS_TRUEHADTAU_EFF_TRIGGER_STATMC1718	
EL_EFF_IRIO_IOTAL_INFCOK_FL05_UNCOK	electron-trigger	TAUS_TRUEHADTAU_EFF_TRIGGER_STATMC2016	
EL_EFF_RECO_TOTAL_INPCOR_PLUS_UNCOR	electron-reconstruction	TAUS_TRUEHADTAU_EFF_TRIGGER_STATMC2018	
EL_EFF_ID_TOTAL_INPCOR_PLUS_UNCOR	electron-identification	TAUS_TRUEHADTAU_EFF_TRIGGER_STATMC2018AFTTS1	
EL EFE ISO TOTAL INPCOR PLUS UNCOR	electron-isolation	TAUS_IRUEHADTAU_EFF_IRIGGER_SYSTIC1/18	
	TAUS TRUEHADIAU EFF_IRIGGER_SYST2016		
muons	TAUS TRUEHADTAU EFF TRIGGER SYST2018		
MUON_EFF_TrigStatUncertainty	mun-trigger	TAUS_TRUEHADTAU_EFF_TRIGGER_SYST2018AFTTS1	
MUON EFF TrigSystUncertainty		TAUS_TRUEHADTAU_EFF_TRIGGER_SYSTMU161718	
MUON FEE RECO STAT	muon-reconstruction	TAUS_TRUEHADTAU_EFF_TRIGGER_SYSTMU1718	
MUON FEE DECO SVG		TAUS_TRUEHADTAU_EFF_TRIGGER_SYSTMU2016	
MUON_EFF_RECO_SYS		TAUS_TRUEHADIAU_EFF_IRIGGER_SYSTMU2018	
MUON_EFF_RECO_STAT_LOWPT		TAUS TRUEHADTAU EEF RECO HIGHPT T-reconstruction	
MUON EFF RECO SYS LOWPT		TAUS TRUEHADTAU EFF RECO TOTAL	
MUON FEE ISO STAT	muon-isolation	TAUS TRUEHADTAU EFF RNNID 1PRONGSTATSYSTPT2025	
MUON FFF 160 6V6	indon-isolation	TAUS_TRUEHADTAU_EFF_RNNID_1PRONGSTATSYSTPT2530	
MUON_EFF_ISO_SYS		TAUS_TRUEHADTAU_EFF_RNNID_1PRONGSTATSYSTPT3040	
MUON_EFF_TTVA_STAT	muon-TTVA	TAUS_TRUEHADTAU_EFF_RNNID_IPRONGSTATSYSTPTGE40	
MUON EFF TTVA SYS		TAUS_TRUEHADTAU_EFF_RNNID_3PRONGSTATSYSTPT2025	
MUON ID	muon-momentum calibration	TAUS_TRUEHADIAU_EFF_RNNID_3PRONGSTATSYSTP12530	
	indon-momentum canoration	TAUS_IRUEHADIAU_EFF_KNNID_3PRONGSTATSVSTP13040	
MUON_MS		TAUS TRUEHADTAU FEF RNND HIGHPT	
MUON_SCALE		TAUS TRUEHADTAU EFF RNNID SYST	
MUON SAGITTA RHO		TAUS_TRUEHADTAU_SME_TES_INSITUEXP	
MUON SAGITTA RESPLAS		TAUS_TRUEHADTAU_SME_TES_INSITUFIT	
MOON_SAGITIA_RESDIAS	I I	TAUS_TRUEHADTAU_SME_TES_MODEL_CLOSURE	
		TAUS_TRUEHADTAU_SME_TES_PHYSICSLIST	
		TAUS_TRUEELECTRON_EFF_ELEBDT_STAT τ -electron veto	

TAUS_TRUEELECTRON_EFF_ELEBDT_SYST TAUS_TRUEHADTAU_EFF_ELEOLR_TOTAL

			NP Name	Description
\sim · ·	• • • • •	Jets		
Suctomat	ic uncortainti	$\cap \mathcal{C}$	JET_EtaIntercalibration_Modelling	Jet energy scale (CategoryReduction)
JVJLEIIIAL	ון חורבו נסווונו	てし	JET_EtaIntercalibration_TotalStat	
			JET_EtaIntercalibration_NonClosure_highE	
			JET_EtaIntercalibration_NonClosure_negEta	
	EG RESOLUTION ALL	egamma resolution	JET_EtaIntercalibration_NonClosure_posEta	
	EG_SCALE_ALL	egamma scale	JET_Pileup_OffsetMu	
🎽 Photon	EG_SCALE_AF2		JET_Pileup_OffsetNPV	
	photon	Directory triagger	JET_Pileup_PtTerm	
➢ MEI	PH_EFF_IRIGGER	Photon identification	JET_Pileup_RhoTopology	
	PH_EFF_ISO	Photon isolation	JET_Flavor_Composition	
Flavour tagging	E_T^{miss}		JET_Flavor_Response	
88 8	MET_SoftTrk_ResoPara		JET_PunchThrough_MC16	
	MET_SoftTrk_ResoPerp		JET_PunchThrough_AFII	
× • ·	MET_SoftTrk_ScaleUp		JET_EffectiveNP_Detector1	
🎽 Jet 👘	L	1	JET_EffectiveNP_Detector2	
	D-tagging		JET_EffectiveNP_Mixed1	
	F1_EFF_Eigen_B_0		JET_EffectiveNP_Mixed2	
	FI_EFF_Eigen_B_1		JET_EffectiveNP_Mixed3	
	FI_EFF_Eigen_B_2		JET_EffectiveNP_Modelling1	
	FI_EFF_Eigen_C_0		JET_EffectiveNP_Modelling2	
	FI_EFF_Eigen_C_1		JET_EffectiveNP_Modelling3	
	FT_EFF_Eigen_C_2		JET_EffectiveNP_Modelling4	
	FT_EFF_Eigen_C_5		JET_EffectiveNP_Statistical1	
	FT_EFF_Eigen_Light_1		JET_EffectiveNP_Statistical2	
	FT_EFF_Eigen_Light_2		JET_EffectiveNP_Statistical3	
	FT_EFE_Eigen_Light_3		JET_EffectiveNP_Statistical4	
	ET_EEE extrapolation		JET_EffectiveNP_Statistical5	
	ET EEE extrapolation from charm		JET_EffectiveNP_Statistical6	
I	11_L11_extrapolation_noni_chann		JET_SingleParticle_HighPt	
			JE1_RelativeNonClosure_AFI	
			JET_BJES_Response	
			JE1_EtaIntercalibration_NonClosure_2018data	Later and the second se
			JET_JER_DataVSMC_MC16	Jet energy resolution (FullJer)
			JEI_JEK_DatavsMC_AFI	
			I JEI_JEK_EffectiveNP_1	
			JET_JEK_EffectiveNP_2	
			JET_JEK_EffectiveNP_5	
			JET_JEK_EffectiveNP_4	
			IET_IER_EffectiveNP_6	
			IET_IER_EffectiveND_7	
			IET_IER_EffectiveNP_8	
			IET_IER_EffectiveNP_9	
			IET_IER_EffectiveNP_10	
			JET JER EffectiveNP 11	
			JET JER EffectiveNP 12restTerm	
			JET JVT EFF	Jet vertex tagging
2023/3/10		Qiyu Sha gsha@cern.ch	JET FIVT EFF	Forward jet vertex tagging

Fit procedure

$\gamma \gamma + 1 l 0 \tau_h : m_{\gamma \gamma}$ distribution in different BDTG regions:

2023/3/10