

中國科學院為能物記酬完所 Institute of High Energy Physics Chinese Academy of Sciences March 24, 2023

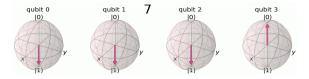
Quantum Fourier Transform

□ Quantum Fourier Transform (QFT) consist of:

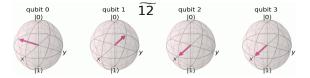
- A single-qubit Hadamard gate (H)
- A two-qubit controlled rotation CP

 $CP(heta) = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & e^{i heta} \end{bmatrix}$

2

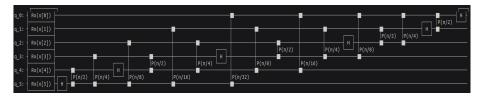

 $\theta=\pi/2^{k-1}$

Abdualazem

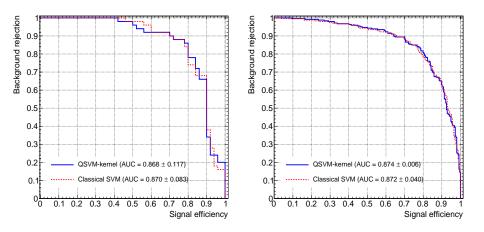

Counting in the Fourier basis on the Bloch Sphere

2.1 Counting in the Fourier basis:

In the computational basis, we store numbers in binary using the states $|0\rangle$ and $|1\rangle$:

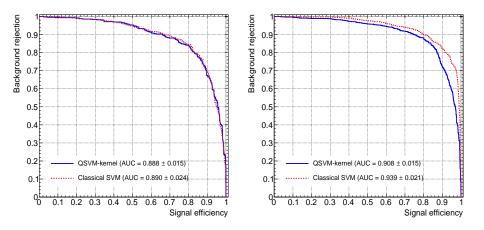


Note the frequency with which the different qubits change; the leftmost qubit flips with every increment in the number, the next with every 2 increments, the third with every 4 increments, and so on. In the Fourier basis, we store numbers using different rotations around the Zaxis:



The number we want to store dictates the angle at which each qubit is rotated around the 2-axis. In the state [$\dot{0}$], all qubits are in the state $|\dot{+}\rangle$. As seen in the example above, to encode the state $|\ddot{5}\rangle$ on 4 qubits, we rotated the leftmost qubit by $\frac{3}{2^n} = \frac{3}{16}$ full turns ($\frac{3}{16} \times 2\pi$ radians). The next qubit is turned double this ($\frac{10}{2^n} \times 2\pi$ radians) around 10/16 full turns), this angle is then houlded for the qubit fater, and so

Qiskit explanation


- \Box We add a additional rotation in front of each qubit $R_x(\vec{x}_i)/R_y(\vec{x}_i)$.
- \Box We should avoid the rotation around the *z*-axis since the Fourier basis rotate around it.
- Using a few qubits would work well with the QFT.
- $\hfill\square$ However, the problem is how to scale this with the n-qubit case?

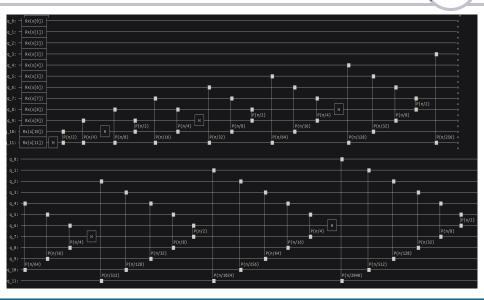
5

□ Using 6 qubits along with the QFT and an additional $R_x(\vec{x}_i)$ gate.

□ Testing a few events—200 (left) and 1000 (right) events.

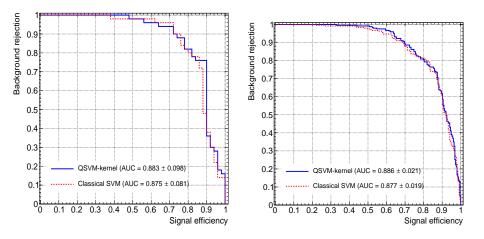
6

2000 (left) and 4000 (right) events with 6 qubits.


□ The right plot looks a bit strange as the QSVM gets more worst by adding more events.

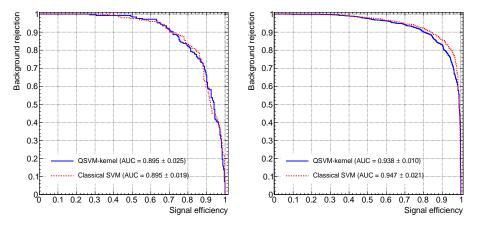
Abdualazem

Abdualazem |



Checking the scalability of QFT with 12 qubits

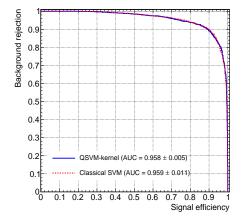
7


The implementation of QFT in ML Checking the scalability of QFT with 12 qubits

8

 \Box 200 (left) and 1000 (right) events with 12 qubits.

The implementation of QFT in ML Checking the scalability of QFT with 15 qubits



9

 \Box 1000 events with 15 qubits (left) and 4000 (left) with 12 qubits.

Abdualazem

The implementation of QFT in ML Checking the scalability of QFT with 15 qubits

10

 \Box 6000 events with 15 qubits.

- □ Encoded QFT gives results comparable to the classical SVM with 6 qubits.
- □ And it's very well scalable to up to 15 qubits.
- \Box There are a fewer parameters to optimise on such as $R_x(\vec{x_i})$ and the two-qubit controlled rotation gate (θ)