

Weekly

Fangyi

Institute of High Energy Physics Chinese Academy of Sciences

Working status

• Deep-learning study for CEPC calorimeter:

- Template preparation: single particle (e^- , π^-) with CEPC_v4 in CDR.
 - ECAL: Si-W, cell size $1*1 cm^2$, 30 layers.
 - HCAL: RPC, cell size $1*1 cm^2$, 40 layers, digital readout mode (E_{hit} is uniform).
 - Data structure: vectors in ROOT file, with (x, y, z, E, T, tag_{MCP} , tag_{PID}) for each hit.
 - tag_{PID} for particle ID, tag_{MCP} for clustering.

Working status

Data size (Nhit in each event)

• Single π^- in barrel region: ~200 for ECAL+HCAL.

• Next step:

- Investigate the data frame for DGCNN, PointNet and Transformer, try to implement the data to the network.
- <u>Report in CALICE</u> about the calorimeter clustering with GNN.

