## τ Mass and its branching ratios measurement at BESII

#### Xiaohu Mo

## **IHEP**, Beijing

2007 Joint BES-Belle-CLEO-Babar Workshop on Charm Physics November 26-27th, 2007, Beijing, China

### **Fundamental parameter**

# $$\begin{split} &\searrow M_e = 0.51099892 \pm 0.00000004 \quad (7.8 \times 10^{-8}) \\ &\searrow M_\mu = 105.658369 \pm 0.000009 \quad (8.5 \times 10^{-8}) \\ &\searrow M_\tau = 1776.99 \, {}^{+0.29}_{-0.26} \quad (1.5 \times 10^{-4}) \end{split}$$



Nov.,26-27th, 2007



$$LF = \prod_{i=1}^{n} P_{i}, \quad P_{i} = \frac{\mu_{i}^{N_{i}} e^{-\mu_{i}}}{N_{i}!}$$
$$\mu_{i}(m_{\tau}, s_{i}) = \mathcal{L}_{i} \cdot \left\{ \varepsilon \cdot \mathcal{B}_{f} \cdot \sigma_{obs}(m_{\tau}, s_{i}) + \sigma_{BG} \right\}$$
$$G\left(\sqrt{s}, \sqrt{s'}\right) = \frac{1}{\sqrt{2\pi}\Delta} \cdot \exp\left[-\frac{\left(\sqrt{s'} - \sqrt{s}\right)^{2}}{2\Delta^{2}}\right]$$

 $\sigma_B$  :M.B.Voloshin, PLB556(2003)153.

$$\sigma_{obs}\left(m_{\tau}, s_{i}\right) = \int_{0}^{\infty} \sigma_{r.c.}\left(m_{\tau}, s'\right) \cdot G\left(\sqrt{s}, \sqrt{s'}\right) d\sqrt{s'}$$
$$\sigma_{r.c.}\left(m_{\tau}, s\right) = \int_{0}^{1-\frac{4m_{\tau}^{2}}{s}} dx F(x) \frac{\sigma_{B}\left[m_{\tau}, s\left(1-x\right)\right]}{\left|1-\Pi\left[s\left(1-x\right)\right]\right|^{2}}$$

F(x): E.A.Kuraev, V.S.Fadin , Sov.J.Nucl.Phys. 41(1985)466;  $\Pi(s)$ : F.A. Berends et al. , Nucl. Phys. B57 (1973)381.

Nov.,26-27th, 2007

## T-mass measurement

Statistical optimization

 One-parameter fit
 Two-parameter fit
 Three-parameter fit

 Systematic study

## **Statistical optimization**

Neglecting all experiment uncertainties such as: Branching fraction:  $\mathcal{B}_{f} = 0.1736 \bullet 0.1784$ ;  $[\mathcal{B}_{f} = \mathcal{B}_{\tau \to \mu\nu\nu} \bullet \mathcal{B}_{\tau \to e\nu\nu}, PDG06]$ Luminosity *L*; Efficiency  $\varepsilon = 14.7\%$ ; Background  $\sigma_{BG} = 0$ .

 $\mu_i(m_{\tau}, s_i) = \mathcal{L}_i \cdot (\varepsilon \cdot \mathcal{B}_f \cdot \sigma_{obs}(m_{\tau}, s_i) + \sigma_{BG})$ 

Assume:  $M_{\tau}$  is known.

To find :

- 1. What's the optimal distribution of data taking point;
- 2. How many points are needed in scan experiment;
- **3.** How much luminosity is required for certain precision.





Evenly divided : 1, for E:  $E_0 + \delta E$ ,  $\delta E = (E_f - E_0)/n$ 2, for lum. :  $L = L_{tot}/n$ 

To eliminate statistical fluctuation, sampling many times (say, 500)

$$\overline{m}_{\tau}^{i} = \frac{1}{N_{\text{samp}}} \sum_{j=1}^{N_{\text{samp}}} m_{\tau j}^{i},$$

$$S_{m_{\tau}}^{2}(m_{\tau}^{i}) = \frac{1}{N_{\text{samp}} - 1} \sum_{j=1}^{N_{\text{samp}}} (m_{\tau j}^{i} - \overline{m}_{\tau}^{i})^{2}.$$







L=5 pb <sup>-1</sup> for each point

Scheme I: 2 points at region I + N<sub>pt</sub>(1—20) at region II Scheme II: Only N<sub>pt</sub>(1—20) at region II

The points within region I are more sensitive to fit uncertainty





E<sub>cm</sub>⊂ (3.551,3.595) GeV  $L_{tot} = 45 \text{ pb}^{-1}$  $N_{pt} = 1$ ; scan

 $E_{cm} = 3553.98 \text{ MeV}$  $Sm_{\tau} = 0.0956 MeV$ [near threshold ]  $E_{cm} = 3554.84 \text{ MeV}$  $Sm_{\tau} = 0.100 MeV$  $[max d\sigma/dE_{cm}]$ 





Nov.,26-27th, 2007

Mo Xiaohu

13





**BESIII Luminosity** :  $1 \times 10^{-33}$  cm  $^{-2}$  s  $^{-1}$  (50%); One day (86400 s) : 43.2 pb  $^{-1}$  (µe-tagged final state) Three days, eµ-tag, at BESIII  $\rightarrow$  Sm<sub> $\tau$ </sub> : ~ 0.1 MeV

 $M_{\tau} = 1776.99 \pm 0.1 \text{ MeV}$ 

## Systematic Uncertainty Study

#### **Summary:systematic (one-parameter case)**

| Term                        | δm <sub>τ</sub><br>(10-3 MeV) | δm <sub>τ</sub> / m <sub>τ</sub><br>(10 <sup>-6</sup> ) |
|-----------------------------|-------------------------------|---------------------------------------------------------|
| Luminosity (2%)             | 14                            | 7.9                                                     |
| Efficiency (2%)             | 14                            | 7.9                                                     |
| * Branching Fraction (0.5%) | 3.5                           | 2.0                                                     |
| Background (10%)            | 1.7                           | 1.0                                                     |
| * Energy spread (30%)       | 3.0                           | 1.7                                                     |
| * Theoretical accuracy      | 3.0                           | 1.7                                                     |
| * Energy scale              | 100                           | 56.3                                                    |
| Total                       | 102                           | 57.5                                                    |



Branching ratio measurement

 eµ final state
 ππ&KK final states
 Suggestion for BESIII data taking



## Result of eµ

|            | N-Gen | N-Select | N-norm             |
|------------|-------|----------|--------------------|
| ee         | 20k   | 82       | 42.12±4.66         |
| е <b>µ</b> | 20k   | 12173    | $12173 \pm 130.23$ |
| e π        | 20k   | 932      | 585.17 ± 19.74     |
| еК         | 20k   | 931      | $37.05 \pm 1.74$   |
| е <b>р</b> | 50k   | 669      | 393.06 ± 15.39     |



selection efficiency

$$arepsilon_{e\,\mu}$$
 = 60.9%  $R_{bg}$  = 8.0%

Nov.,26-27th, 2007



#### Study of $e\mu$ , $\pi\pi$ ,KK final states near $\tau$ threshold at BESIII

| $\tau^- \rightarrow e^- \chi \chi \tau^+ \rightarrow \mu^+ \chi \chi$ | Statistic error              | L (pb)               | Time (day) |
|-----------------------------------------------------------------------|------------------------------|----------------------|------------|
| @3.6GeV                                                               | 10-2                         | 196                  | 2.3        |
|                                                                       | 10 <sup>-3</sup> (PDG: 0.3%) | $1.96 \times 10^{4}$ | 227.3      |
| τ <sup>±</sup> →π <sup>±</sup> ν<br>@3.554GeV                         | Statistic error              | L (pb)               | Time (day) |
|                                                                       | 10-1                         | $1.96 \times 10^{2}$ | 2.27       |
|                                                                       | 10 <sup>-2</sup> (PDG: 0.6%) | $1.97 \times 10^{4}$ | 227.3      |
| τ <sup>±</sup> →Κ <sup>±</sup> ν;<br>@3.554GeV                        | Statistic error              | L (pb)               | Time (day) |
|                                                                       | 10-1                         | $4.8 \times 10^{4}$  | 551.8      |
|                                                                       | 10 <sup>-2</sup> (PDG: 3.3%) | $4.8 \times 10^{6}$  | 55176      |

#### (More detailed studies are in progress)

@3.



> Optimization study indicates at BESIII short period of time is enough to obtain high statistical precision for τ mass :

- optimal position is locate at large derivative of cross section near threshold ;
- **2** one point is enough, and 54 pb<sup>-1</sup> is sufficient for accuracy up to 0.1 MeV .

>New technique is to be adopted to decrease the uncertainty of beam energy measurement at BEPCII.

For τ-pair decay, one-year's data taking time is required to obtain reasonable precision at BESIII.

Nov.,26-27th, 2007

Mo Xiaohu Thanks a lot !



## **Statistical optimization**

Neglecting all experiment uncertainties Luminosity  $\mathcal{L}$ ; Efficiency  $\varepsilon = 14.7\%$ ; Branching fraction:  $\mathcal{B}_{f} = 0.1736 \cdot 0.1784$ ;  $[\mathcal{B}_{f} = \mathcal{B}_{\tau \to \mu\nu\nu} \cdot \mathcal{B}_{\tau \to e\nu\nu}, PDG04]$ Background  $\sigma_{BG} = 0$ .

Assume:  $M_{\tau}$  is known. To find:

- 1. What's the optimal distribution of data taking point;
- 2. How many points are needed in scan experiment;
- 3. How much luminosity is required for certain precision.



#### **Pseudomass method**

- ARGUS •
- **CLEO** •
- **OPAL** •
- Belle •
- **KEDR Threshold scan**
- BES





Nov.,26-27th, 2007

TABLE II. A chronological summary of the  $\tau^+\tau^-$  threshold scan data; W denotes the corrected c.m. energy,  $\Delta$  the spread in c.m. energy [12] [see Eq. (6)], and  $\mathcal{L}$  the integrated luminosity.

| Scan point | W/2     | Δ     | £           | N                       | S  |
|------------|---------|-------|-------------|-------------------------|----|
|            | (MeV)   | (MeV) | $(nb^{-1})$ | $(e\mu \text{ events})$ | ç  |
| 1          | 1784.19 | 1.34  | 245.8       | 2                       | 3  |
| 2          | 1780.99 | 1.33  | 248.9       | 1                       | Ö  |
| 3          | 1772.09 | 1.36  | 232.8       | 0                       | õ  |
| 4          | 1776.57 | 1.37  | 323.0       | 0                       | 8  |
| 5          | 1778.49 | 1.44  | 322.5       | 2                       | ğ  |
| 6          | 1775.95 | 1.43  | 296.9       | 0                       | Ö. |
| 7          | 1776.75 | 1.47  | 384.0       | 0                       |    |
| 8          | 1776.98 | 1.47  | 360.8       | 1                       |    |
| 9          | 1776.45 | 1.44  | 794.1       | 0                       |    |
| 10         | 1776.62 | 1.40  | 1109.1      | 1                       |    |
| 11         | 1799.51 | 1.44  | 499.7       | 5                       |    |
| 12         | 1789.55 | 1.43  | 250.0       | 2                       |    |
|            |         |       |             |                         |    |



$$\begin{split} M_{\tau} = & 1776.96 \stackrel{+}{_{-}0.18} \stackrel{+}{_{-}0.25} \stackrel{-}{_{0.21}} \stackrel{-}{_{-}0.17} \text{ MeV} \\ \delta M_{\tau} / M_{\tau} = & 1.7 \times 10^{-4} \end{split} \qquad \begin{array}{l} \textbf{BES results:} \\ \textbf{the stat. (0.18 \oplus 0.21)} \\ \textbf{is compatible with} \\ \textbf{the syst. (0.25 \oplus 0.17)} \\ \end{array} \end{split}$$

BES:PRD53(1996)20

#### Fix all other fit parameters except for $\mathbf{M}_{ au}$



**BESIII Luminosity** :  $1 \times 10^{-33}$  cm  $^{-2}$  s  $^{-1}$  (50%) One day (86400 s) : 43.2 pb  $^{-1}$  (µe-tagged final state) Two days, eµ-tag, at BESIII  $\rightarrow$  Sm<sub> $\tau$ </sub> : < 0.1 MeV

ee, eµ, eh, µµ, µh, hh (h: hadron, like  $\pi$ , K) N(ee, eµ, eh, µµ, µh, hh) > 5 \* N(eµ) Multi-channel-tag, one day, at BESIII  $\rightarrow$  Sm<sub> $\tau$ </sub> : < 0.05 MeV

Statistic uncertainty < 0.017 MeVone week, multi-channel-tag [One week, eµ-tag, Sm<sub> $\tau$ </sub> : < 0.025 MeV]

#### BES:PRD53(1995)20

$$\sigma_{obs}(m_{\tau}, s_{i}) = \int_{0}^{\infty} d\sqrt{s'} G(\sqrt{s}, \sqrt{s'}) \int_{0}^{1 - \frac{4m_{\tau}^{2}}{s}} dx F(x) \frac{\sigma_{B}[m_{\tau}, s(1 - x)]}{\left|1 - \Pi[s(1 - x)]\right|^{2}}$$

$$\sigma_B(m_\tau,s)$$

#### Accuracy Effect of Theoretical Formula

$$G\left(\sqrt{s}, \sqrt{s'}\right) = \frac{1}{\sqrt{2\pi}\Delta} \cdot \exp\left[-\frac{\left(\sqrt{s'} - \sqrt{s}\right)^2}{2\Delta^2}\right]$$

 $\mu_i(m_{\tau}, s_i) = \mathcal{L}_i \cdot \left[ \varepsilon \cdot \mathcal{B}_f \cdot \sigma_{obs}(m_{\tau}, s_i) + \sigma_{RG} \right]$ 

Energy spread, variation form

 $s = (E_{cm})^2$ 

#### Energy scale, variation form

## Study of systematic uncertainty

- 1. Theoretical accuracy
- 2. Energy spread  $\Delta E$
- 3. Energy scale
- 4. Luminosity
- 5. Efficiency
- 6. Background analysis

$$E_{cm} = 3554 \text{ MeV}$$
  
 $L_{tot} = 45 \text{ pb}^{-1}$   
 $m_{\tau} = 1776.99 \text{ MeV}$ 

Accuracy Effect of Theoretical Formula

 $σ_{old}$  [BES, PRD53(1995)20] fit results:  $m_{\tau} = 1777.028 \text{ MeV}, \quad \Delta m_{\tau} = 0.105 \text{ MeV}$   $σ_{new}$  [M.B.Voloshin, PLB556(2003)153] fit results:  $m_{\tau} = 1777.031 \text{ MeV}, \quad \Delta m_{\tau} = 0.094 \text{ MeV}$  $\delta m_{\tau} = | m_{\tau} (new) - m_{\tau} (old) | < 3 \times 10^{-3} \text{ MeV}$ 

## Uncertainty due to accuracy of cross section at the level of $3 \times 10^{-3}$ MeV

#### High accurate theoretical cross section





#### **Fit Results**

### New formula & Re-scale E $m_{\tau} = 1776.98^{+0.44}_{-0.51} \text{ MeV}$ $\varepsilon = 14.2^{+4.7}_{-3.9} \%$

**Old formula & Re-scale E** 

 $m_{\tau} = 1776.97^{+0.43}_{-0.51} \text{MeV}$  $\varepsilon = 14.3^{+4.7}_{-3.9} \%$ 

#### **Old formula & fore-scale E**

$$m_{\tau} = 1776.94^{+0.43}_{-0.51}$$
 MeV

Fore result:PRL69(1992)3021

$$m_{\tau} = 1776.9^{+0.4}_{-0.5} \operatorname{MeV}_{35}$$



E  $(E_{J/\psi})$  $\Delta - \Delta_{J/\psi}$ E|E| $(E_{J/\psi})$  $\Delta_{J/\psi}$  $\Delta \propto f(E)$ ;  $f(E)=a E+b E^2+c E^3$ a=1; b=0; c=0; a=0; b=1; c=0; a=0; b=0; c=1; a=1; b=1; c=1;  $\delta m_{\tau} < 1.5 \times 10^{-3} \, MeV$  $\Delta \rightarrow 3 \Delta$  $\delta m_{\tau} < 6 \times 10^{-3} \text{ MeV}$ 

Nov.,26-27th, 2007



W=E+
$$\delta$$
 (E=M+ $\delta$ );  $\delta \sim 10^{-4}$ 

$$\frac{E - M_{J/\psi}}{M_{\psi'} - M_{J/\psi}} = \frac{\delta - \delta_{J/\psi}}{\delta_{\psi'} - \delta_{J/\psi}}$$

 $\delta \propto f(E)$ ; f(E)=a E+b E<sup>2</sup>+c E<sup>3</sup> a=1; b=0; c=0; a=0; b=1; c=0; a=0; b=0; c=1; a=1; b=1; c=1;

 $\delta m_{\tau} < 8 \times 10^{-3} \text{ MeV}$ 

$$\mu_i(m_{\tau}, s_i) = \mathcal{L}_i \cdot \left( \varepsilon \cdot \mathcal{B}_f \cdot \sigma_{obs}(m_{\tau}, s_i) + \sigma_{BG} \right)$$

Luminosity  $\mathcal{L}: 2\% \Rightarrow \delta m_{\tau} < 1.4 \times 10^{-2} \text{ MeV}$ Efficiency  $\varepsilon: 2\% \Rightarrow \delta m_{\tau} < 1.4 \times 10^{-2} \text{ MeV}$ Branching fraction:  $\mathcal{B}_{f}: 0.5\% \Rightarrow \delta m_{\tau} < 3.5 \times 10^{-3} \text{ MeV}$ [ $\mathcal{B}_{f} = \mathcal{B}_{\tau \to \mu\nu} \circ \mathcal{B}_{\tau \to e\nu}$ , PDG04] Background  $\sigma_{BG}: 10\% \Rightarrow \delta m_{\tau} < 1.7 \times 10^{-3} \text{ MeV}$ [ $\sigma_{BG} = 0.024 \text{ pb}^{-1}: \text{PLR68(1992)3021}$ ] Total:  $\delta m_{\tau} < 2.02 \times 10^{-2} \text{ MeV}$ 

## Absolute calibration of energy scale

## **δE** transfer to the final fit results directly and linearly

Depolarization method Compton backscattering method KEDR Collaboration Novosibirsk



KEDR Collab. , depolarization method: Single energy scale at level of 0.8 keV, or 10<sup>-4</sup> MeV Total systematic error at level of 9 keV, or 10<sup>-3</sup> MeV

Nov.,26-27th, 2007







**BESIII Luminosity** :  $1 \times 10^{-33}$  cm  $^{-2}$  s  $^{-1}$  (50%); One day (86400 s) : 43.2 pb  $^{-1}$  (µe-tagged final state) Three days, eµ-tag, at BESIII  $\rightarrow$  Sm<sub> $\tau$ </sub> : ~ 0.1 MeV

 $M_{\tau} = 1776.99 \pm 0.1 \pm 0.09 \text{ MeV}$ 

e / μπK dE/dX dE/dX ττ**→e**μ ττ**→θė** ττ**→e**π 1.8 ττ→μμ ττ**→e**K ττ→ππ 1.8 ττ→ΚΚ 1.6 1.6 1.4 1.4 1.2 1.2 0.8 0.8 0.2 0.6 0.8 0.2 0.4 0.6 0.8 1.2 0.4 0 1.2 0 E/p E/P

#### 3\*dE/dX+2\*(E/P)>5.6

@E<sub>cm</sub>=3.6 GeV; EvtGen