Study of Charmonium-(like) states via ISR at Belle

Changzheng YUAN (苑长征) (for the Belle collaboration)

IHEP, Beijing

Joint BES-BELLE-CLEO-BABAR workshop on Charm Physics

Nov. 26-27, 2007, Beijing

Outline

- Introduction
- Part I: the Y states via $e^+e^- \rightarrow h^+h^- + charmonium$
 - $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
 - $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$
 - $e^+e^- \rightarrow K^+K^- J/\psi$
- Part II: the ψ states via e⁺e⁻ \rightarrow charmed meson pair
 - $e^+e^- \rightarrow DD$
 - $e^+e^- \rightarrow DD^*$
 - $e^+e^- \rightarrow D^*D^*$
 - $e^+e^- \rightarrow DD_2(2460)$
- Summary

The KEKB Collider

R values/ ψ states/Y states

The Y states should also appear in this plot (between 4.0 and 4.7 GeV!)

Part I

Y states via $e^+e^- \rightarrow h^+h^- + charmonium$

PRL95, 142001 (2005)

 $\pi^+\pi^-J/\psi$ Mass

>8 σ significance structure called Y(4260) M(J/ $\psi\pi\pi$) of ψ (2S) with J/ ψ constraint

BaBar:

232 fb⁻¹

with J/ψ constraint is well described by Cauchy shape funct.

• fit with Rel-BW \times PhaseSpace \otimes Reso + 2nd polynomial (BKGD)

• fit-probability (χ^2) is about 2.6%, N_{events} = 125±23

$$m = 4259 \pm 8^{+2}_{-6} \text{ MeV}$$

$$\Gamma = 88 \pm 23^{+6}_{-4} \text{ MeV}$$

$$\Gamma \left(Y \to e^+ e^-\right) \cdot B\left(Y \to \pi^+ \pi^- J / \psi\right) = 5.5 \pm 1.0^{+0.8}_{-0.7} \text{ eV}$$

 $e^+e^- \rightarrow \psi$ ' as reference signal

Nobs	Lum (/fb)	Cross section (pb)
15,444	547.8	$15.42 \pm 0.12 \pm 0.89$

Good agreement between data and MC simulation. → (ISR events & background low & MC reliable)

Belle: C.Z.Y & C.P. Shen et al., PRL99, 182004 (2007)

- Background subtracted
 M(J/ψππ) corrected for
 efficiency and
 differential luminosity
- $M_{\pi\pi}$ spectra in different \sqrt{s} regions:
 - $\sqrt{s} = 3.8 4.2$ & 4.4-4.6 GeV in agreement with 3-body phase space
 - Y(4260) region
 √s = 3.8 -4.15 GeV: two clusters at low and high masses (scalars?)

Belle: C.Z.Y & C.P. Shen et al., PRL99, 182004 (2007)

Fit with function Babar used. Similar results are got.

- Non resonant J/ψππ ?
- Re-scattering ee $\rightarrow D^{(*)}D^{(*)} \rightarrow J/\psi\pi\pi$?
 - Another broad state ?
 - Check the latter hypothesis and influence of interference of Y(4260) with non-Y contribution:
 - Fit with 2 coherent BWs
 - Two-fold ambiguity in amplitude (constructive-destructive interference) + model uncertainty due to ψ' tail

Belle: C.Z.Y & C.P. Shen et al., PRL99, 182004 (2007)

2-BW fit with interference better describes the data: Y(4260) parameters are different (especially peak cross section – large uncertainty)

$e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ via ISR at BaBar

BaBar: B. Aubert et al., PRL98, 212001 (2007)

- Polar angle distribution agrees well with ISR expectation
- Combinatorial background estimated by
 _ ψ' sidebands
- Backgrounds from real $(\psi'\pi\pi)_{non ISR}$ or $\psi' X_{non \pi\pi}$ are negligibly small

Two significant clusters: One is near BaBar reported enhancement PRL98, 212001 (2007) + NEW at M~ 4.7 GeV

Belle: X.L. Wang & C.Z.Y et al., PRL99, 142002 (2007)

 $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ via ISR

Belle: X.L. Wang & C.Z.Y et al., PRL99, 142002 (2007)

$e^+e^- \rightarrow K^+K^-J/\psi$ via ISR

- CLEO-c observed 3 K⁺K⁻J/ ψ at Ecm=4.26 GeV and assumed from Y(4260)
- Belle : first observation of $e^+e^- \rightarrow J/\psi K^+K^-$ and evidence for $e^+e^- \rightarrow J/\psi K_S K_S$

Belle: C.Z.Y & C.P. Shen et al., arXive:0709.2565

 $e^+e^- \rightarrow K^+K^-J/\psi$ via ISR

KK invariant mass tends to be large!

Belle: C.Z.Y & C.P. Shen et al., arXive:0709.2565

 $e^+e^- \rightarrow K^+K^-J/\psi$ via ISR

Belle: C.Z.Y & C.P. Shen et al., arXive:0709.2565

 $\pi^+\pi^-J/\psi$, $\pi^+\pi^-\psi(2S)$, and K⁺K⁻J/ ψ

BELLE

Part II

e⁺e⁻→charmed meson pair

Belle: G. Pakhlova et al., PRL98, 092001 (2007)

Exclusive $e^+e^- \rightarrow D^{(*)}D^{(*)}$ cross-sections

- $ee \rightarrow D^*D^{(*)}$ with partial reconstruction: $D^{(*)} + \gamma_{ISR} + \pi_{slow}$ (from unreconstructed D^*)
- Use recoil mass difference to suppress bgs
- Use kinematic constraint

 $M_{recoil}(D^* \gamma_{ISR}) \rightarrow M_D$ to improve resolution

Belle: G. Pakhlova et al., PRL98, 092001 (2007)

Exclusive $e^+e^- \rightarrow D^{(*)}D^{(*)}$ cross-sections

- **D*****D** : hint, but not significant
- **D*****D***: clear dip (similar to inclusive R)

$e^+e^- \rightarrow DD$ at $\sqrt{s} \sim 3.7 - 5$ GeV via ISR

Belle: G. Pakhlova et al., arXiv:0708.0082

$e^+e^- \rightarrow DD$ at $\sqrt{s} \sim 3.7 - 5$ GeV via ISR

M(DD) is in a qualitative agreement with BaBar

Belle: G. Pakhlova et al., arXiv:0708.0082

Belle: G. Pakhlova et al., arXiv:0708.0082

 $e^+e^- \rightarrow D^0D^-\pi^+$ at $\sqrt{s} \sim 4-5$ GeV via ISR

Resonant structure in ψ (4415) \rightarrow DD π

σ (e⁺e⁻→ψ(4415))×Br(ψ(4415)→DD^{*}₂(2460))×Br(D^{*}₂(2460) →Dπ)=(0.74±0.17±0.07)nb

Br(ψ(4415) → D(Dπ)_{non D2(2460)})/Br(ψ(4415) →DD^{*}₂(2460))<0.22

Belle: G. Pakhlova et al., arXiv:0708.3313

See also P. Pakhlov's talk

The decays of the ψ states?

BELLE

- > Y and ψ are studied via ISR at $\sqrt{s}=10.58$ GeV at Belle
- Observation of Y(4008), Y(4260), Y(4360), Y(4660)
- > Observation of $e^+e^- \rightarrow J/\psi K^+K^- \& J/\psi K_S K_S$
- > Measurement of $e^+e^- \rightarrow DD$, DD^* , D^*D^* , $DD\pi$
- Nature of the Y states (charmonium, hybrid, ...)?
- Resonance parameters of the excited ψ states?
- Y(xxxx)=ψ(xxxx)? It is time for us to think more about them with all these Belle-BES-CLEOc-BaBar data!

- > Y and ψ are studied via ISR at $\sqrt{s}=10.58$ GeV at Belle
- Observation of Y(4008), Y(4260), Y(4360), Y(4660)
- > Observation of $e^+e^- \rightarrow J/\psi K^+K^- \& J/\psi K_S K_S$
- > Measurement of $e^+e^- \rightarrow DD$, DD^* , D^*D^* , $DD\pi$
- Nature of the Y states (charmonium, hybrid, ...)?
- Resonance parameters of the excited ψ states?
- Y(xxxx)=ψ(xxxx)? It is time for us to think more about them with all these Belle-BES-CLEOc-BaBar data!

Thanks a lot!

More information

Y(4260) in other experiments

Y(4260) in other experiments

Wilks' theorem

If a population is described by the probability density $f(x; \lambda_1, \lambda_2, ..., \lambda_n)$ that satisfies reasonable requirements of continuity, and if r of the pparameters of the null hypothesis $H_0(\lambda_1 = \lambda_{10}, \lambda_2 = \lambda_{20}, ..., \lambda_r = \lambda_{r0}), r \leq p,$ are fixed then the statistic $-2\ln T$ (T is the likelihood ratio) follows a χ^2 -distribution with p-r degrees of freedom for very large samples, i.e., for $N \rightarrow \infty$. For the case of a simple null hypothesis, i.e., r = p, then the number of degrees of freedom is equal to one. S.S. Wilks, the Annuals of Mathematical Statistics Vol. 9, 60-62 (1938).

