

2007 Joint BES-Belle-CLEO-Babar Workshop on Charm Physics

Beijing, November 26-27, 2007

On the structure of X(3872)

and Z(4430)

CE MENG

Institute of Theoretical Physics, Peking University

mengce75@pku.edu.cn

Home Page		
Title Page		
•		
Page 1 of 24		
Go Back		
Full Screen		
Close		
Quit		

Outline

Experimental Background

X(3872): Theory

- * Before 2007
- \star X(3872) as a charmonium state
- * Coupled-channel effects
- \star X(3872) as a virtual state
- ***** Summary

Z(4430): Theory

- \star What we have in the market by now
- \star Decays of Z(4430) as a resonance
- ***** Summary

Home Page		
Title	Page	
••	••	
•	►	
Page	Page 2 of 24	
Go Back		
Full Screen		
Close		
Quit		

1. Experimental Background X(3872)

\Diamond Basic information

• Close to the threshold of $D^0 \overline{D}^{*0}$:

 $m_X = (3871.2 \pm 0.5) \text{ MeV} \quad [M(D^0 \bar{D}^{*0}) = 3871.81 \pm 0.36 \text{ MeV}]$

- Narrow: $\Gamma_X < 2.3 \text{ MeV}$
- Quantum number: $J^{PC} = 1^{++}(2^{-+}?)$

\diamondsuit Decay modes

 $\mathcal{B}(B^{\pm} \to K^{\pm}X) \times \mathcal{B}(X \to \rho(\pi^{+}\pi^{-})J/\psi) = (1.14 \pm 0.20) \times 10^{-5}$ $R_{\rho/\gamma} = \frac{\Gamma_{\psi\rho}}{\Gamma_{\psi\gamma}} = 4-7$ $R_{\rho/\omega} = \frac{\Gamma_{\psi\rho}}{\Gamma_{\psi\omega}} = 1.0 \pm 0.5$ $-\omega \to \pi^{+}\pi^{-}\pi^{0} \text{ for } m_{3\pi} > 0.75 \text{ MeV [Belle:hep-ex/0505037]}$ $- \text{ Not confirmed by Babar for } m_{3\pi} > 0.7695 \text{ MeV [Babar: arXiv:0711.2047]}$

- $R_{\rho/\omega} \simeq 1$ shows that there is large isospin violation in decays of X.

Home Page	
Title Page	
44 >>	
◀	
Page <mark>3</mark> of 24	
Go Back	
Full Screen	
Close	
Quit	

X(3872)

\Diamond Production

• B-production

 $\mathcal{B}^{+} = \mathcal{B}(B^{+} \to X(3872)K^{+}) < 3.2 \times 10^{-4} \text{ Babar: PRL 96(2006) 052002}$ $R_{n/c} = \frac{\mathcal{B}(B^{0} \to X(3872)K^{0})}{\mathcal{B}(B^{+} \to X(3872)K^{+})} = 0.50 \pm 0.30 \pm 0.05 \text{ Babar: PRD 73(2006) 011101}$ $R_{n/c} = 0.94 \pm 0.24 \pm 0.10 \qquad \text{K. Trabelsi [Belle Collaboration], This Workshop}$

• Production at hadron collider

– Comparison of event-yield fractions for X and ψ' in the following regions:

a. $p_T > 15 \text{ GeV}$ b. |y| < 1c. $\cos(\theta_{\pi}) < 0.4$ d. dl < 0.01e. isolation = 1 f. $\cos(\theta_{\mu}) < 0.4$

2. X(3872): **Theory**

2.1. Before 2007

- Highlight
 - Closeness to the threshold: $m_X M(D^0D^{*0}) = -0.6 \pm 0.6$ MeV
 - Isospin violation: $R_{
 ho/\omega} \sim 1$
 - Small width & Large production rate
 - X(3872) v.s. X(3875)
- Molecule model
 - Mass, J^{PC} , $R_{\rho/\omega}$,
 - B-production: $\mathcal{B} < 1 \times 10^{-4}$, $R_{n/c} < 0.1$
 - **– Decay:** $R_{\rho/DD\pi} > 10$
- Charmonium model: χ'_{c1}
 - Large production rate
 - mass: Potential models, Lattice, Coupled channel effects
 - Decays: Isospin violation?
- Other interpretations: 1^{++} cusp, hybrid charmonium, tetraquark state...

Home	e Page	
Title	Page	
••	>>	
•	►	
Page	7 of <mark>24</mark>	
Go	Go Back	
Full S	Screen	
Close		
Quit		

2.2. X(3872) as a charmonium state χ'_{c1}

♦ B-Production (C.M., Y.J. Gao and K.T. Chao, hep-ph/0506222)

	Experimental Data	Charmonium Model	Molecule Models
$10^4 \times Br^+$	1.0-3.2	3-6	$0.07 - 1.0^d$
	$0.5 \pm 0.3 \pm 0.05^a$	0.7-0.9	$< 0.1^{d}$
$R_{n/c}$	1.7 ± 0.9^b		$0.06-0.29^{e}$
•	$0.94 \pm 0.24 \pm 0.10^c$		

a. BaBar, using $X \rightarrow J/\psi \pi^+\pi^-$, PRD 73 011101

b. Belle, using $X \rightarrow DD\pi$, PRL 97 162002

c. K. Trabelsi [Belle Collaboration], using $X \to J/\psi \pi^+\pi^-$, This Workshop

d. E. Braaten and M. Kusunoki, PRD 71 074005

e. E.S. Swanson, Phys. Rept. 429 243

• As a by-product:
$$\mathcal{B}(X \to J/\psi \pi^+ \pi^-) = (2-4)\%$$

Ноте	Home Page		
Title	Page		
••	••		
•	•		
Page	Page 8 of 24		
Gol	Go Back		
	Eull Saraan		
Close			
Quit			

\diamond Large- P_T Production at Tevatron

- Relativistic expansion of Fock state
 - $$\begin{split} |\psi\rangle &= \mathcal{O}(1) |c\bar{c}({}^{3}S_{1})\rangle^{\underline{1}} + \mathcal{O}(v) |c\bar{c}({}^{3}P_{J})\rangle^{\underline{8}} + \mathcal{O}(v^{2}) |c\bar{c}({}^{3}S_{1})\rangle^{\underline{8}} + \dots \\ \sigma(P_{T}) &\propto P_{T}^{-8} \qquad P_{T}^{-6} \qquad P_{T}^{-4} \\ |\chi_{cJ}\rangle &= \mathcal{O}(1) |c\bar{c}({}^{3}P_{J})\rangle^{\underline{1}} + \mathcal{O}(v) |c\bar{c}({}^{3}S_{1})\rangle^{\underline{8}} + \dots \\ \sigma(P_{T}) &\propto P_{T}^{-6} \qquad P_{T}^{-4} \end{split}$$
- The large P_T production rate of ψ' and χ'_{c1} are both mainly from the matrix elements of operator $\mathcal{O}^{\underline{8}}({}^{3}S_{1})$, so that their kinematical distributions should be similar, as we have seen.
- Provided $\langle \mathcal{O}^{\underline{8}}({}^{3}S_{1}) \rangle^{\psi'} \approx \langle \mathcal{O}^{\underline{8}}({}^{3}S_{1}) \rangle^{\chi'_{c1}}$, the production rates will be equal. That can be used to deduce

$$\mathcal{B}(X \to J/\psi \pi \pi) \approx (4-6)\%$$

\diamond Decays of X(3872) as charmonium (C.M. and K.T. Chao, PRD 75 114002)

- $R_{\rho/\omega} \sim 1$ is consistent with experimental data very well.
 - The large isospin violation is due to both the difference between $th_n = m_{D^0} + m_{D^{*0}}$ and $th_c = m_{D^+} + m_{D^{*-}}$ and the large difference between the phase spaces of $J/\psi\rho$ and $J/\psi\omega$.(M. Suzuki, PRD 72 114003)
- The prediction on $R_{\rho/DD\pi}$ is roughly consistent with experimental data when $m_X < th_n$, but about two order smaller when $m_X > th_n$.
- Experimental data favor charmonium model if $m_X < th_n$.

2.3. Coupled-channel effects

([1] Yu.S. Kalashnikova, PRD 72 034010; [2] B.Q. Li and K.T. Chao, in preparation)

- Summary of Ref. [2]:
 - The physical state with $J^{PC} = 1^{++}$ has a mass solution near the threshold within 10 MeV.
 - The mass spliting between 1^{++} state and 2^{++} state is about 60 MeV, which is consistent with the measurement of $m_{Z(3930)}$ if the Z(3930)state can be identified with χ'_{c2} .
 - In the 1⁺⁺ physical state, the probability of bare χ'_{c1} state Z = (20-70)%, which is very sensitive to the exact value of mass.
- The influences on our naive charmonium model:
 - The predictions on the production rates and the partial widths should scale as Z.
 - The coupling constant g_{XDD^*} should scale as \sqrt{Z} .
 - The ratios $R_{\rho/\omega}$ and $R_{\rho/DD\pi}$ are insensitive to Z.
 - No evident contradictions between the coupled-channel improved charmonium model (CCICM) and the experimental data if Z > 30%.

Home Page	
Title Page	
•• ••	
Page 11 of 24	
Go Back	
Full Screen	
Close	
Quit	

2.4. X(3872) as a virtual state [C. Hanhart et al., PRD 76 034007]

 \Diamond Fit by a virtual state

$$E = m_X - th_n$$

Scattering length: $a \approx -4$ fm

$$R_{\rho/DD\pi} = 0.1$$

Ноте	Home Page	
Title	Title Page	
••	••	
•	Þ	
Page	Page 12 of 24	
Go	Go Back	
Full S	Full Screen	
Cl	Close	
G	Quit	

\diamondsuit Fit by a molecule state

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qu

2.5. Summary of X(3872)

• Summary:

- X(3872) behaves like a charmonium state χ'_{c1} in production.
- Provided X(3872) is a charmonium state, the isospin violation in its decay can be accounted for by the interferences between $D^0 \overline{D^{*0}}$ and $D^{\pm} D^{*\mp}$ intermediate states.
- The line shapes of X(3872) and X(3875) can be roughly consistent with each other if X(3872) is a virtual state in $D^0 \overline{D^{*0}}$ channel.
- X(3872) is mostly like a state induced by the coupled-channel effects between bare χ'_{c1} and $D\bar{D}^*$ channels dynamically. It is produced mainly through its short-sistance $c\bar{c}$ component, and behaves as a virtual state in long distance (> m_{π}^{-1}).
- Work needs to be done:
 - To replace the Flatte fit by the CCICM one.
 - To improve our calculations by considering the long-distant behaviors of X(3872).
 - To find $X \to \psi' \gamma$ for experimental physicists.

 $\Gamma(X \to \psi' \gamma) = (50\text{-}80)Z$ KeV, for CCICM $\Gamma(X \to \psi' \gamma) \approx 0.03$ KeV, for molecule model (E.S. Swanson, PLB 598 189)

Home	Home Page	
Title	Page	
44	••	
•	►	
Page 1	Page 14 of 24	
Go I	Go Back	
Full S	Full Screen	
Close		
Quit		

3. $Z^+(4430)$: **Theory**

3.1. What we have in market by now

- S-wave threshold effect of $DD_1(2420)$: J.L. Rosner, 0708.3496
- S-wave threshold cusp effect of $DD_1(2420)$: D.V. Bugg, 0709.1254
- Tetraquark state: L. Maiani et al., 0708.3997; S.S. Gershtein, 0709.2058
 - First radial excitations of 1^+ state with flavor $[cu][c\bar{c}d]$.
 - Two-body decay modes should be dominant: $DD^*, D^*D^*, \psi^{(\prime)}\pi, \psi^{(\prime)}\rho...$
 - Bottom partner $Z_{b\bar{b}}$ with mass about 10.7 GeV: K.M. Cheung, 0709.1312
- Baryonium: C.F. Qiao, 0709.4066
 - Belong to the series of $Y(4260), Y(4361), Z^+(4430), Y(4664)...$

Ноте	Home Page	
Title	Page	
44	••	
•	►	
Page 1	Page 15 of 24	
Go	Go Back	
Full S	Full Screen	
Cla	Close	
Quit		

- Resonance of $\bar{D^*}D_1(2420)(\bar{D^*}D'_1(2430))$: CM and K.T. Chao, 0708.4222
 - Formed by some attractive interactions (say, π -exchange) between its components
 - Molecule or virtual state, depending on the strength of the attractive force.
 - S-wave coupling to $\bar{D^*}D_1(\bar{D^*}D_1')$: $J^P(Z) = 0^-$ or 1^-
 - Should be in an isospin-triplet: $Z^+ \approx \frac{1}{\sqrt{2}} (D^{*+} D_1^{(\prime)0} D^{*0} D_1^{(\prime)+})$
 - Dominant decay mode: $Z \rightarrow D^*D^*\pi$ predicted
 - Dominant production mechanism: $B \to D^* D_s^{(*)} \to ZK$ to be checked
 - * 0⁻ molecule in QCD sum rules: $m_Z = (4.40 \pm 0.10)$ GeV S.H. Lee et al., 0710.1029
 - * 0⁻ molecule in EFT: $m_{Z_{b\bar{b}}} = 11.05 \text{ GeV G.J. Ding}, 0711.1485$
 - * Nonet partners and their b-production: Y. Li et al., 0711.0497
 - * One-pion exchange between $D^*D_1^{(\prime)}$: NOT strong enough to form a molecule X. Liu et al., 0711.0494

Home	Home Page	
Title	Title Page	
••	••	
	Þ	
Page	Page 16 of 24	
Go	Go Back	
Full S	Full Screen	
Cl	Close	
Q	Quit	

3.2. Decays of $Z^+(4430)$ as a resonance (C.M. and K.T. Chao, arXiv:0708.4222[hep-ph])

 $\diamondsuit Z \to D^*D^*\pi$

$$\begin{split} &\Gamma(Z(0^-) \to D_1 D^* \to D^* D^* \pi) = 25 \text{ MeV} \\ &\Gamma(Z(0^-) \to D'_1 D^* \to D^* D^* \pi) = 37 \text{ MeV} \\ &\Gamma(Z(1^-) \to D_1 D^* \to D^* D^* \pi) = 32 \text{ MeV} \\ &\Gamma(Z(1^-) \to D'_1 D^* \to D^* D^* \pi) = 46 \text{ MeV} \end{split}$$

$$g_{ZD_{1}^{(\prime)}D^{*}}^{0} = 5 \text{ GeV}$$

$$g_{ZD_{1}^{(\prime)}D^{*}}^{1} = 1.5$$

$$g_{ZD_{1}^{(\prime)}D^{*}}^{0} / m_{D_{1}} \sim g_{ZD_{1}^{(\prime)}D^{*}}^{1} \ll g_{\psi DD} \approx 8$$

Home Page	
Title Page	
•• ••	
Page 17 of 24	
Go Back	
Full Screen	
Close	
Quit	

$\diamondsuit Z^+ \to J/\psi(\psi')\pi^+$ • Diagrams for $Z^+ \to D^{*+}\bar{D_1^0} + \bar{D^{*0}}D_1^+ \to J/\psi(\psi')\pi^+$

(d)

• Form factor suppressions:

- For the $DD\psi^{(\prime)}$ and $DD\pi$ vertexes:
 - $\mathcal{F}(m_i, q^2) = \left(\frac{\Lambda^2 m_i^2}{\Lambda^2 q^2}\right)^n$
 - * They favor $\psi'\pi$ over $J/\psi\pi$
 - * We choose $\Lambda = 660$ MeV and $n \epsilon (1, 2)$
- For the *ZDD* vertex:
 - $\mathbf{Abs}_i(s) \to \mathbf{Abs}_i(s) e^{-\beta |\vec{p}_2|^2}$
 - * We choose $\beta \epsilon (0.4, 1.0)$ GeV⁻² for ZDD system.

(c)

 \diamond Numerical results:

 $\heartsuit Z^+ \to J/\psi(\psi')\pi^+$

- The re-scattering effects of $D^*D'_1$ are small due to the large width of D'_1
- The contributions arising from diagrams (a) and (b) are dominant.

• Provided
$$r = g_{\psi'DD}/g_{\psi DD} = 2 \left(\frac{g_{\psi(3770)DD}}{g_{\psi DD}} \approx 1.7 \right)$$

$(n, \beta \times \text{GeV}^2)$	(1.0,	1.0)	(1.5,	0.6)	(2.0,	0.4)
$J^P(Z)$	0-	1-	0-	1-	0-	1-
$\Gamma_{\psi\pi^+}(\text{MeV})$	5.3	10.6	1.5	3.2	0.42	0.84
$\Gamma_{\psi'\pi^+}({ m MeV})$	3.7	13.9	2.5	8.7	1.5	4.4

– The predictions favor 1⁻: $\Gamma_{\psi'\pi^+} = 4.4$ MeV, $R_{\psi'/\psi} \approx 5.2$

3.3. Summary for $Z^+(4430)$

- Summary:
 - Z is most like a resonance of D^*D_1 in isospin-triplet.
 - The numerical results favor $J^P = 1^-$, but can not rule out 0^- .
 - $R_{\psi'/\psi} \approx 1.4r^2$ with $\operatorname{Br}(Z^+ \to \psi' \pi^+) = 0.04r^2$.
 - Dominant decay mode should be $Z \to D^* D^* \pi$
 - Can decay to $\psi(3770)\pi$.

Experimental...

X(3872): *Theory Z*⁺(4430): *Theory*

Ноте	Home Page		
Title	Title Page		
44	••		
•	►		
Page 2	Page 20 of 24		
Go	Go Back		
Full S	Full Screen		
Cl	Close		
Q	Quit		

Experimental... X(3872): *Theory Z*⁺(4430): *Theory*

Home Page

Title Page

Page 21 of 24

Go Back

Full Screen

Close

Quit

••

◀

▶

Thank You!

●First ●Prev ●Next ●Last ●Go Back ●Full Screen ●Close ●Qui

Back Up

- $\heartsuit X \to J/\psi \rho(\omega)$
 - Effective Lagrangian: $\mathcal{L}_X = g_X X^{\mu} D_{\mu}^{*\dagger} D + h.c.$
 - Diagram for the re-scattering *X*(3872)
 - Imaginary part of the amplitude

 $\mathbf{Abs}_n = \frac{|\vec{p}_1|}{32\pi^2 m_X} \int d\Omega \mathcal{A}(X \to D^0 \bar{D}^{*0}) \mathcal{A}(D^0 \bar{D}^{*0} \to J/\psi \rho(\omega))$

Abs is strongly suppressed by the tiny phase space factor.(X. Liu et al., PLB 645 185)

 D^0

 \bar{D}^{*0}

 \bar{D}^0

 $\rho(\omega)$

- The contribution arising from real part should be dominant in this case.
- Real part of the amplitude

$$\mathbf{Dis}(m_X^2) = \frac{1}{\pi} \left(\mathcal{P} \int_{th_n^2}^{\infty} \frac{\mathbf{Abs}_{n(s')}}{s' - m_X^2} ds' + \mathcal{P} \int_{th_c^2}^{\infty} \frac{\mathbf{Abs}_{c(s')}}{s' - m_X^2} ds' \right)$$

 $\P \mathcal{P}$ denotes principal integral

$$\P th_n = m_{D^0} + m_{D^{*0}}, th_c = m_{D^+} + m_{D^{*-}}.$$

- Naive cut: $\infty \rightarrow s_{max} = 2m_{D^*}$
- Form factor: Abs \rightarrow Abs $\cdot e^{-\beta |\vec{p_1}|^2}$

Home	Home Page		
Title	Title Page		
••	••		
•	•		
Page <mark>2</mark>	Page 22 of 24		
Go E	Go Back		
Full S	Full Screen		
Close			
Q	Quit		

Back Up

 $\heartsuit X \to D^0 \bar{D}^0 \pi^0$

- $m_X > th_n$
 - $\Gamma(X \to D^0 \bar{D}^0 \pi^0) = 2\Gamma(X \to D^0 \bar{D}^{*0}) \operatorname{Br}(\bar{D}^{*0} \to \bar{D}^0 \pi^0)$ $\Gamma(X \to D^0 \bar{D}^{*0}) = \frac{g_X^2 |\vec{p}_1|}{24\pi m_X^2} (3 + \frac{|\vec{p}_1|^2}{m_{D^{*0}}^2}) \simeq \frac{g_X^2 |\vec{p}_1|}{8\pi m_X^2}$
- $m_X < th_n$

$$i\mathcal{M} = i(\mathcal{M}_a + \mathcal{M}_b) = \frac{i\sqrt{2}g_X g_{D^*D\pi}}{q^2 - m_{D^{*0}}^2 + im_{D^{*0}}\Gamma_{D^{*0}}} \left[\frac{(q \cdot k_\pi)(q \cdot \epsilon_X)}{m_{D^{*0}}^2} - (k_\pi \cdot \epsilon_X)\right]$$

• Cascade decay formula:

$$\Gamma_{X \to D^0 D^0 \pi^0} = \frac{1}{\pi} \int_{(m_{\pi^0} + m_{D^0})^2}^{(m_X - m_{D^0})^2} ds \sqrt{s} \frac{2\Gamma_{X \to D^{*0} \bar{D^0}}(s)\Gamma_{D^{*0} \to D^0 \pi^0}(s)}{(s - m_{D^{*0}}^2)^2 + (\sqrt{s}\,\Gamma_{DD^{*0}}(s))^2}$$

♠ Note: all the above formulae will be invalid when $|m_X - th_n| \sim \Gamma_{D^{*0}} \sim 70$ KeV.

Home	Home Page		
Title Page			
••	••		
•	>		
Page 2	Page 23 of 24		
Go l	Go Back		
Full S	Full Screen		
Close			
Quit			

Back Up

(C. Hanhart et al, PRD 76 034007)

$$F(E) = -\frac{g}{2D(E)} = \frac{1}{-\gamma + \kappa(E)}, E = m_X - th_n \qquad (g \approx \frac{Zg_X^2}{4\pi m_X^2})$$
$$D(E) = E - E_f - \frac{g}{2}\kappa(E) - \frac{g}{2}\kappa(E - \delta) + i\frac{\Gamma(E)}{2}$$
$$\kappa(E) = \sqrt{-2\mu E - i0^+}, \mu = \frac{m_D m_{D^*}}{m_D + m_{D^*}}, \delta = th_c - th_n$$

• The real part of γ can be expanded around E = 0:

$$\operatorname{Re}\gamma = 1/a - r_s \mu E + \dots$$

scattering length: $a = -(\sqrt{2\mu\delta} + 2E_f/g)^{-1}, \sqrt{2\mu\delta} \approx 125 \text{ MeV} \sim m_{\pi}$ effective range: $r_s = -(1/\sqrt{2\mu\delta} + 2/\mu g) \sim 1/m_{\pi}$ if g > 0.3

- For a ≫ 1/m_π, there will be a bound state (molecule) just below the threshold with the binding energy E_b ≈ 1/(μa²), and the line shape of X → J/ψππ and X → DDπ will exhibit Breit-Wigner distributions very well.
- For a ≪ -1/m_π, one get a virtual state. The distribution of X → J/ψππ will exhibit a cusp (D.V. Bugg, PLB 598 8) which is peaked exactly at E = 0, and the peak of the distribution of X → DDπ will be pushed up to a few MeV above the threshold.

Home	Home Page		
Title Page			
••	••		
•	•		
Page 2	Page 24 of 24		
Gol	Go Back		
Full S	Full Screen		
Clo	Close		
Q	Quit		
_			