$D^0 - \overline{D}^0$ mixing and CPV at BES-III

Hai-Bo Li (李 海波) (for BES-III collaboration) IHEP, Beijing BES/Belle/CLEO-c/BaBar Joint Workshop November 26-27, 2007, Beijing

Outline

- A brief review
- Mixing and strong phase at BES-III
- Sensitivity to CPV at BES-III
- CPV in angular correlation
- Rare and forbidden charm decays
- Summary

Neutral D mixing --general definitions D^0 and \overline{D}^0 can transform into each other under weak interaction

Weak interaction, long-distance strong interaction make an observable mixing rate. While new physics favor x>>y.

D mixing at B factories

- Two ways to reach same final state:
 - → interference

- Distinguish doubly Cabibbo-suppressed (DCS) from mixing using proper time evolution
 - DCS: exponential proper time distribution
 - Mixed decays only occur after some time
- Time evolution: $(|x| \ll 1, |y| \ll 1), CP$ -conserving

strong phase: $x' = x \cos \delta_{K\pi} + y \sin \delta_{K\pi}$, $y' = -x \sin \delta_{K\pi} + y \cos \delta_{K\pi}$ $\delta_{K\pi}$ is the strong phase between DCS and CF amplitides
11-26-2007 Hai-Bo Li (IHEP)

Combined results from HFAG

Semileptonic and hadronic D decays

$$R_{M} = \frac{x^{2} + y^{2}}{2} = \frac{x^{2} + y^{2}}{2}$$
$$R_{M} = (2.1 \pm 1.1) \times 10^{-4}$$

Averaged WS K π mixing results (time-dependent):

 $x^{\prime 2} = (-0.1 \pm 2.0) \times 10^{-4}$

 $y' = (0.55^{+0.28}_{-0.37})\%$ $R_D = (0.330^{+0.014}_{-0.012})\%$

Averaged mixing results (time-dependent):

 $\begin{aligned} x &= (0.87^{+0.30}_{-0.34})\% \\ y &= (0.66 \pm 0.21)\% \end{aligned}$

This average include preliminary CLEO-c measurement of $\cos \delta_{K\pi} = 1.09 \pm 0.66$

Averaged y_{CP} from KK, $\pi\pi$ lifetime ratio

$$y_{CP} = (1.12 \pm 0.32)\%$$
 (3.9 s)

Combined contour in (x'^2, y') :

11-26-2007

BES-III

BESIIII detector: all new !

CsI calorimeter Precision tracking Time-of-flight + dE/dx PID

, PID, and large coverage.

11-26-2007

DD Pairs from different experiments

128 M are expected at BES-III with 4 years' luminosity@ $\psi(3770)$. 5 M are expected at CLEO-c until 2008@ $\psi(3770)$.

Quantum Correlation

At BES-III: DD pair with L =1 must be in anti-asymmetric state

$$|D^0\overline{D}^0\rangle^{C=-1} = \frac{1}{\sqrt{2}} \left[|D^0\rangle|\overline{D}^0\rangle - |\overline{D}^0\rangle|D^0\rangle \right]$$

the interference comes for free:

 $M_{ij}^{2} = \left| \left\langle i \mid D^{0} \right\rangle \left\langle j \mid \overline{D^{0}} \right\rangle - \left\langle j \mid D^{0} \right\rangle \left\langle i \mid \overline{D^{0}} \right\rangle \right|^{2}$

PRD 73, 034024 (2006) Asner and Sun I.I.Bigi SLAC report-33, 1989 page 169

(C=−1) $e^+e^- \rightarrow ψ(3770) \rightarrow$	D	D
Forbidden if no mixing	Κ ⁻π+	Κ ⁻π+
Forbidden if no mixing	K⁻l+ν	Κ-Ι+ ν
Forbidden by CP conservation	CP+	CP+
Forbidden by CP Conservation	CP-	CP-
Interference of CF with DCS	Κ ⁻ π ⁺	CP±

The mixing rate R_M can be measured at the first order Strong phase $\delta_{K\pi}$ is from CP tagged $D \rightarrow K\pi$ CP violation is measured in a production rate.

Mixing rate R_M from $\psi(3770) \rightarrow D^0 \overline{D}^0 \rightarrow (K^-\pi^+)(K^-\pi^+)$

Sensitivity in 20 fb⁻¹ data at BES-III:

Background estimate:

2 events in the signal region due to mis-ID. (the mis-ID rate for pi as a Kaon is 1%).

 $RM < 1.5 \times 10^{-4}$

9

Challenge to PID in mixing rate measurements

TABLE III. The expected mixing signal for $N_{\text{sig}} = N(K^{\pm}\pi^{\mp})(K^{\pm}\pi^{\mp})$, background N_{bkg} , and the Poisson probability P(n) in 10 fb⁻¹ and 20 fb⁻¹ at BES-III at $\psi(3770)$ peak, respectively. Here, we take the mixing rate $R_M = 1.18 \times 10^{-4}$.

	10 fb ⁻¹ ($\psi(3770)$) 36 × 10 ⁶ D ⁰ \overline{D}^0	20 fb ⁻¹ (ψ (3770)) 72 × 10 ⁶ D ⁰ \overline{D}^0
Nsig	1.5	3.0
Nbkg	0.3	0.6
P(n = 0)	15.7%	2.5%
P(n=1)	29.1%	9.1%
P(n=2)	26.9%	16.9%
P(n = 3)	16.6%	20.9%
P(n=4)	7.7%	19.3%
P(n=5)	2.8%	14.3%
P(n=6)	0.9%	8.8%
P(n=7)	0.2%	4.7%
P(n = 8)	0.1%	2.2%
P(n=9)	0.01%	0.9%

 $R_M < 1.5 \times 10^{-4}$ @ 95% C.L. with 20 fb⁻¹ data at BES-III.

Mixing rate from semileptonic mode 20 fb⁻¹ data at BES-III: $e^+e^- \rightarrow \gamma^* \xrightarrow{\psi(3770)} D\overline{D} \rightarrow (K^-l^+\nu)(K^-l^+\nu)$

Dilepton with the same sign is the signal for "mixing" in SM.

The background is high and the sensitivity is about 1×10^{-3,} which is "second order effect".

Of course, since the time-evolution is not measured, observation of this reaction would indicate the violation of the selection rule relating the change in charm to the change in leptonic charge: it is true in SM, but new physics may make it without need of mixing. I.I.Bigi SLAC report-33, 1989 page 169

Sensitivity to y and y_{CP} at BES-III

The y can be probed at the first order sensitivity:

✓ Reconstruct *K*+*K*- (*CP*+) decay → other side must be D_1 (*CP*-) ✓ Inclusive *K*+*K*- rate probes *y*:

$$n_{KK} = 2B_{KK}\Gamma_1 = 2B_{KK}(1-\eta y)\Gamma$$
 where $\eta = \pm 1$ for CP= \pm

$$1 - y = \frac{n_{KK}}{2N_{DD}} \frac{1}{B_{KK}}$$

✓ y_{CP} in semileptonic tag + CP tags:

$$y_{CP} = \frac{\Gamma(CP+) - \Gamma(CP-)}{\Gamma(CP+) + \Gamma(CP-)}$$

$$= y \cos \phi + x \cdot \Delta \sin \phi$$
No CPV in mixing

$$y_{CP} \approx y \cos \phi$$
With 20 fb ⁻¹ data at BES-III,
and the CP tag rate is 1.1%,
thus the sensitivity to y_{CP} is
0.003, which could be 4.3 σ if the
world average hold up.

$$\Delta(y) = \frac{\pm 26}{\sqrt{N(D^0 \overline{D^0})}} = \pm 0.003.$$

11-26-2007

The first order sensitivity to strong phase

The model independent strong phase determination is useful for γ/ϕ_3 See A. Poluektov's talk.

11-26-2007

Estimation of TQCA scaled from CLEO-c

		CLEO-c (3×	(10°D°D°b)	BESIII(20fb ⁻¹)		
parameter	value	C=-1	C=+1	C=-1	C=+1	
У	0	±0.01	±0.007	±0.003	±0.002	
x ²	0	±0.0006	±0.0003	±0.00013	±0.0001	
cos δ _{Kπ}	1	±0.15	±0.13	±0.035	±0.04	
xsin $\delta_{K\pi}$	0	_	±0.03		±0.003	

From Sun's talk from CLEO-c at Charm2007

CPV in D system at BES-III

1. A_D — CP violation in decay

$$D^0 \to f \iff \overline{D}^0 \to \overline{f}$$

2. A_{M} — CP violation in mixing $D^{0} \rightarrow \overline{D}^{0} \rightarrow f$ $\widehat{D}^{0} \rightarrow D^{0} \rightarrow \overline{f}$ $\overline{D}^{0} \rightarrow D^{0} \rightarrow \overline{f}$

New physics favor: x>>y CP violation

3. ϕ — CP violation in the interference between decays with and without mixing $D^0 \xrightarrow{} f$

Hai-Bo Li (IHEP)

11-26-2007

CP violation in D system

- CP violation in D decays is a clean way to probe new physics since the SM predicts an unobservable asymmetry: 10⁻⁴
- CPV in SCS decay is sensitive to New physics since it is the only one to probe the gluonic penguin operators in the loop.
- CPV-in-mixing is the real new physics signal.
- In SM, no direct CP asymmetry in CF and DCS charm decay modes. Sensitive to new physics.
- 1% level CPV likely indicates new physics!

CPV in D decays is the next big thing in charm physics, but one has to think about the systematic effect, which should be controlled under 10⁻³ level. It is really a challenge to experiments.

CP violation at BES-III

- Quantum correlation $-\psi(3770) \rightarrow D(CP+)D(CP+), D(CP-)D(CP-)$
- CP asymmetry in D⁺ and Ds decays
- CP asymmetry in D⁰ decays
 - Have to pay price for tag
 - Flavor tag with semileptonic mode at $\psi(3770)$
 - Flavor tag with D⁺→K⁻π⁺π⁺ modes above DD* threshold (4.03GeV / 4.17 GeV)

$$e^+e^- \rightarrow D^+\overline{D}^{*-} \rightarrow D^+(\overline{D}^0\pi_{soft}^-)$$

CP violation

Expected event numbers of the double tag modes in 20 fb⁻¹ $\Psi(3770)$ data

2	Nrene	=	7.	12	24	61	0	7
5	Neero	=	7.	12	24	61	0	

Mode	Exp. number (if totally CPV)
K ⁺ K ⁻ <u>V</u> S K ⁺ K ⁻ (signal)	1078
$\mathrm{K^+K^-}$ YS $\pi^+\pi^-$ (signal)	765
$\pi^+\pi^-$ VS $\pi^+\pi^-$ (signal)	136
$\mathrm{K^+K^-}$ ys $\mathrm{K^-\pi^+}$ (hathground)	21056
$\pi^+\pi^-$ <u>VS</u> K $^-\pi^+$ (background)	7470
$K^{+}\pi^{+}$ ys $K^{+}\pi^{-}$ (background)	102847

			1		
Mode	ε (%)	Tot CPV	Main background		
K ⁺ K ⁻			K^+K^- vs $K^-\pi^+$	0	
XS	43.8	440	$\pi^+\pi^-$ vs $K^-\pi^+$	0	
K^+K^-			$K^-\pi^+$ vs $K^+\pi^-$	0	
K ⁺ K ⁻			K^+K^- vs $K^-\pi^+$	0	
<u>VS</u>	47.2	340	$\pi^+\pi^-$ vs $K^-\pi^+$	0	
$\pi^+\pi^-$			$K^-\pi^+ \chi_S K^+\pi^-$	1	
$\pi^+\pi^-$			K^+K^- vs $K^-\pi^+$	0	
XS	53.3	66	$\pi^+\pi^-$ vs $K^-\pi^+$	0	
$\pi^+\pi^-$			$K^-\pi^+ \chi_S K^+\pi^-$	0	

The sensitivity is about : $A_{CP} \sim 5 \cdot 10^{-3}$ @ 90% C.L.

CPV in angular analyses a proposal

Poor data for $D \rightarrow V_1 V_2$ in PDG

D° decay	Large br	anching ratios!
$\overline{K}^*(892)^0 \rho^0$ $\overline{K}^*(892)^0 \rho^0 \text{ transverse}$ $\overline{K}^*(892)^0 \rho^0 \text{ Source}$	$(1.50 \pm 0.33)\%$ $(1.6 \pm 0.5)\%$ $(2.9 \pm 0.6)\%$	5
$\overline{K}^{*}(892)^{0} \rho^{0} S$ -wave long. $\overline{K}^{*}(892)^{0} \rho^{0} P$ -wave	$< 3 \times 10^{-3}$ CL=90% $< 3 \times 10^{-3}$ CL=90%	
K*(892) ^o ρ ^o D-wave K*(892) ⁻ ρ ⁺ K*(892) ⁻ ρ ⁺ longitudinal	$(2.0 \pm 0.6)\%$ $(6.4 \pm 2.5)\%$ $(3.1 \pm 1.2)\%$	Missing modes
$K^*(892)^- \rho^+$ transverse $K^*(892)^- \rho^+ P$ -wave	$(3.4 \pm 2.0)\%$ < 1.5 % CL=90%	pω
D ⁺ decay		ωω
$\overline{K^{*}(892)^{0}} \rho^{+} \text{total}$ $\overline{K^{*}(892)^{0}} \rho^{+} S\text{-wave}$ $\overline{K^{*}(892)^{0}} \rho^{+} P\text{-wave}$ $\overline{K^{*}(892)^{0}} \rho^{+} D\text{-wave}$ $\overline{K^{*}(892)^{0}} \rho^{+} D\text{-wave longitu-dinal}$	[ss] (1.8 \pm 1.4) % [ss] (1.4 \pm 1.5) % < 1 × 10 ⁻³ CL=90% (8 \pm 7) × 10 ⁻³ < 7 × 10 ⁻³ CL=90%	
$K^{*}(892)^{+}\overline{K}^{*}(892)^{0}$	(2.6 \pm 1.1) %	
11-26-2007	Hai-Bo Li (IHEP)	21

Angular measurement in $D \rightarrow V_1 V_2$

Basic quantum mechanics BaBar: $B \rightarrow \phi K^*$ A. Gritsan at ICHEP04 CP-even longitudinal : $A_0 = -\frac{1}{\sqrt{3}}S + \sqrt{\frac{2}{3}}D$ CP-even transverse : $A_{\parallel} = \sqrt{\frac{2}{3}}S + \frac{1}{\sqrt{3}}D$ <u>K</u>*-CP-odd transverse $: A_{\perp}$ πὄ π° • Amplitudes from angular dependence for $(V \rightarrow PP')$ ●10 parameters for D⁰ and D⁰: Longitudinal $\mathcal{H}_1 = \cos(\theta_1); \ \mathcal{H}_2 = \cos(\theta_2)$ Transverse $\frac{8\pi}{9\Gamma} \frac{d^3\Gamma}{d\mathcal{H}_1 d\mathcal{H}_2 d\Phi} = \frac{1}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2} \times \{$ $|A_{\text{total}}|$: $n_{
m sig}$ and \mathcal{A}_{CP} $|A_0|$: f_L and \mathcal{A}_{CP}^0 $(A_0|^2 \mathcal{H}_1^2 \mathcal{H}_2^2) + \frac{1}{4} (|A_{\parallel}|^2 + |A_{\perp}|^2) (1 - \mathcal{H}_1^2) (1 - \mathcal{H}_2^2)$ f_{\perp} and \mathcal{A}_{CP}^{\perp} $|A_{\perp}|$: $+\frac{1}{4}(|A_{\parallel}|^{2}-|A_{\perp}|^{2})(1-\mathcal{H}_{1}^{2})(1-\mathcal{H}_{2}^{2})\cos 2\Phi$ $-\mathcal{I}\mathrm{m}(A_{\perp}A_{\parallel}^{*})(1-\mathcal{H}_{1}^{2})(1-\mathcal{H}_{2}^{2})\sin2\Phi$ ϕ_{\parallel} and $\Delta\phi_{\parallel}$ $\arg(A_{\parallel})$: $+\sqrt{2}\mathcal{R}e(A_{\parallel}A_{0}^{*})\mathcal{H}_{1}\mathcal{H}_{2}\sqrt{1-\mathcal{H}_{1}^{2}}\sqrt{1-\mathcal{H}_{2}^{2}}\cos\Phi$ $\arg(A_{\perp})$: ϕ_{\perp} and $\Delta \phi_{\perp}$ $-\sqrt{2}\mathcal{I}\mathrm{m}(A_{\perp}A_{0}^{*})\mathcal{H}_{1}\mathcal{H}_{2}\sqrt{1-\mathcal{H}_{1}^{2}}\sqrt{1-\mathcal{H}_{2}^{2}}\sin\Phi\}.$ 11-26-2007 Hai-Bo Li (IHEP) 22

CP asymmetry and T odd correlation in $D \rightarrow V_1 V_2$ A. Gritsan at ICHEP04

- > CP from New Physics interference: $\Delta \delta_{weak} \neq 0$;
- $\succ \text{Direct asymmetry} \propto \sin(\Delta \delta_{weak}) \cdot \sin(\Delta \delta_{strong}) \quad \frac{|A_0|^2 \neq |\bar{A}_0|^2}{|A_{\parallel}|^2 \neq |\bar{A}_{\parallel}|^2} \\ \frac{|A_{\perp}|^2 \neq |\bar{A}_{\perp}|^2}{|A_{\perp}|^2 \neq |\bar{A}_{\perp}|^2}$
- Triple-product:

Asymmetry in phases (define $\Delta \phi_{\parallel} = \arg(\bar{A}_{\parallel}/\bar{A}_{0}) - \arg(A_{\parallel}/A_{0})...)$ $\operatorname{Im}(A_{\perp}A_{0}^{*}) \neq -\operatorname{Im}(\bar{A}_{\perp}\bar{A}_{0}^{*})$ $\propto \sin \Delta \delta_{\text{weak}} \cos \Delta \delta_{\text{strong}}$ $\operatorname{Im}(A_{\perp}A_{\parallel}^{*}) \neq -\operatorname{Im}(\bar{A}_{\perp}\bar{A}_{\parallel}^{*})$

Maximum Likelihood Method
Estimate parameters (e.g.
$$N_{sig}$$
) with $D \rightarrow V_1 V_2$
 $\vec{x}_j = (m_{ES}, \Delta E, m_{V_1}, m_{V_2}, \theta_1, \theta_2, \Phi, \varepsilon, Q_{tag})$
Max: $\mathscr{L} = \exp\left(-\sum_{i,k} n_{ik}\right) \prod_{j=1}^N \exp\left(\ln\left(n_{ik}PDF(\vec{x}_j\vec{\alpha})\right)\right)$

PDF: $PDF_{i,k}(\vec{x}_j) = P_{i1}(m_{ES}) \bullet P_{i2}(\Delta E) \bullet P_{i3}(\varepsilon) \bullet$ $P_{i4}(m_{V_1}) \bullet P_{i5}(m_{V_2}) \bullet P_{i,k}^{hel}(\theta_1, \theta_2, \Phi, f_L, f_{\perp}, \phi_{\perp}, \phi_{\parallel})$ $f_L = \frac{|A_0|^2}{\sum |A_\lambda|^2}, \quad f_{\perp} = \frac{|A_{\perp}|^2}{\sum |A_\lambda|^2}$ Measure: $\phi_{\parallel} = \arg\left(\frac{A_{\parallel}}{A_0}\right), \quad \phi_{\perp} = \arg\left(\frac{A_{\perp}}{A_0}\right).$

Search for T-odd correlation by I. I. Bigi

I. Bigi: I Know She Invented Fire, But What Has She Done Recently?" – On The Future Of Charm Physics, hep-ph/0608073

Consider the Cabibbo suppressed decay

$$D^0 \rightarrow K^+ K^- \pi^+ \pi^-$$

 \Box Compute the angle ϕ between the K^+K^- and $\pi^+\pi^-$ decay planes for $D^0 \to K^+K^-\pi^+\pi^-$. Then one has:

$$\frac{d\Gamma}{d\phi}(D^0 \to K^+ K^- \pi^+ \pi^-) = \Gamma_1 \cos^2 \phi + \Gamma_2 \sin^2 \phi + \Gamma_3 \cos \phi \sin \phi$$

$$\frac{d\Gamma}{d\phi}(\overline{D^0} \to K^+ K^- \pi^+ \pi^-) = \bar{\Gamma}_1 \cos^2 \phi + \bar{\Gamma}_2 \sin^2 \phi + \bar{\Gamma}_3 \cos \phi \sin \phi$$

$$\Gamma_3 \neq \overline{\Gamma}_3 \rightarrow CP$$
 violation

This is also applied to charged D 4-body decays!

11-26-2007

Angular correlation

At BES-III: DD pair with L =1 must be in anti-asymmetric state

$$|D^{0}\overline{D}^{0}\rangle^{C=-1} = \frac{1}{\sqrt{2}} \left[|D^{0}\rangle |\overline{D}^{0}\rangle - |\overline{D}^{0}\rangle |D^{0}\rangle \right]$$

 $M_{ij}^{2} = \left| \left\langle i \mid D^{0} \right\rangle \left\langle j \mid \overline{D^{0}} \right\rangle - \left\langle j \mid D^{0} \right\rangle \left\langle i \mid \overline{D^{0}} \right\rangle \right|^{2}$

the interference comes for free:

CP-even longitudinal : A_0 CP-even transverse : A_{\parallel} CP-odd transverse : A_{\perp}

$$\begin{aligned} h_0 &= -\frac{1}{\sqrt{3}}S &+ \sqrt{\frac{2}{3}}D \\ h_{\parallel} &= \sqrt{\frac{2}{3}}S &+ \frac{1}{\sqrt{3}}D \\ h_{\perp} &= P \end{aligned}$$

$$\psi(3770) \to D\overline{D} \to (V_1V_2)(\overline{V_1}\overline{V_2})$$
$$CP(V_1V_2) = CP(\overline{V_1}\overline{V_2}) \implies CPV$$

Fully reconstruct both D decay to VV, if you see:

 $f_L^1 \neq 0$, and $f_L^2 \neq 0$ or S (D) wave .vs. S (D) wave P wave .vs. P wave Without CPV: only S .vs. P, D .vs. P, S+D .vs. P allowed

 Few dilution from mis-ID.
 Rich FSI and extended LH fit with multi-variables can improve the sensitivity.

Full angular analysis: Jerome Charles Sebastien Descotes-Genon Hai-bo Li 26

11-26-2007

New Physics can contribute in loop, which is different from the cases in B and Kaon mesons.

Limits from CLEO-c

Branching-fraction UL values are all at 90% C.L. 0.8×10⁶ DD pairs

Mode	ϵ (%)	N	п	$\sigma_{ m syst}$ (%)	$\mathcal{B}(10^{-6})$	UL =
$\pi^+ e^+ e^-$	36.41	1.99	2	8.7	<7.4	02
$\pi^- e^+ e^+$	43.85	0.48	0	7.1	<3.6	N · expec
$K^{+}e^{+}e^{-}$	26.18	1.47	0	10.0	<6.2	$n \cdot observ$
$K^{-}e^{+}e^{+}$	35.44	0.50	0	7.2	<4.5	$C(n\cdot N) \cdot u$
$\pi^+\phi(e^+e^-)$	46.22	0.04	2	7.4	$2.7^{+3.6}_{-1.8} \pm 0.2$	the pre

cted backgrounds ved events upper limit on signal in sence of backgrounds

C(n;N)

 $\overline{\epsilon(2\sigma_{D^+D^-}\mathcal{L})}$

PRL 95 (2005) 221802

20

Although the New Physics contributions are diluted by large uncertainty of long-distance contribution, the m(e⁺e⁻) distribution may be distinct. Burdman et. al., PRD66(2002)014009

Rare (GIM suppressed) D Decays

PRD66(2002)014009

90%CL

	SM	RPV	Current limit	BESIII
	(×10 ⁻⁶)	(×10 ⁻⁶)	(×10 ⁻⁶)	10-8
$D^+ \rightarrow K^+ \mu^- \mu^+$		-	9.2 (FOCUS)	10.5
$D^+ \rightarrow \pi^+ \mu^- \mu^+$	1.9	15	8.8 (FOCUS)	8.7
D⁺→ρ⁺μ⁻μ⁺	-	-	560 (E653)	24.0
$D^0 \rightarrow \pi^0 \mu^- \mu^+$	-	-	180 (E653)	12.3
$D^0 \rightarrow \rho^0 \mu^- \mu^+$	1.8	8.7	22 (E791)	13.7
$D^0 \rightarrow \overline{K^0} \mu^- \mu^+$	-	-	260 (E653)	10.6
D+→K+e⁻e+	-	-	6.2 (CLEO-c)	6.7
$D^+ \rightarrow \pi^+ e^- e^+$	2.0	2.3	7.4 (CLEO-c)	5.6
D+→p+e-e+	-	-		15.4
$D^0 \rightarrow \pi^0 e^- e^+$	-		45 (CLEO-II)	7.9
$D^0 \rightarrow \rho^0 e^- e^+$	1.8	5.1	100 (CLEO-II)	10.3
D ⁰ → K⁰ e [−] e ⁺	-	-	110 (CLEO-II)	7.5

11-26-2007

LFV and LNV D Decays

		PRD66(200	02)014009	<u>90%CL</u>		
		SM	RPV	Current limit	BESIII	
		10-6	10-6	10-6	10-8	
ſ	$D^+ \rightarrow K^- \mu^+ \mu^+$	0		13 (653)	10.4	
	$D^+ \rightarrow \pi^- \mu^+ \mu^+$	0	-	4.8 (FOCUS)	8.7	
	$D^+ \rightarrow \rho^- \mu^+ \mu^+$	0	-	56 (E653)	19.4	
	D+→K⁻e+e+	0	-	4.5 (CLEO-c)	6.7	
	$D^+ \rightarrow \pi^- e^+ e^+$	0	-	3.6 (CLEO-c)	5.6	
Ĺ	D+→p ⁻ e+e+	0	-	-	12.4	
ſ	D+→K+e⁻µ+	0	-	68 (E791)	8.3	
	$D^+ \rightarrow \pi^+ e^- \mu^+$	0	30	34 (E791)	5.9	
LFV	D +→ρ+e⁻μ+	0	-	-	15.5	
	$D^0 \rightarrow \pi^0 e^- \mu^+$	0	-	86 (CLEO-II)	9.7	
	$D^0 \rightarrow \rho^0 e^- \mu^+$	0	14	49 (CLEO-II)	11.0	
L	D⁰→ ¯ K ⁰ e⁻µ⁺	0	-	100 (CLEO-II)	9.6	
11 00 00	20 7					

11-26-2007

D→hl⁺l[−] Like Rare Decays

BaBar Input ICHEP06 288 fb⁻¹ @Y(4S)

CLEO-c 0.8 M (0.281 fb⁻¹)

$$\frac{L_{BaBar}}{L_{CLEO-c}} = \frac{288}{0.3} = 960$$

Background free at a tau charm factory @3770 peak!

Rare Leptonic Decays

Burdman et. al., PRD66(2002)014009

	SM	RPV	Current Limit	CLEO-c	BESIII
D⁰→e+e-	10 ⁻²³	1.0×10 ⁻¹⁰	1.0×10 ⁻⁶ (BaBar)	6.9 ×10 ⁻⁷	2.4 ×10 ⁻⁸
D ⁰ →µ+µ-	10 ⁻¹³	3.5×10⁻ ⁶	1.3×10 ^{–6} (BaBar)		1.7 ×10 ⁻⁷ (dilution from $D^0 \rightarrow \pi^+ \pi^-$)
D ⁰ →e [±] µ ^{−+}	0	1.0×10 ⁻⁶	8.1×10 ^{₋7} (BaBar)	-	4.3 ×10 ⁻⁸

The efficiency is about 70% at BES-III.

The mis-ID rate for π misidentified as a μ is about 5% below 1.0GeV.

Sensitivity to LFV

LFV and LNV are "smoking gun", any indication of deviation from zero will indicate new physics.

11-26-2007

Summary

- y_{CP} (y) and strong phase measured at BES-III by considering QC.
- CP violation from QC
- CP violation from angular correlation (QC+Partial Wave Analysis)

The 1th order sensitivities to mixing and CPV at BES-III: $\delta(y) \sim 0.003, \, \delta(\cos(\delta)) \sim 0.04, \, \text{CPV}: 10^{-3}$

More complicated analyses: Dalitz plot, $D \rightarrow VV$ angular correlation. TQCA (Input from CLEO-c).

谢谢!