Charmonium Spectroscopy and Decay

Silvano Tosi Università & INFN Genova

on behalf of the BABAR Collaboration

Joint BES-Belle-CLEO-BABAR Worskhop on Charm Physics, Beijing November 26-27th 2007

Introduction

- A huge amount of results on states with $c\bar{c}$ content are being reported.
 - *BABAR*, Belle, BES and CLEO are contributing enormously exploiting largest datasets.
 - Several production mechanisms are used: prompt production, continuum production, ISR, $\gamma\gamma$ collisions, *B* decays,
- Bound states of $c\bar{c}$ quarks are a fundamental laboratory to study QCD.
 - Some results do not fit well within the ordinary charmonium picture.
- QCD foresees a richer spectroscopy: hybrids, tetraquarks, molecules, etc...
 - are we seeing hints of this richer spectroscopy ?
- Here, a (small!) selection of the latest results only
 - see also talks by H. Chen, H. Nakazawa, S. Olsen, P. Pakhlov, G. Rong, X. Shen,
 M. Shepherd, K. Trabelsi and C.Z. Yuan

The States with Hidden Charm

- Charmonium: bound states of c and \overline{c} .
 - not all J^{PC} quantum numbers allowed (e.g. 0^{--} , 0^{+-} , 1^{-+} , ...);
 - below $D\overline{D}$ threshold, only electromagnetic or α_s -suppressed decays: mostly narrower states; - above $D\overline{D}$ threshold, mostly broader states.
- Hybrids: $q\bar{q}$ +gluons \rightarrow lightest state 1⁻⁺
- Tetraquarks: $[qq'][\overline{qq'}] \rightarrow$ several states foreseen; narrow widths also above threshold.
- Molecules: $[q\overline{q}^{(i)}][q\overline{q}^{(i)}] \rightarrow$ less states; also narrow widths.
- These states can be accessed using various production mechanisms:
 - formation in e^+e^- and ISR: can only produce 1⁻⁻ states via single virtual photon;
 - $-\gamma\gamma$ collisions: produces C=+ states;
 - formation in $p\overline{p}$: all quantum numbers in principle accessible;
 - -B decays: all quantum numbers in principle accessible;
 - $-e^+e^- \rightarrow \gamma^* \rightarrow X_{cc}Y_{cc}$: the quantum numbers of *X* and *Y* must combine to form 1⁻⁻;
 - decays from higher mass charmonium(-like) states: selection rules apply.

Spectrum of Charmonium States

• Basically all states below the open charm threshold are observed and explained.

States Below *D***D Threshold**

- CLEO: 2-, 3- and 4- body χ_{cJ} decays from $\psi(2S) \rightarrow \gamma \chi_{cJ}$.											
$-\chi_{cI}$ decays to baryon	-	$\Gamma(\Lambda\bar{\Lambda})/\Gamma(pp)$									
OWG07	OWG07				Xc1			Xc2			
		with theory		Theory	BES	CLEO	Theory	BE	S	CLEO	
				~0.6	4.6±2.3	1.3±0.3	~0.45	5.1±3.1		2.2±0.4	
		χ _{c0}						Xc2			
$-\chi_{cJ}$ decays to PP: $\pi^{+}\pi^{-}$, $\pi^{0}\pi^{0}$, $K^{+}K^{-}$, $K_{s}K_{s}$, $\eta^{()}\eta^{()}$					Belle	CLEC) Be	elle C		LEO	
QWG07; PRD 75, 071101 (2007) cor		consistent with	v	V /V+V-	0.40.0.11			0.04	0.45		
isospin		ospin expectations	Λ	_s n _s /n [·] n	0.49±0.11	0.54±0.	03 0.70±	0.70±0.24		0.47 ± 0.05	
			π	$t^0 \pi^0 / \pi^+ \pi^-$		0.46±0.	05			0.43±0.13	
_		Χco		λ	lc1		Xc2				
$-\Gamma(\chi_{cJ} \to \gamma\gamma)$	Γ(χ _{cJ} →γγ) keV	2.65±0.38±0.17±0.25		< 3.6 ×10) ⁻⁵ , 90% C.I	L. 0.62±	0.07±0.05±	0.06	¢	2 🧿	
- BABAR: J/ψ and $\psi(2S)$	decays from IS	SR	_	0 (1.0	0 • 0 00 • 0 1	$(-1)^{-2}$	1				
arXiv:0708.2461		$J/\psi \rightarrow K^+ K^- \pi^+ \pi$	-π	0 (1.9	2±0.08±0.1	(5) ×10 ⁻²					
arXiv:0710.4451		$J/\psi \rightarrow K^+ K^- \pi^+ \pi$	τ-γ	, (4	$.7\pm0.6\pm0.3$)×10-3					
		$J/\psi \rightarrow K(892)^{*\pm}$	<i>K</i> -	+ (5	$2\pm 0.3\pm 0.2$ ×10 ⁻³		improvements over				
	$J/\psi \rightarrow K^+ K^- \eta$	1	(8	previous world							
J/		$J/\psi \rightarrow \Lambda \overline{\Lambda}$		(1.92 ± 0.21 × 10 ⁻³		averages				
		$J/\psi \rightarrow \pi^+ \pi^- \pi^0 x$	π^0	($(5.74\pm0.74)\times10^{-3}$		previously unobserved			served	
		$\psi(2S) \rightarrow 2(\pi^+ \pi$	»2(π⁺π⁻)η		$(1.2 \pm 0.6 \pm 0.1) \times 10^{-3}$		modes				
		ψ(2S)→ΛΛ	Γ		(6.0±1.5) ×	:10 ⁻⁴					
		ψ (2S) \rightarrow K ⁺ K ⁻ π	$^{+}\pi^{-}$	η (1	.3±0.7±0.1)×10 ⁻³					

X(3872)

Belle: PRL 91 (2003) 262003

BaBar: PRD71 (2005) 071103

BaBar: PRD73 (2006) 01110

BaBar: PRD74 (2006) 07110 CDF: PRL93 (2004) 072001

DO: PRI 93 (2004) 162002

- Decays
 - $X \rightarrow J/\psi \pi^+ \pi^-$
 - Possibly $J/\psi \rho$
 - Discovered by Belle; confirmed by *BABAR*, CDF, D0
 - $BF(J/\psi \omega) \sim BF(J/\psi \rho)$
 - $-X \rightarrow J/\psi \gamma Z$
 - Charged partners in $J/\psi\pi^+\pi^0$ not seen \mathbf{Y}
- Implications:
 - C(X) = +1
 - $C(\pi\pi \operatorname{in} J/\psi\pi\pi \operatorname{decay}) = -1$
 - $I(\pi\pi)=L(\pi\pi)=1 \rightarrow \text{consistent with } J/\psi \rho \text{ decay}$
- Production
 - B-meson decays at B-Factories;
 - inclusive production in $p\overline{p}$ collisions at Tevatron;
 - no prompt e^+e^- production observed (*BABAR* **Phys.Rev.D76, 071102, 2007**)

 $\begin{aligned} &\sigma(e^+e^- \rightarrow X(3872)X) \times BR(X(3872) \rightarrow J/\psi \gamma) \times \\ &BR(X \rightarrow (N_{ch} > 2)) < 5.1 \text{ fb}, 90\% \text{ C.L.} \end{aligned}$

consistent with no mass and rate difference

- *DD** molecule ?
 - Right above the threshold
 - Favours $D\overline{D}^*$ decay over $J/\psi\pi\pi$ over $J/\psi\gamma$ (as observed)
- Tetraquark ?
 - Explains small width
 - Predicts a set of 4 states (2 charged and 2 neutral). Finding the charged states is critical

States Around 3940 MeV

• Discovered by Belle.

	Observed in	$\mathrm{J}^{\mathrm{PC}}\left(? ight)$	M (MeV)	Γ (MeV)
X	$e^+e^- \rightarrow J/\psi X (X \rightarrow D\overline{D^*})$	0-+,1++	3943±8	<39
Y	$B \to Y K (Y \to J/\psi \omega)$	1++,	3943±17	87±34
Ζ	$\gamma\gamma \to Z \ (Z \to D\overline{D})$	2++	3929±5	29±10

Z: properties consistent with $\chi_{c2}(2P)$.

• 3 different states?

arXiv:0711.2047

$$\begin{split} M(Y) &= (3914.6^{+3.8}_{-3.4}(stat)^{+1.9}_{-1.9}(syst)) \ \mathrm{MeV/c^2} \\ \Gamma(Y) &= (33^{+12}_{-8}(stat)^{+5}_{-5}(syst)) \ \mathrm{MeV} \,. \end{split}$$

- Belle's result for $B \rightarrow Y K$, $Y \rightarrow J/\psi \omega$ confirmed
 - $-\sim 30 MeV$ lower mass than Belle's
 - Narrower width
 - Clear demonstration of decay into ω
 - Preliminary BF estimate similar to Belle (~10⁻⁵)

• No evidence of $X(3872) \rightarrow J/\psi \omega$ in the m(3 π) analysis window for ω .

$$\frac{BR(B^0 \to Y K^0) \times BR(Y \to J/\psi \omega)}{BR(B^+ \to Y K^+) \times BR(Y \to J/\psi \omega)} = 0.30^{+0.29} + 0.04_{-0.01} < 0.79,95\% \text{ C.L.}$$

• Study of $e^+e^- \rightarrow J/\psi X$ and $\gamma\gamma \rightarrow DD$ by *BABAR* in progress: results awaited soon.

Study of $e^+e^- \rightarrow J/\psi D^{(*)}D^{(*)}$

P.Pakhlov's talk 13

New *J^{PC}* = 1⁻⁻ States

Confirmation + $J/\psi \pi^0 \pi^0$; also $J/\psi KK$ CLEO PRD74, 091104 (2006) CLEO PRL 96, 162003 (2006)

16

C.Z. Yuan's talk

Search for $Y \rightarrow D^{(*)}\overline{D}^{(*)}$ Decays

• Can these new 1⁻⁻ states be seen in $D^{(*)}\overline{D^{(*)}}$ decays?

• Summing up all $D^{(*)}\overline{D^{(*)}}(\pi)$ contributions:

- Regular charmonia are clearly visible, nothing else.
- No decays other than $J/\psi PP$ or $\psi(2S)PP$ seen for the new Y states so far.

Updates on 1– Charmonium States

Z(4430)[±]

10

4.3 Μ(π⁺ψ^ι) (GeV/c²)

 B^{\pm} and B^{0} within errors;

 $BF_{+}/BF_{0}=1.0\pm0.4$

BF and mass consistent between

4.55

4.8

4.05

 $BF(B \rightarrow KZ) \times BF(Z \rightarrow \psi(2S)\pi) = (4.1 \pm 1.0 \pm 1.3) \times 10^{-5}$

Background from ΔE sideband

be a reflection

- First charged charmonium-like object !
- If it's a meson, it's exotic!

 $\Gamma = (44^{+17} + 30^{+30} - 11) \text{ MeV}$

300

200

100

0

5,200

Events/bin

(a)

• Analysis by *BABAR* in progress.

Summary and Conclusions

- A very large number of new results reported by *BABAR*, Belle, BES and CLEO.
- Constant improvement of the properties of states with hidden charm.
- And yet new states are being reported! New spectroscopies unveiled?

Backup Slides

The **BABAR** Experiment

The BES Experiment

L ~ 5 ×10³⁰ /cm²·s at J/ψ E_{beam}~ 1 - 2.5 GeV

The CLEO-c Experiment

e+e- collisions at √s ~ 4 GeV

• CLEO-c has collected the following data: -572 pb^{-1} on the $\psi(3770)$ $-\text{ about 27 million } \psi(2S) \text{ decays}$ $-21 \text{ pb}^{-1} \text{ of continuum below the } \psi(2S)$ $-47 \text{ pb}^{-1} \text{ of scan data near } E_{cm} = 4170 \text{ MeV}$ $-13 \text{ pb}^{-1} \text{ of data at } E_{cm} = 4260 \text{ MeV}$ $-314 \text{ pb}^{-1} \text{ of data at } E_{cm} = 4170 \text{ MeV for } D_s$ physics

- December 2007: resume data taking at $E_{cm} = 4170 \text{ MeV}$

J/ψ	$ \rightarrow \mathbf{K}^+ \mathbf{K}^- \pi^+ \pi^- \pi^0$	(1.92	±0.08±0	.15) ×10 ⁻²	(1.20±0.30	0) ×10 ⁻²	2	CESH CLEO					28		
J/ψ	⁄→K +K ⁻ π ⁺ π ⁻ η	(4.7	±0.6±0.	3) ×10 ⁻³	/		_[
$J/\psi \to K(892)^{*+}K^-$ (5.2±		(5.2±0.3±0.2) ×10 ⁻³		(4.2±0.4) ×10 ⁻³				$\pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$	π ⁰ π	70 70	<i>K</i> ≁ <i>K</i> −		$K_{s}K_{s}$		
$J/\psi \rightarrow K^+ K^- \eta$ (8.7±1.3±0.7)×10 ⁻⁴		1		- - x	6.3	7±0.11±	2.94±0	.07±	07± 6.47±0.1		3.49±0.01				
$J/\psi \rightarrow \Lambda\Lambda$		(1.92±0.21) ×10 ⁻³		(1.54±0.19	9) ×10 ⁻³	с 0	0.2	20±0.32	0.16±0).15	$15 \pm 0.29\pm0.3$		3 ±0.15±0.1 7		
$J/\psi \rightarrow \pi^+ \pi^- \pi^0 \pi^0$		(5.	74±0.74) ×10 ⁻³	/		- χ c	1.59 0.0	9±0.04±)6±0.10	4± 0.68±0 10 0.05±0		1.13±0.03 ±0.05±0.0		0.53±0.03 ±0.02±0.0	
$\psi' \rightarrow 2(\pi^+\pi^-)\eta$		(1.2	±0.6±0.	1) ×10 ⁻³	/							7		3	
	$\psi' \rightarrow \Lambda \Lambda$	(6	6.0±1.5)	×10 ⁻⁴	(2.5±0.7) ×10 ⁻		╢└								
ψ'-	$\rightarrow K^+ K^- \pi^+ \pi^- \eta$	(1.3±0.7±0.1) ×10 ⁻³			1							CLEO			
	ηη		ηη'	η	'n		-			(C		2	,	., , , ,	
χ_{c0}	3.18±0.13±0.1	8±0.16	< 0.25	2.12±0.13:	±0.11±0.11		PD CL	ig EO	χ _c ŋ		χ _{c1}			χc2	
χ_{c2}	0.51±0.05±0.03±0.03 < 0.05		< 0	.10	ary	р	р	22.5±2.7 25.7±1.5±1.5±1.3		7.2±1.3 9.0±0.8±0.4±0.5		(7.7±0	5.8±0.7 0.8±0.4±0.5		
						mina	Λ	$\overline{\Lambda}$	47± 33.8±3.6	47±16 33.8±3.6±2.3±1.7		26±12 11.6±1.8±0.7±0.7		34±17 17±2.2±1.1±1.1	
						preli	Σ0	$\overline{\Sigma^0}$	44.1±5.6	±2.5±2.2		- <4		- <6	
						EO	Σ+	$\overline{\Sigma^+}$	32.5±5.7	±4.9±1.7		- <6		- <6	
						CL	Ξ	Ξ-	<1	03	8.6+2	<34	14 5+	<37	

 $\Xi^{-}\overline{\Xi^{-}}$

 $\Xi_0 \underline{\Xi}_0$

<103 51.4±6.0±3.8±2.6

-

33.4±7.0±3.2±1.7

-

<5

8.6±2.2±0.6±0.5 14.5±1.9±1.0±0.9

-

<9

Model of Dubynskiy – Voloshin: Mod.Phys.Lett. A21, 2779 (2006)

Need interference with a narrow resonance at D^*D^* threshold