中国律是院变能为识研完所
Institute of \mathcal{H} igh Energy Pfiysics Chinese Academy of Sciences

Status of the $4 \ell+E_{\mathrm{T}}^{\text {miss }}$ analysis

Abdualazem Fadol

May 15， 2023

General update

The note with unblinded results was circulated on last week for the HDBS approval.\square The approval meeting is scheduled next week on Monday, May 22nd at 13:00 (CERN).
\square Now I'm working on fixing and new studies to answer some of the questions on the CDS.
\square Status of the paper writing: now we have the first paper draft.
\square I already shared this draft with the HBSM conveners and the editorial board.

Questions received and need more studies

\square Since you are scanning over mH and mR for the $\mathrm{R} \rightarrow \mathrm{SH}$ channel, does you result (e.g. Figure 68 the 2D limits) holds true only for the $m S$ you chose (160 GeV) or any possible combination of $m S$ and gap that fits in a certain mH, mR point? For example with $\mathrm{mH}=500 \mathrm{GeV}$ and $m \mathrm{~m}=1000 \mathrm{GeV}$, is the limit valid for both ($\mathrm{mS}=160 \mathrm{GeV}, \mathrm{mGap}=340 \mathrm{GeV}$) and ($\mathrm{mS}=200 \mathrm{GeV}, \mathrm{mGap}=300 \mathrm{GeV}$)?
\square You claimed that the choice of mS would not affect the kinematics like MET or pT 41 too much, and compared that in Figure 73, 74. But what you showed is that when mGap is fixed, the change of mS doesn't change the shape too much. This means for a given mH , the mR needs to be changed according to mS to keep the shape not affected as mGap is fixed. For example if $\mathrm{mH}=500 \mathrm{GeV}$, mGap $=340 \mathrm{GeV}$, then $\mathrm{mR}=1000 \mathrm{GeV}$ should have similar kinematics as $\mathrm{mR}=1040 \mathrm{GeV}$ as the choice of mS between 160 GeV and 200 GeV should have little effect. Am I understanding these plots correctly?
\square Then does it mean the limit corresponding to e.g. $(\mathrm{mH}=500 \mathrm{GeV}, \mathrm{mR}=1000 \mathrm{GeV}, \mathrm{mS}=160 \mathrm{GeV})$ should be equal (or similar) to ($\mathrm{mH}=500 \mathrm{GeV}, \mathrm{mR}=1040 \mathrm{GeV}, \mathrm{mS}=200 \mathrm{GeV}$) ? Because you fit on m 4 I that's irrelevant to the mR and cut on MET and pT4I that has similar acceptance (because the shapes between these 2 cases are similar as you showed in Figure 73, 74)
\square This makes the limit of ($\mathrm{mH}=500 \mathrm{GeV}, \mathrm{mR}=1000 \mathrm{GeV}$) in your analysis not generalized to all ($\mathrm{mH}=$ $500 \mathrm{GeV}, \mathrm{mR}=1000 \mathrm{GeV}$) cases with different mS , but generalized to all cases with ($\mathrm{mH}=500 \mathrm{GeV}$, $\mathrm{mGap}=340 \mathrm{GeV}$). This is a bit of a strange conclusion. Let me know if I'm clear about my point.
\square To answer these questions, I'm doing a truth study. The plan is to generate similar mass points as mentioned on the questions and see how the S mass choice will impact the efficiency.
\square To avoid confusion, we need to add the choice of the S mass to the RSH plots and the captions.

Comments from the HBSM convenors

Showing the significance in the ratio plots instead of the Data/MC.

$$
Z= \begin{cases}+\sqrt{2\left(n \ln \left[\frac{n\left(b+\sigma^{2}\right)}{b^{2}+n \sigma^{2}}\right]-\frac{b^{2}}{\sigma^{2}} \ln \left[1+\frac{\sigma^{2}(n-b)}{b\left(b-\sigma^{2}\right)}\right]\right)} & \text { if } n \geqslant b \\ -\sqrt{2\left(n \ln \left[\frac{n\left(b+\sigma^{2}\right)}{b^{2}+n \sigma^{2}}\right]-\frac{b^{2}}{\sigma^{2}} \ln \left[1+\frac{\sigma^{2}(n-b)}{b\left(b+\sigma^{2}\right)}\right]\right)} & \text { if } n<b\end{cases}
$$

Symmetrisation for some NP

\square I've been asked to understand the behaviour of NPs
\square And these impact also have to be added to the paper.

