

$X \rightarrow SH \rightarrow \gamma\gamma + leptons$ Unblinding Approval Request Closure

Kaili Zhang, on behalf of <u>ATL-COM-PHYS-2021-718</u> team

IHEP

05/29/2023

Status

- <u>CDS:2779977</u>, ver23
- <u>Glance</u>
- EB meetings
 - Feb. 2nd
 - Sep. 26th
 - Dec 9th
- EB committee:
- <u>D'ERAMO, Louis (Northern Illinois)</u>
- MAZINI, Rachid (Taipei AS)
- <u>SCHAARSCHMIDT, Jana (Seattle Washington)</u>(Chair)

10

11

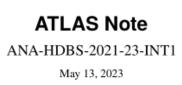
12

13

14

15

16


17

18

19

20

21

Search for X → SH model in the final states of two
 photons and multiple leptons using 139 fb⁻¹ of
 proton-proton collision data at √s = 13 TeV recorded
 with the ATLAS detector at the LHC

Yaquan Fang^a, Kaili Zhang^a, Zhijun Liang^a, Bo Liu^a, Xinchou Lou^{a,c}, Xin Shi^a,
 Qiyu Sha^a, Shuiting Xin^a, Wei-Ming Yao^b, Yesenia Hernandez Jimenez^d, Fangyi
 Guo^a

^aInstitute of High Energy Physics, Chinses Academy of Sciences, Beijing, China ^bLawrence Berkeley National Laboratory, USA ^cUniversity of Texas at Dallas, USA ^dUniversity of Stony Brook University, USA

This note presents a search for a new heavy scalar particle X decaying into a Standard Model Higgs boson and a singlet scalar particle S using 139 fb⁻¹ of proton-proton collision data at the centre-of-mass energy of 13 TeV recorded with the ATLAS detector at LHC. The explored X mass range varies from 300 GeV to 1000 GeV, with the corresponding S mass range being from 170 GeV to 500 GeV. This search uses the event signature of two photons from the Higgs boson decay and one or two leptons (e or μ) coming from the process of $S \rightarrow WW/ZZ$. The observed (expected) upper limits at the 95% confidence level on the cross-section for $gg \rightarrow X \rightarrow Sh$ assuming the decay of S following the SM prediction is between X fb (167 fb) and Y fb (710 fb).

© 2023 CERN for the benefit of the ATLAS Collaboration.

Kaili

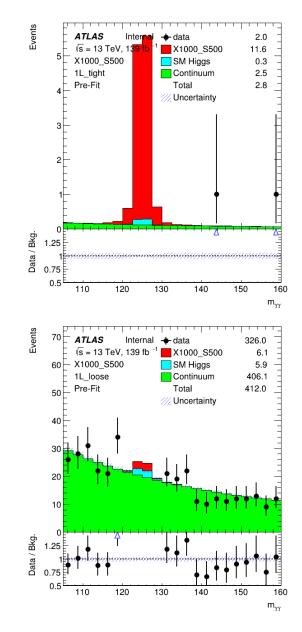
Action items

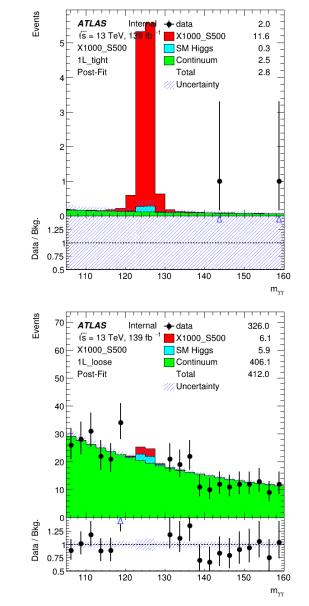
• Action items (for unblinding):

- Make sure you addressed all cds comments properly and add missing plots to the INT note

- Produce fit results with sideband data instead of background-only asimov data.

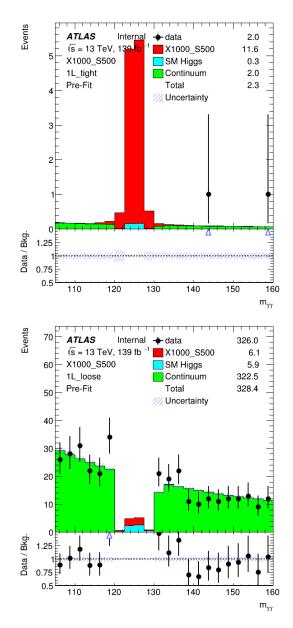
- Summarize the outcome of these residual action items into a new set of closure slides and send these to the HH&HDBS conveners as well as the EB. If needed, we will schedule an additional follow-up closure talk at the HH meeting, otherwise we can simply circulate slides.


Action items (post-unblinding):


- Produce all results with low number of background events (< 5 events) with toys.

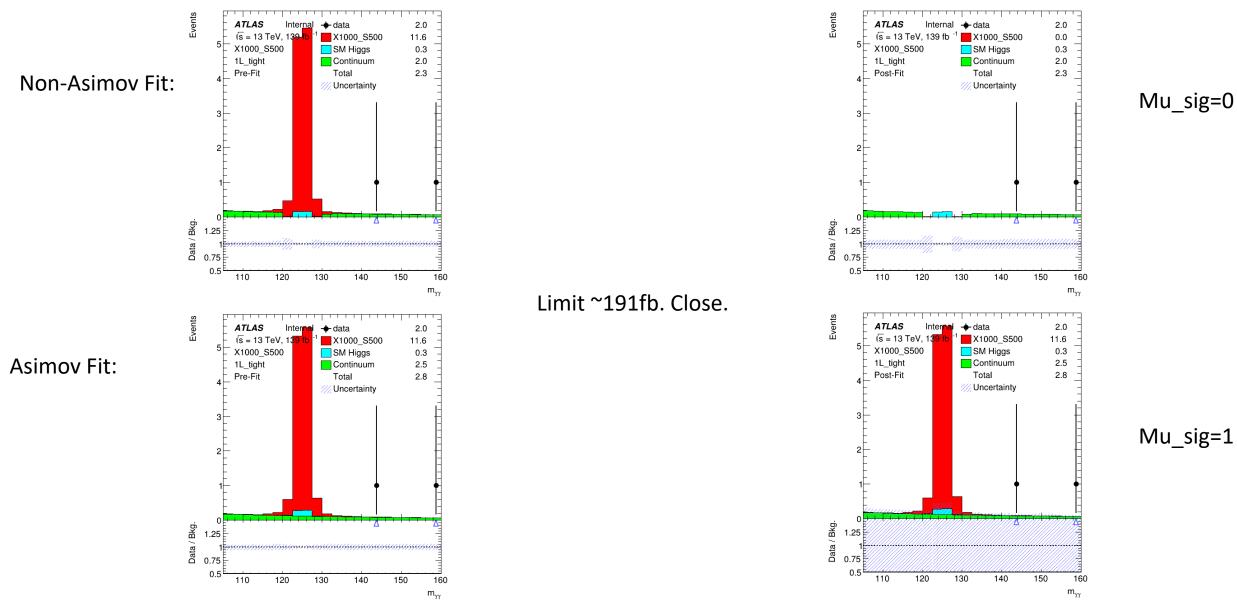
• Changing to non-Asimov fit has been done.

Asimov Fit

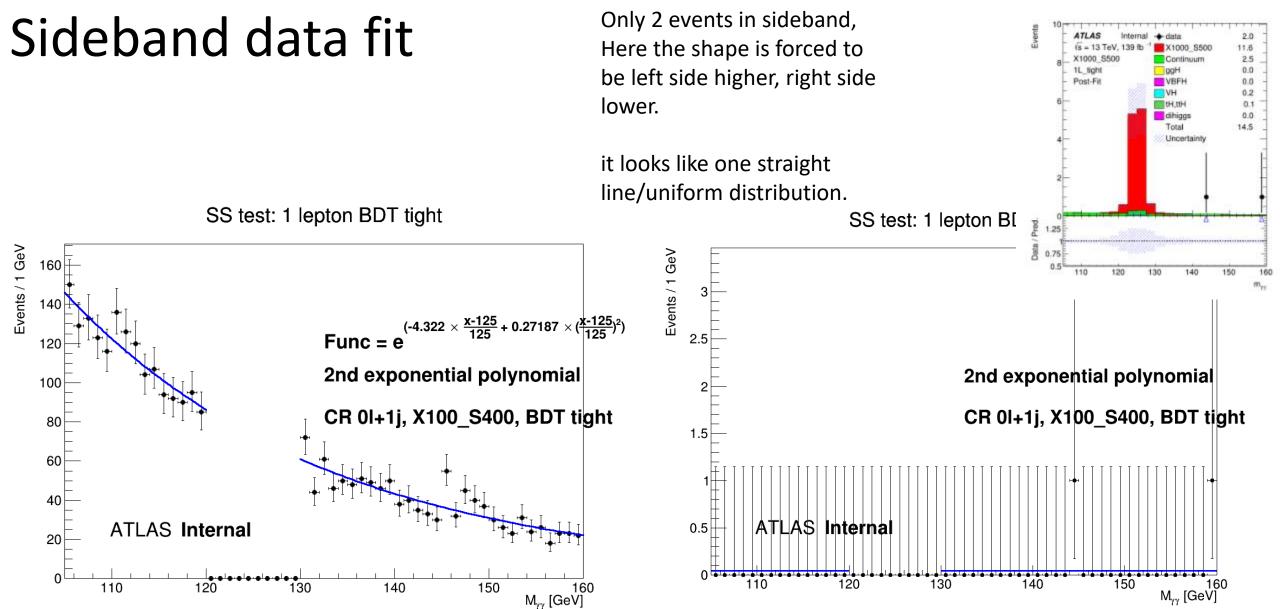


4

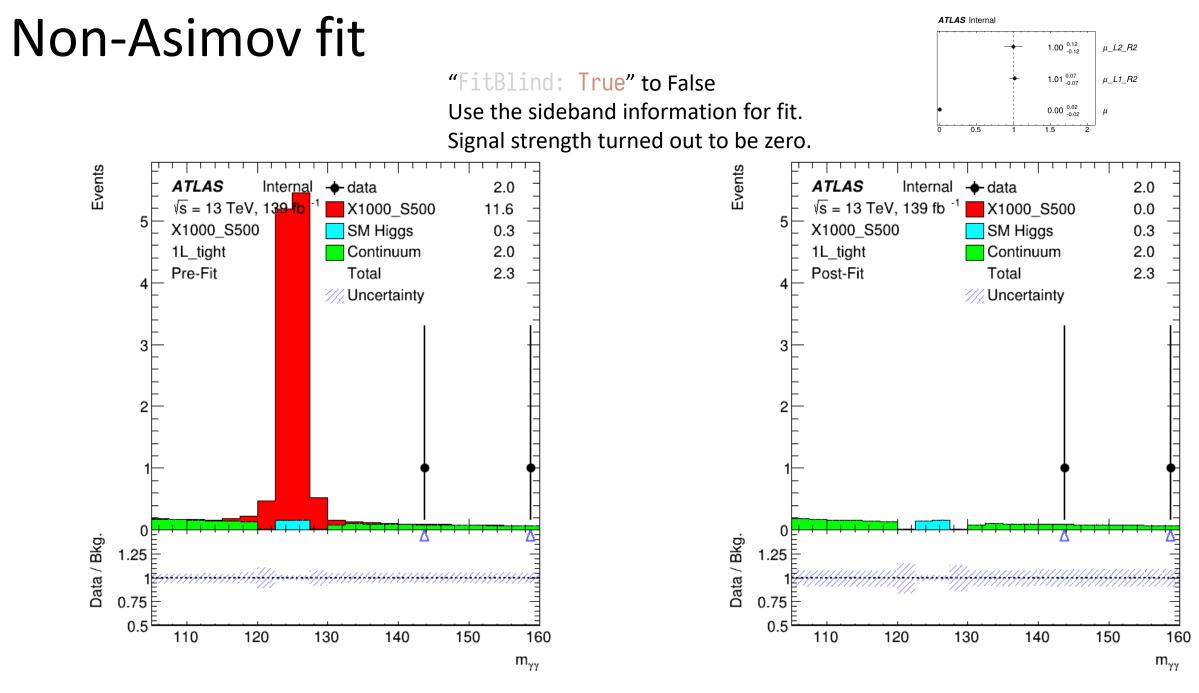
Non Asimov Fit



In the non-Asimov fit, the data 120-130GeV is excluded. So continuum background also excluded 120-130GeV region.

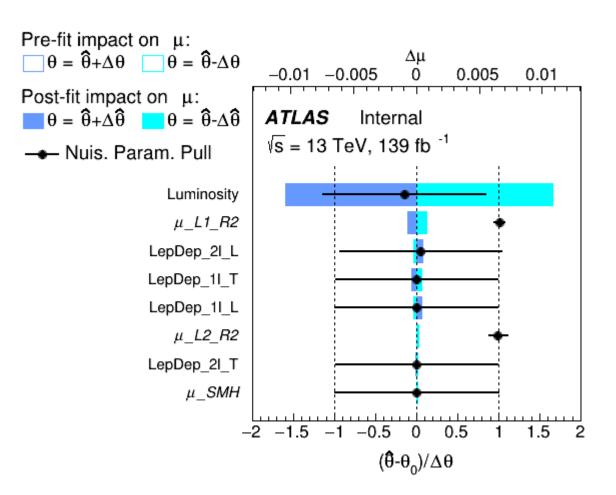


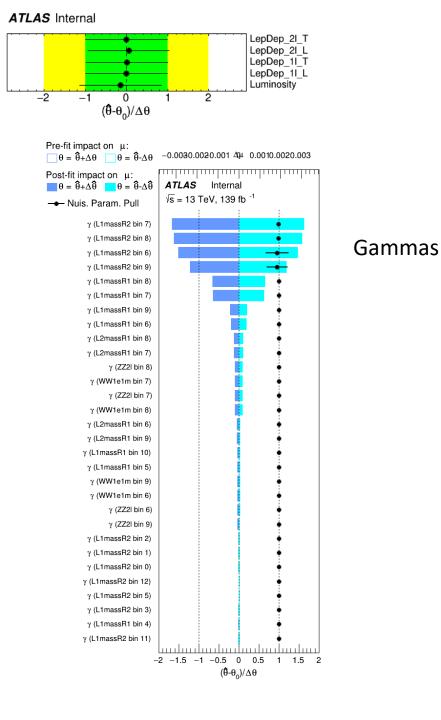
Comparison



Kaili

The shape impact on limit is <3%. But the deviation is >2 sigma.




Kaili

Non-Asimov fit Pull/Ranking

Non-central lumi and NP values found.

Fit model is stable and is able to have the non-Asimov results.

Original Closure slides

Action Items

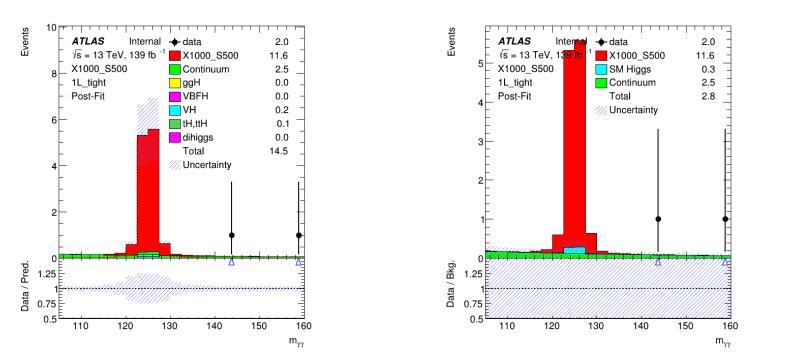
(Also Updates since last December)

11

- 1. Reply to all comments on CDS
- 2. Include background uncertainties and remove signal uncertainties in the data/MC plots.
- 3. Check the definition of delta R in presence of neutrinos
- 4. Run toys for the problematic regions where you have only 1 event or try to merge regions to avoid needing to run toys, i.e. when you define regions make sure the asymptotic approximation still holds
- 5. Please describe the interpolation and the mass resolution studies in the note
- 6. The EB wants to see Appendix A (statistical analysis) complete before unblinding
- 7. Single Higgs Parton shower uncertainty
- 8. Bin by bin lepton dependance uncertainty
- 9. Spurious signals function form check
- 10. Background function fit on sideband data.

CDS comments

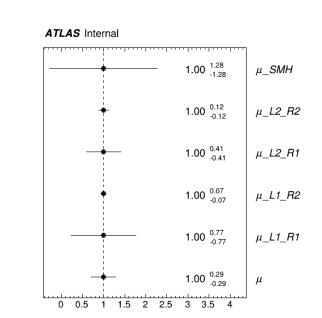
- Receive hundreds questions, comments and suggestions on CDS since December.
 - Thanks for all!
- All answered at https://cds.cern.ch/record/2779977/comments
- In latest version22, required contents are integrated.


```
Is it correct to say "SM Higgs" when talking about a non-125 GeV Higgs? Would it be more correct to say Heavy Higgs or
something else?
->For the description of "SM Higgs", we found that in twiki page https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHWG?
redirectedfrom=LHCPhysics.LHCHXSWG#Higgs_cross_sections_and_decay_b, LHCHWG group also called this "non-125 GeV
Higgs". To reduce the confusion, we changed to describe it with "non-125 GeV SM like Higgs".
```

seen in this window. Even if S happens to be in this range, the Br of S decaying into WW and ZZ should be small.

Answers begin with the right arrow.

12


Background normalization uncertainty

In the past, only signal strength is float in the fit, but the normalization factor for other components are fixed to 1.

In this plot, 1I BDT tight region include 77% continuum background uncertainty.

Generally, this lead to ~1-2% limit reduction.

Definition of delta R

- The pz for neutrino(MET) is missing
 - Imagine lepton and neutrino comes from one W (W mass constrain)
 - the pz of neutrino can be reconstructed. So delta R here can be used.

Variable	Definition	Separation
Regarding parts	icle X	
$\Delta R(\gamma \gamma, l \nu j j)$	Angular difference between diphoton system (H) and $lvjj$ system (S)	0.048
Regarding part	icle S	
$\Delta R(jj, lv)$	Angular difference between dijet system (W_{had}) and lv system (W_{lep})	0.089
$p_T^{l\nu jj}$	Transverse momentum of $l\nu j j$ system (S)	0.373
Regarding SM	Higgs boson	
$p_T^{\gamma\gamma}$	Transverse momentum of diphoton system (H)	0.484
$\Delta \Phi(\gamma \gamma, l)$	Polar angle difference between di-photon system (H) and signal lepton	0.026
Regarding sing	le W boson from S	
$\Delta R(j,j)$	Angular difference between two jets (W_{had})	0.171
p_T^{jj}	Transverse momentum of di-jet system (W_{had})	0.181
$m_{jj}(m_W)$	Invariant mass of di-jet system whose mass is closest to $m_W(W_{had})$	0.119
$\Delta R(l, E_{\rm T}^{\rm miss})$	Angular difference between lepton and $E_{\rm T}^{\rm miss}(W_{lep})$	0.108
$E_{\mathrm{T}}^{\mathrm{miss}}$	Missing transverse momentum	0.248
p_T^l	Transverse momentum of the single lepton	0.203
$m_T(lv)$	Transverse mass of $l + E_{\rm T}^{\rm miss}$ system (W_{lep})	0.044

Variable	Definition	Separation					
Regarding particle X							
$\Delta R(\gamma \gamma, ll + E_{\rm T}^{\rm miss})$ Angular difference between diphoton system (H) and $ll + E_{\rm T}^{\rm miss}$ system (S)							
Regarding particle S							
$\Delta R(l_1 + E_{\rm T}^{\rm miss}, l_2)$	Angular difference between leading lepton + $E_{\rm T}^{\rm miss}$ (W_{l1}) and l_2	0.038					
Regarding SM Higgs	s boson						
$p_T^{\gamma\gamma}$	Transverse momentum of diphoton system (H)	0.621					
$\Delta \Phi(\gamma \gamma, l_1)$	Polar angle difference between di-photon system (H) and the leading lepton	0.079					
Regarding single W	Regarding single W boson from S						
$p_T^{l_1}$	Transverse momentum of the leading lepton	0.415					
E ^{miss}	Missing transverse momentum	0.638					
$p_T^{l_1+E_{\mathrm{T}}^{\mathrm{miss}}}$	Transverse momentum of the leading lepton and $E_{\rm T}^{\rm miss}$ system	0.533					
$m_T(l_1 + E_{\rm T}^{\rm miss})$	Transverse mass of leading lepton and $E_{\rm T}^{\rm miss}$ system	0.362					
m _{ll}	Invariant mass of di-lepton system	0.358					

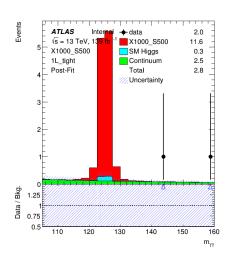
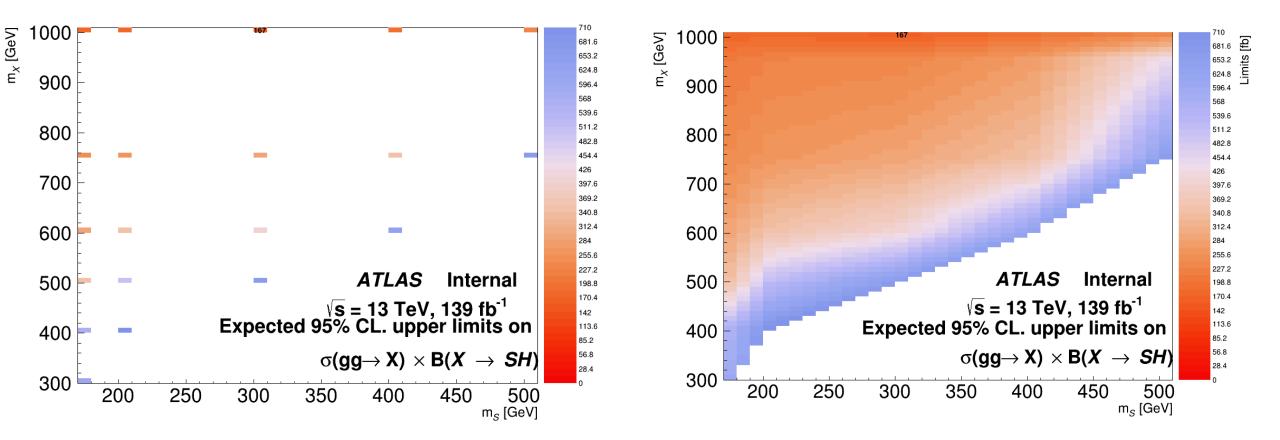

Table 12: Variables used for BDT training in WW2l channel and their separation powers.

Table 11: Variables used for BDT training in WW11 channel and their separation powers.

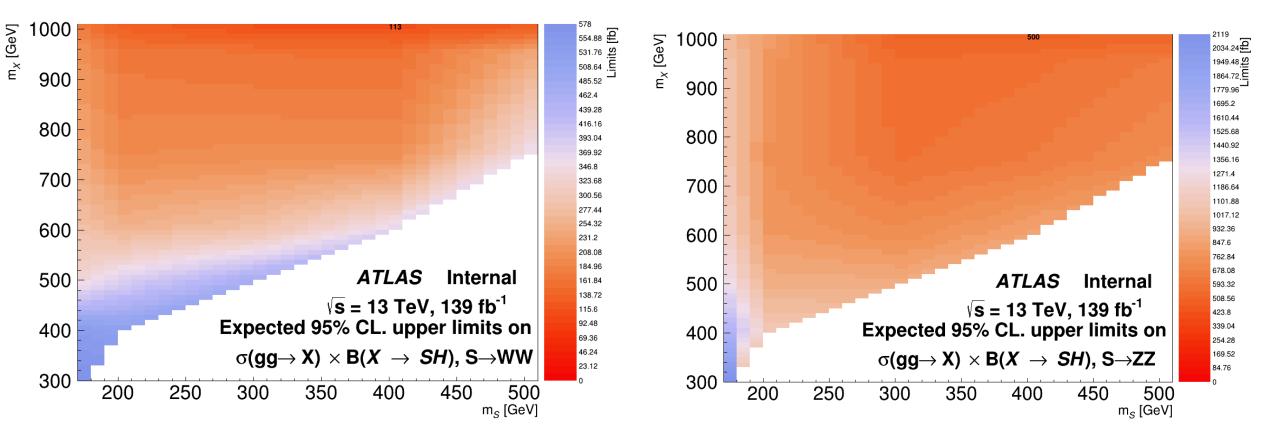
More explanations of these variable used in BDT are included in the draft.

Toys tests: stability test

- For all mass points and all sub-channels, toy tests are done.
- In these Asimov toy tests, even for both signal and background yields<10, the limit deviation between toy/asymptotic <20%.
 - Combined limit including all channels, difference <12%.
- The fit model itself is stable and consistent in these statistics limited situation.



Interpolation


20 points->1600 points Linear interpolation in log(y) scale.

Best point (X1000S300) 167fb.

Interpolation—100% WW/ZZ decay

Issue for mass resolution/running mass:

- EB asked to think about running X/S mass.
- Currently, this analysis do not sensitive to different X and S mass.
 - All the events are kept as long as 2 tight photons and 1 good leptons obtained.
 - In BDT training, no variable is heavily rely on X and S kinematics.
 - For one mass point, like X750S200, to pass the selections for X600S200, the difference is cut value

X Mass [GeV]	S Mass [GeV]	WW1L BDT Cut	WW2L BDT Cut
300	170	0.085	0.14
400	170	0.08	0.08
400	200	0.03	0.1
500	170	0.125	0.12
500	200	0.095	0.11
500	300	0.025	0.09
600	170	0.16	0.09
600	200	0.115	0.065
600	300	0.045	0.09
600	400	0.035	0.06
750	170	0.185	0.025
750	200	0.155	> 0
750	300	0.11	0.035
750	400	0.07	0.065
750	500	0.035	0.065
1000	170	0.155	-0.02
1000	200	0.15	-0.1
1000	300	0.145	-0.03
1000	400	0.115	0.015
1000	500	0.115	0.015

As we tested the different threshold sideband data for limits, The limit may varied for cut value but the final impact on limits is acceptable. If the X-S mass is running, our selections are efficient to find the sensitivity. Which is, it is possible for us to do extrapolation for running X-S mass.

Validation for interpolation

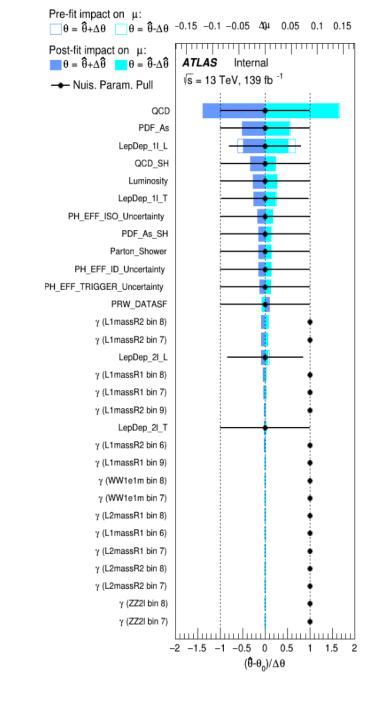
- Use [600, 300], [1000, 300] to interpolate [750, 300]:
 - 290 (Real)
 - 291.417 (Interpolated)
- Use [600, 200], [1000, 200] to interpolate [750, 200]:
 - 264 (Real)
 - 270.235 (Interpolated)
 - For phase limited cases, the deviation will be large.
 - Results for (600, 400) ~20% uncertainty.

Appendix material

- Draft extend to ~250 pages to include all the mass point plots
- Rankings, pulls, limit plot included.
- Spurious signal tests, continuum background modelling uncertainties, toy test plots also included in other Appendix chapters.

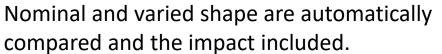
Single Higgs Parton shower uncertainty

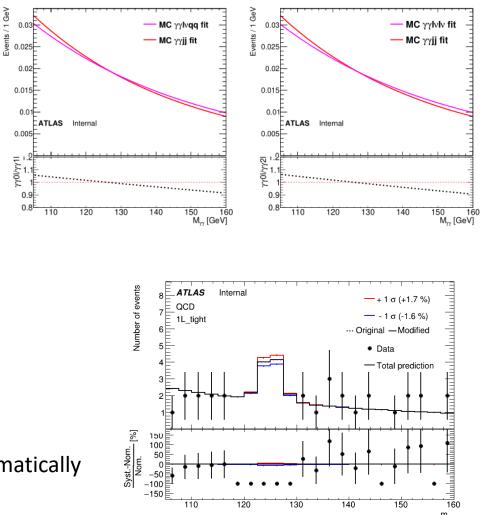
• Similar as HH-ML, h027 MxAOD samples used to obtain the single Higgs theoretical uncertainties.


•
$$\epsilon = \frac{\frac{\epsilon_{after}^{Herwig}}{\epsilon_{before}^{Herwig}}}{\frac{\epsilon_{after}^{Pythia}}{\epsilon_{efore}^{Pythia}} - 1,$$

Where before= initial total sum of weights After cut=After selection(2 tight photons and 1 good leptons)

• For all single Higgs components, yields variation ~8%. Impact on signal yield <2%.

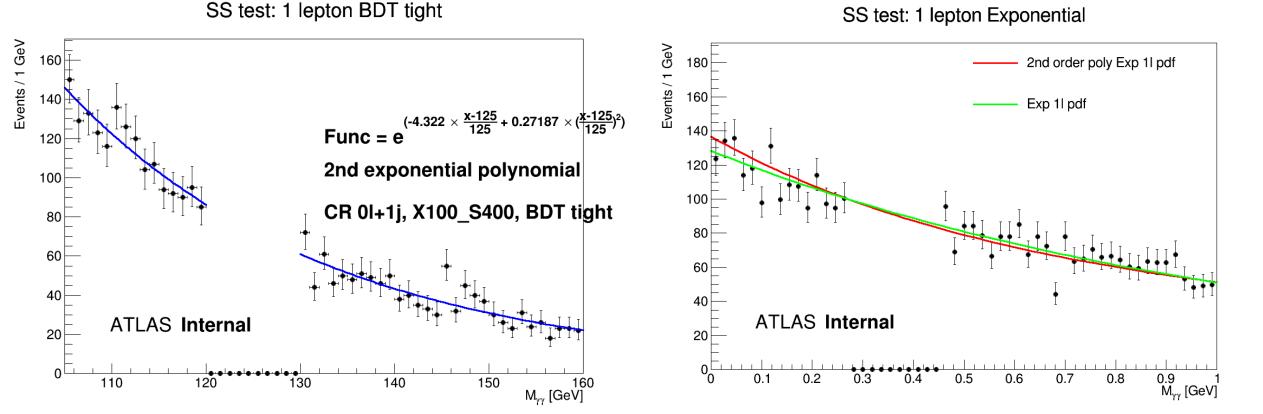

Theoretical rankings


- Typical rankings like:
 - Theoretical PDF QCD scale ranking first ~15%. This is consistent with HH-ML and other similar generators.
 - QCD, Alpha_S, parton shower, both signal and single Higgs are theoretical uncertainties dominant. (then background modelling)
 - For experimental NPs, most of them are vetoed by the 0.5% threshold. Only egamma NPs entered the fit. Jet and other NPs hardly have significant impact on myy.

Bin by bin lepton dependance uncertainty

- Instead to calculate χ^2
- Histogram variations directly imported
- This lead to smaller uncertainty.
 - (For left plot, the uncertainty now is 1.3%).

23


Spurious signals function form check

Comparison between 1st exp and 2nd exp

23/5/29

1st exp as $e^{-0.033(x)}$, Shape is shifted to (0,1) to compare.

Background functions

- In SS tests, Chebyshev polynomials is vetoed.
- Both 1st exp and 2nd exp can pass the tests but most of them 2nd exp has better benchmarks for mu_sp. So 78 of 80 of them choose exppoly2.
- Among 78 of 80 functions, 2nd order exp is best in the SS benchmark.
 - Left 2 use 1st exp.
- After check, with ~1000 events left in 0l CR region,
 - I can confirm always smooth down shape and no peak around 120 GeV.

Background function fit on sideband data.

- In SH analysis, the continuum background do not rely on the side band data. Instead, control region with more events used.
- If using sideband data, one need to fix shape to confirm the function is always left higher, and right side lower. Then the deviation is small.
- If use sideband data to determine the shape, there is the example from bbyy group.

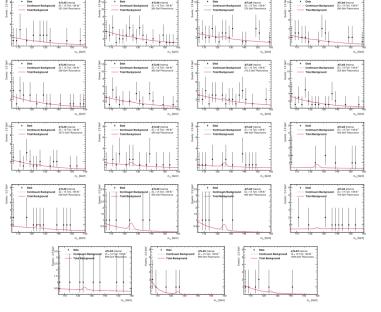
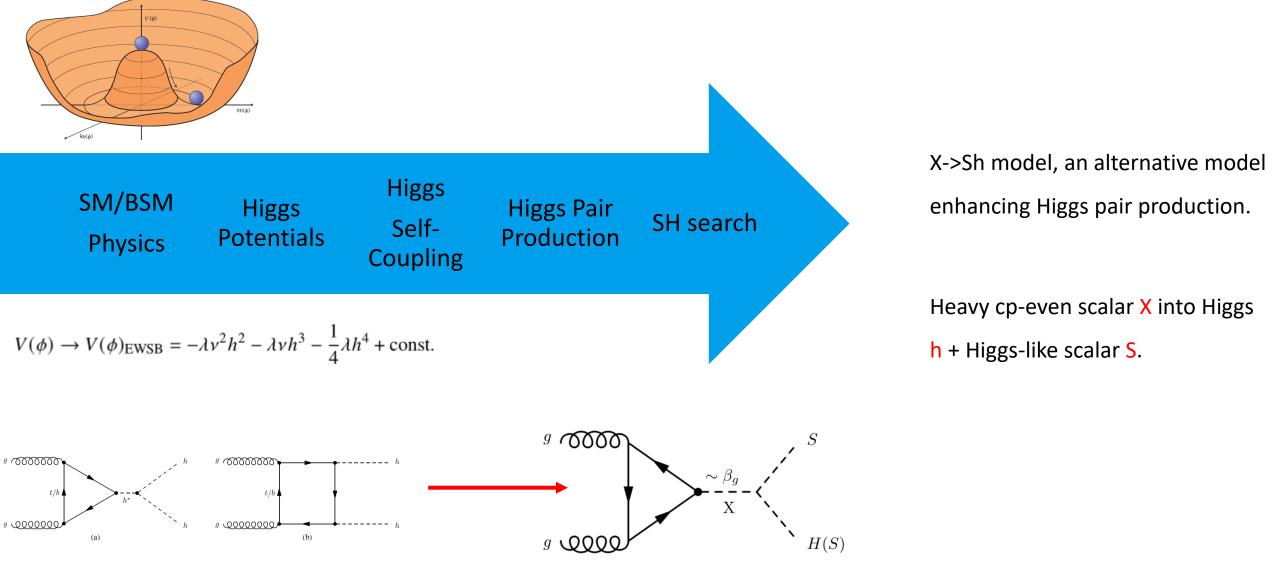


Figure 57: Background only fit to data for each resonance

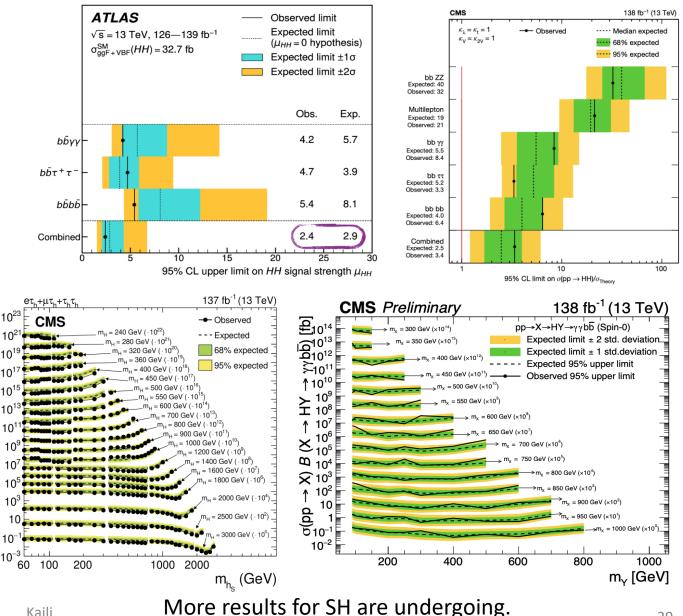

Moving forward

- Analysis strategy established and well defined now;
- Many updates are done since last closure report
 - Internal note now include more materials
 - Paper can be prepared quickly based on this
- We are ready for unblinding
 - Similar strategy as HH-ML, similar excess is expected.

SH model for Higgs couplings

Current studies for HH/SH

ATLAS HH:


- bbyy: Phys. Rev. D 106, 5 (2022) pp.052001
- bbbb: (ATLAS-CONF-2022-035)
- bbττ: (<u>arXiv:2209.10910</u>)
- combination: arXiv: 2211.01216 ٠

CMS HH:

- bbbb: (PRL 129(2022)081802) ٠
- bbyy: (JHEP 03(2021)257)
- bbττ: arXiv:2206.09401
- multilepton: <u>arXiv: 2206.10268</u> ٠
- Wwyy: CMS PAS HIG-21-014 ٠
- combination: Nature 607, 60-68 (2022) • SH:

CMS SH->bb*tt*: JHEP 11 (2021) 057

CMS SH->bbyy: CMS PAS HIG-21-011

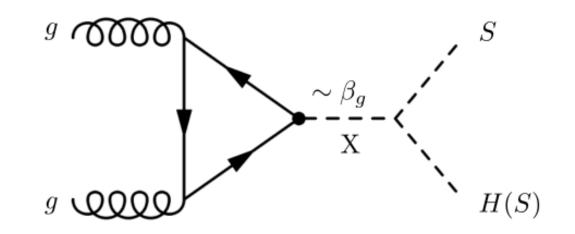
23/5/29

(qd)

h (ldd))

B(H

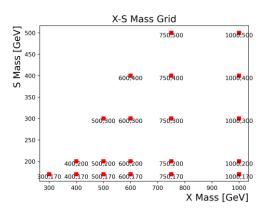
Ы


CL limit

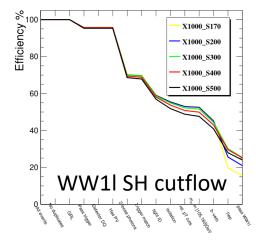
95%

Model & Final states

- Expected to be model independent
 - Nominal sample do not rely on BSM assumptions;
 - Results presented as S follow as same decay branch ratio as H.
 - Also S->WW/ZZ 100% results shown for extrapolation.
- If S decay like Higgs, for $m_S > m_{125}$, S would decay into WW and ZZ dominantly.
 - S decay: electron or muon;
 - H125 decay: diphoton, clear spectrum;
- Final states:
 - Diphoton + Multilepton chosen.



Samples


- Data: Official HGam h026, 139ifb, 15-18 full Run2 data.
- Signal
 - SH WW1I, WW2I, ZZ2I, Pythia8.(800938-800997)
- MC:
 - SM Higgs(ggH, VBFH, WH, qqZH, ggZH.....)
 - Continuum background: yy+jets, V/VV+yy, $\hat{t}t$ +yy.
 - yy+0l, 1l, 2l for bkg shape study;

In SH, to mix WW and ZZ signals properly,
the decay branching ratio are assumed to
be the same as Higgs.

$m_S[\text{GeV}]$	$BR(S \rightarrow WW)$	$BR(S \rightarrow ZZ)$
170	96.28%	2.44%
200	73.90%	25.68%
300	69.12%	30.72%
400	57.65%	26.90%
500	54.09%	25.86%

- 20 mass points has been chosen:
- S mass from 170 to 500 GeV
- X mass from 300 to 1000 GeV

⁽d) $m_X = 1000 \text{ GeV}$

Consistent with other HGam studies.

General Object definition

All default configuration in HGamframework.(h026, AnalysisBase 21.2.131.), Same as HH-ML.

- Good event
 - GRL, Pass the trigger, detector DQ.....
- B-veto
 - B-77 veto to avoid the overlap with bb.
- 2 tight photons
 - $\frac{pT_{y1}}{m_{yy}} > 0.35, \frac{pT_{y2}}{m_{yy}} > 0.25, m_{yy} \in (105, 160) \text{GeV}$
 - Tight ID, Tight ISO.

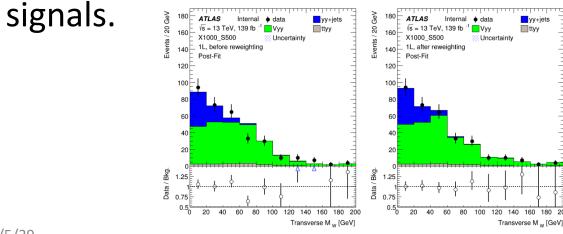
• Good lepton

- e/muon pt>10 GeV;
 - Electron PID: Medium;
 - Electron ISO: FCLoose
 - Muon PID: Medium
 - Muon ISO: PflowLoose_FixedRad
- Hadronic tau not included.

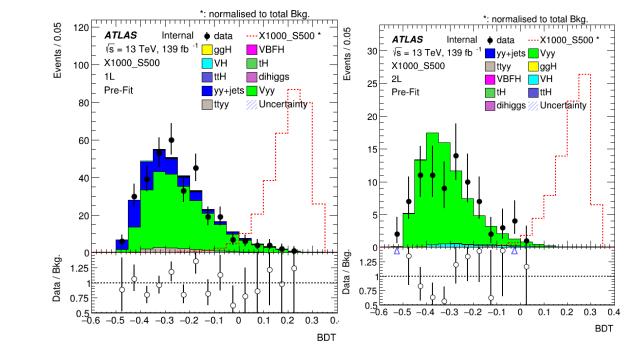
Categories

Channel	Definition	Optimization strategy
WW11	llepton, 2 central jets	BDT
WW21	2lepton, same flavor, $ m_{\ell\ell} - m_Z _{L^1}$ 10GeV	BDT
WW1e1m	1 electron 1 muon	Cut based
ZZ21	2lepton, 2 central jets, same flavor, $ m_{\ell\ell} - m_Z _i 10 \text{GeV}$	Cut based

Table 10: Definition of the four channels and the corresponding optimization strategies.


- WW1e1m and ZZ2l are clean enough so directly use as number counting.

• Qiyu use further selections like pt yy>50GeV, while in SH pt yy used as BDT training variable, no additional selections applied.


- Observables: $m_{\nu\nu}$
- Blinded region: 120 GeV< $m_{\nu\nu}$ <130 GeV
- Sideband region: [105, 120]∪ [130, 160] GeV

TMVA Training

- BDT used
- 4 folds Cross Validation.
- Training on reweighted continuum backgrounds+single Higgs+Dihiggs vs

(a)

In this plot, continuum backgrounds+single Higgs+dihiggs are shown in sideband region, while dashed signals is the normalized signal in signal region.

34

Kaili

TMVA variables

- Parametrized m_X
 - X mass used in training to get 20 different outputs, but small impact.

Parameters	Value
BoostType	AdaBoost
AdaBoostBeta	0.5
NTrees	850
MinNodeSize	2.5%
UseBaggedBoost	True
BaggedSampleFraction	0.5
SeparationType	GiniIndex
nCuts	20
MaxDepth	3
NegWeightTreatment	Ignore
UseCrossValidation	True
Nums of Folds	4

Variable	Definition	Separation						
Regarding part	Regarding particle X							
$\Delta R(\gamma\gamma, l\nu jj)$								
Regarding part	Regarding particle S							
$\Delta R(jj,l\nu)$	Angular difference between dijet system (W_{had}) and $l\nu$ system (W_{lep})	0.089						
$p_T^{l\nu jj}$	Transverse momentum of $l\nu j j$ system (S)	0.373						
Regarding SM	Higgs boson							
$p_T^{\gamma\gamma}$	Transverse momentum of diphoton system (<i>H</i>)	0.484						
$\Delta \Phi(\gamma \gamma, l)$	Polar angle difference between di-photon system (H) and signal lepton	0.026						
Regarding sing	Regarding single W boson from S							
$\Delta R(j,j)$	Angular difference between two jets (W_{had})	0.171						
p_T^{jj}	Transverse momentum of di-jet system (W_{had})	0.181						
$m_{jj}(m_W)$	Invariant mass of di-jet system whose mass is closest to $m_W(W_{had})$	0.119						
$\Delta R(l, E_{\rm T}^{\rm miss})$	Angular difference between lepton and $E_{\rm T}^{\rm miss}(W_{lep})$	0.108						
E ^{miss}	Missing transverse momentum	0.248						
p_T^l	Transverse momentum of the single lepton	0.203						
$m_T(l\nu)$	Transverse mass of $l + E_{T}^{miss}$ system (W_{lep})	0.044						

Table 11: Variables used for BDT training in WW11 channel and their separation powers.

Variable	Definition					
Regarding particle 3	(
$\Delta R(\gamma \gamma, ll + E_T^{miss})$	Angular difference between diphoton system (H) and $ll + E_T^{miss}$ system (S)	0.031				
Regarding particle S						
$\Delta R(l_1 + E_T^{\text{miss}}, l_2)$	Angular difference between leading lepton + $E_T^{miss}(W_{l1})$ and l_2	0.038				
Regarding SM Higg	s boson					
$p_T^{\gamma\gamma}$	Transverse momentum of diphoton system (H)	0.621				
$\Delta \Phi(\gamma \gamma, l_1)$	Polar angle difference between di-photon system (H) and the leading lepton	0.079				
Regarding single W	boson from S					
$p_T^{l_1}$	Transverse momentum of the leading lepton	0.415				
E ^{miss}	Missing transverse momentum	0.638				
$p_T^{l_1+E_T^{miss}}$	Transverse momentum of the leading lepton and E_{T}^{miss} system	0.533				
$m_T (l_1 + E_T^{\text{miss}})$	Transverse mass of leading lepton and E_T^{miss} system	0.362				
m_{ll}	Invariant mass of di-lepton system	0.358				

Table 12: Variables used for BDT training in WW2l channel and their separation powers.

No variable heavily rely on X/S mass value.

BDT cut value configuration

- 2 region, tight, loose defined.
- At least 2 side band data events in tight region assured.

X Mass [GeV]	S Mass [GeV]	WW1L BDT Cut	WW2L BDT Cut
300	170	0.085	0.14
400	170	0.085	0.08
400	200	0.03	0.1
500	170	0.125	0.12
500	200	0.095	0.11
500	300	0.025	0.09
600	170	0.16	0.09
600	200	0.115	0.065
600	300	0.045	0.09
600	400	0.035	0.06
750	170	0.185	0.025
750	200	0.155	0
750	300	0.11	0.035
750	400	0.07	0.065
750	500	0.035	0.065
1000	170	0.155	-0.02
1000	200	0.15	-0.1
1000	300	0.145	-0.03
1000	400	0.115	0.015
1000	500	0.115	0.015

• Impact for different threshold studied. from threshold 2-10.

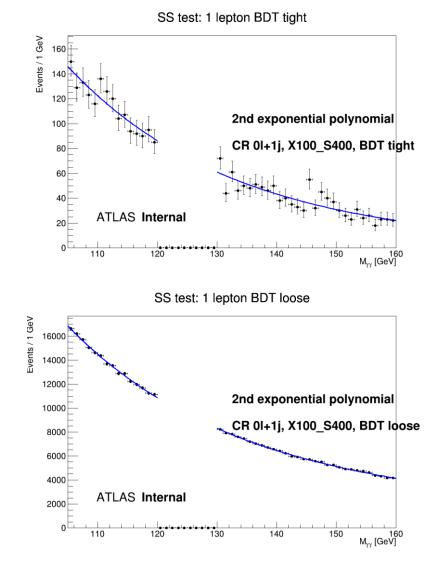
Threshold	1	2	3	5	6	7	8	9	10
Limit increase	100%	103.7%	105.2%	108.1%	109.8%	110.3%	111.5%	113.4%	114.4%
Cut value	0.12	0.115	0.1	0.095	0.08	0.07	0.065	0.055	0.05

Table 17: Relative limit change for different sideband data entry threshold in $(m_X, m_S) = (1000, 400)$ GeV WW11 channel.

Threshold	1	2	3	4	5	6	7	8	9	10
Limit increase	100%	103.1%	105.3%	106.4%	110.2%	109.6%	112.8%	112.7%	114.0%	115.3%
Cut value	0.165	0.15	0.135	0.1	0.09	0.06	0.05	0.045	0.025	0.15

Table 18: Relative limit change for different sideband data entry threshold in $(m_X, m_S) = (1000, 170)$ GeV WW11 channel.

Threshold	1	2	3	4	5	6	7	8	9	11
Limit change	100%	106.9%	99.5%	78.7%	80.4%	83.1%	90.5%	93.3%	92.4%	98.4%
Cut value	0.195	0.185	0.165	0.105	0.09	0.08	0.075	0.07	0.065	0.055


Table 19: Relative limit change for different sideband data entry threshold in $(m_X, m_S) = (750, 200)$ GeV WW1L channel

Background Estimation

- Using sideband data OI CR (failed 2 tight photons) shape to simulate yy+1/2I shape.
- Use sideband data yy+0l+1j to simulate yy+lvjj.
- Use yy+0l+2j to simulate yy+lvlv.
- Smooth analytic function used to estimate the signal region in 120-130.
- Bkg yields scaled to sideband data.

Spurious signals

- Impact for different background functions tested.
- 2nd order exponential polynomial chosen.
- μ_{SP} used as uncertainty on signal yields.

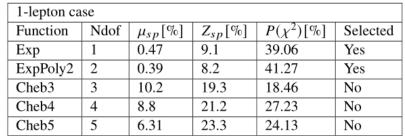
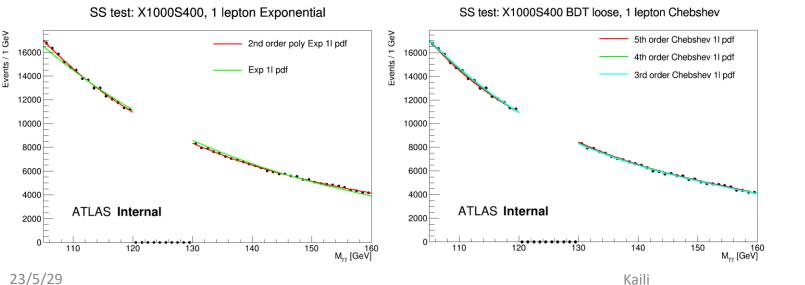



Table 21: The spuirous signal test result for 1 lepton channel in $m_X = 1000 GeV$, $m_S = 300 GeV$, BDT loose region.

Chebyshev polynomial functions usually can not pass the criteria; Bernstein is buggy for discontinuous regions. For 1st Exp and 2nd Exp, following the previous practice, 2nd Exp is chosen.

> Both lepton dependance and spurious signals varied for different X-S mass points, 1I and 2I, and bdt tight and loose. (80 in total)

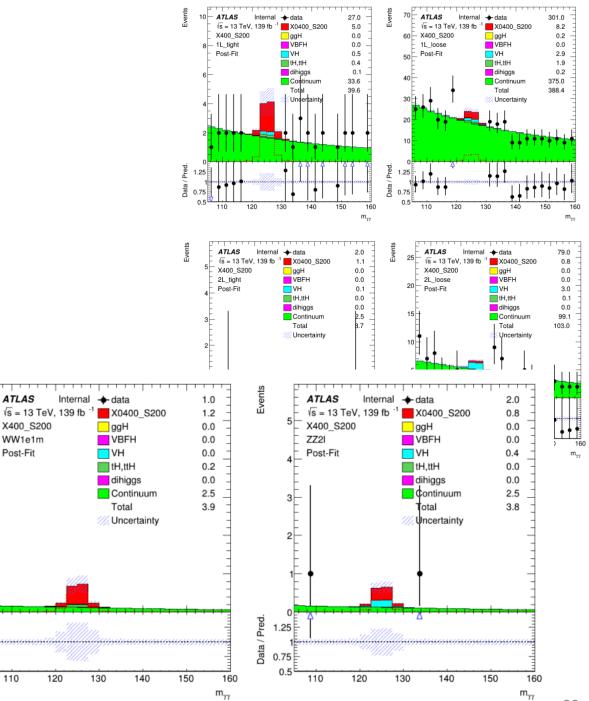
m_{yy} distribution

- Use TRExFitter, one binned fitting tool.
 - Suffered from limited statistics.
 - No need to parametrized signal shape

Event

Data / Pred.

1.25


0.75

0.5

• [105, 160], 25bins.

Parameters	Value
MCstatThreshold	0.005
SystPruningNorm	0.005
SystPruningShape	0.005
BlindSRs	FALSE
FitType	SPLUSB
FitRegion	CRSR
LimitType	ASYMPTOTIC
Observed Variable	$m_{\gamma\gamma}$
Variable Range	(105, 160)GeV
Blind Range	(120, 130)GeV
Numebr of bins	22
Bin width	2.5 GeV

Table 24: Summary of configurations used in TRExFitter.

Theory uncertainties

- Truth level sample generated to calculate the global change for variations:
 - Madgraph+Pythia8
 - Madgraph+Herwig7
 - In MadGraph, need to specify model name for Herwig: SM_loop_twoscalar.
 - Current signal QCD is the dominant uncertainty source, ~13% for X1000S500.

1 lepton region										
Uncertainties	α_{S} (%)	PDF (%)	QCDup(%)	QCDdown (%)						
ggF	3.39	3.67	25.89	-15.97						
VBF	0.98	7.96	0.97	-0.52						
WmH	0.83	5.78	2.77	-3.20						
WpH	0.86	4.99	2.45	-3.08						
qqZH	0.88	6.08	3.64	-3.68						
ggZH	1.14	3.08	25.83	-19.45						
ttH	2.00	5.21	7.39	-9.51						
tHbj	0.00	17.01	8.38	-8.63						
tHW	0.00	8.30	2.51	-2.02						
	2 leptor	n region								
Uncertainties	α_S (%)	PDF (%)	QCDup(%)	QCDdown (%)						
ggF	4.37	4.39	38.96	-16.38						
VBF	0.70	0.11	1.19	-1.12						
WmH	1.02	4.83	1.87	-3.37						
WpH	1.17	4.26	5.16	-4.12						
qqZH	1.00	5.78	4.67	-3.91						
ggZH	1.03	2.97	25.77	-19.41						
ttH	1.92	4.87	6.63	-9.59						
tHbj	0.00	30.57	9.91	-8.77						
tHW	0.00	8.07	5.45	-6.46						

Table 22: SM Higgs theoretical uncertainties for QCD, α_S and PDF variations

1 lepton region										
Uncertainties	Parton Shower (%) α_S (%) PDF (%) qcdup(%) qcddown (%)									
di-Higgs	2.51	0.93	3.87	13.22	-12.47					
	2 lepton region									
Uncertainties	Parton Shower (%)	α_S (%)	PDF (%)	qcdup(%)	qcddown (%)					
di-Higgs	-2.85	0.93	3.94	13.17	-12.48					

Table 23: Di-Higgs theoretical uncertainties for Parton shower, QCD, α_S and PDF variations.

Dihiggs Results from Qiyu.

Systematic uncertainties

- Followed Dihiggs scenarios, >100 NPs included.
- While there are no explicit selections on objects for photons and leptons, most NPs do not change m_{yy} shape and yield.
- Pruning threshold 0.5%, usually only Egamma, lumi, DATASF NPs passed.
- Analysis dominates by statistics.

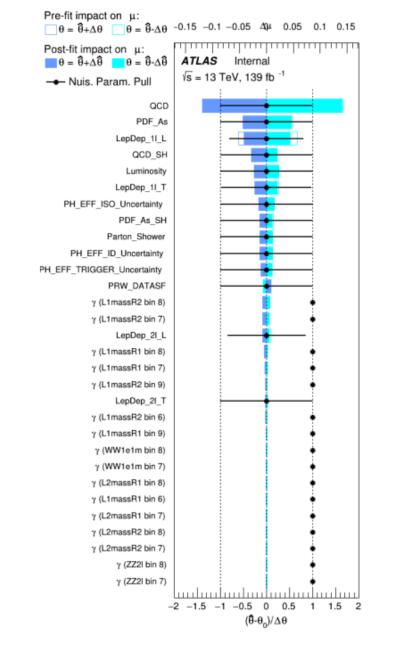
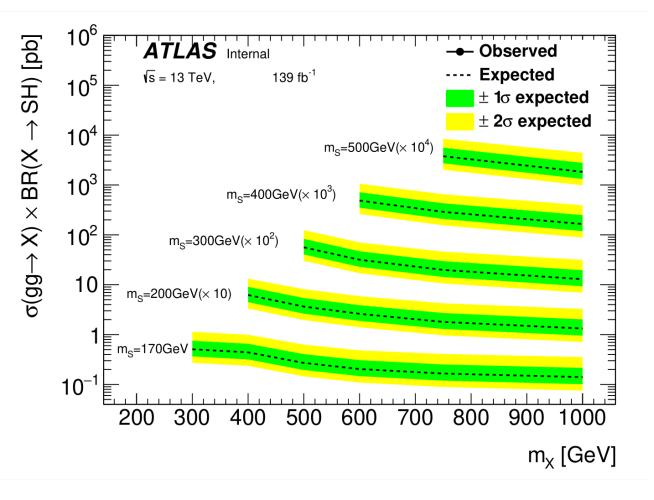


Figure 36: Rankings including systematics and gammas for (m_X, m_S) =(400,200) GeV mass


41

۱S

ΕΝΤ

Expect Results for S decay like SM.

m_X [GeV]	$m_S[GeV]$	+2σ [pb]	+1σ [pb]	Median [pb]	-1σ [pb]	-2σ [pb]
300	170	1.360	0.896	0.604	0.435	0.324
400	170	1.130	0.762	0.517	0.372	0.277
400	200	1.636	1.138	0.786	0.567	0.422
500	170	0.756	0.493	0.330	0.238	0.177
500	200	1.020	0.683	0.462	0.333	0.248
500	300	0.666	0.974	0.666	0.480	0.357
600	170	0.651	0.420	0.280	0.201	0.150
600	200	0.745	0.496	0.335	0.241	0.180
600	300	0.842	0.571	0.389	0.280	0.209
600	400	1.248	0.844	0.574	0.414	0.308
750	170	0.567	0.366	0.243	0.175	0.130
750	200	0.572	0.369	0.246	0.177	0.132
750	300	0.631	0.429	0.290	0.209	0.155
750	400	0.820	0.547	0.370	0.266	0.198
750	500	1.020	0.687	0.466	0.336	0.250
1000	170	0.421	0.267	0.176	0.127	0.094
1000	200	0.401	0.254	0.168	0.121	0.090
1000	300	0.404	0.260	0.173	0.125	0.093
1000	400	0.471	0.303	0.201	0.145	0.108
1000	500	0.565	0.365	0.243	0.175	0.130

Table 27: Upper limits at the 95% confidence level for the cross-section of the gluon fusion production of the resonance $X \rightarrow SH$ and the S particle is assumed to decay to WW/ZZ following the SM prediction.

Best channel in (X1000, S200): 168fb.

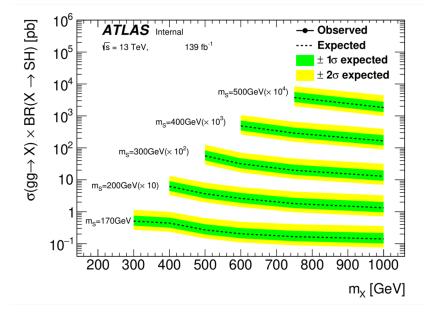
Expect results for S 100% to WW/ZZ.

BDT cut value stay the same as SM predictions, but scale the yields to 100% WW/ZZ.

WW:

m_X [GeV]	$m_S[GeV]$	+2σ [pb]	+1σ [pb]	Median [pb]	-1σ [pb]	-2σ [pb]
300	170	1.327	0.863	0.578	0.417	0.310
400	170	1.166	0.788	0.535	0.385	0.287
400	200	1.126	0.769	0.524	0.378	0.281
500	170	0.762	0.499	0.333	0.240	0.179
500	200	0.831	0.557	0.376	0.271	0.202
500	300	0.981	0.673	0.460	0.332	0.247
600	170	0.648	0.420	0.280	0.202	0.150
600	200	0.573	0.380	0.256	0.184	0.137
600	300	0.615	0.416	0.282	0.203	0.151
600	400	0.796	0.538	0.364	0.263	0.196
750	170	0.564	0.356	0.235	0.169	0.126
750	200	0.450	0.293	0.195	0.140	0.105
750	300	0.450	0.298	0.200	0.144	0.108
750	400	0.466	0.300	0.199	0.144	0.107
750	500	0.776	0.523	0.355	0.256	0.191
1000	170	0.410	0.254	0.167	0.120	0.089
1000	200	0.326	0.202	0.133	0.096	0.071
1000	300	0.280	0.175	0.115	0.083	0.062
1000	400	0.272	0.172	0.113	0.081	0.061
1000	500	0.309	0.196	0.129	0.093	0.069

ZZ:


m_X [GeV]	$m_S[GeV]$	+2 <i>σ</i> [pb]	+1σ [pb]	Median [pb]	-1σ [pb]	-2σ [pb]
300	170	5.059	3.230	2.119	1.527	1.137
400	170	3.875	2.469	1.620	1.167	0.870
400	200	2.597	1.656	1.088	0.784	0.584
500	170	3.075	1.953	1.280	0.923	0.687
500	200	2.187	1.392	0.915	0.659	0.491
500	300	2.142	1.366	0.900	0.648	0.483
600	170	2.725	1.726	1.130	0.814	0.606
600	200	1.926	1.223	0.803	0.579	0.431
600	300	1.753	1.113	0.732	0.527	0.393
600	400	2.036	1.297	0.854	0.615	0.458
750	170	2.537	1.606	1.050	0.757	0.564
750	200	1.825	1.155	0.758	0.547	0.407
750	300	1.417	0.898	0.589	0.425	0.316
750	400	1.532	0.972	0.639	0.460	0.343
750	500	1.749	1.112	0.731	0.527	0.393
1000	170	2.384	1.499	0.983	0.708	0.527
1000	200	1.999	1.260	0.825	0.594	0.443
1000	300	1.216	0.766	0.502	0.362	0.270
1000	400	1.209	0.762	0.500	0.360	0.268
1000	500	1.272	0.803	0.526	0.379	0.282

100% WW have better limits for larger yields.

Summary

- We are ready for unblinding.
 - Currently best channel in X1000S200, for 168fb.

45

Backups

Signal cutflows

m _X	300	400	400	500	500	500	600	600	600	600
m _x m _s	170	170	200	170	200	300	170	200	300	400
WW11, DSID	800943	800944	800945	800946	800947	800948	800949	800950	800951	800952
All events	100	100	100	100	100	100	100	100	100	100
No duplicates	100	100	100	100	100	100	100	100	100	100
GRL	100	100	100	100	100	100	100	100	100	100
	77.56	82.25		88.92		83.35			90.37	84.82
Pass trigger		82.25	81.14		88.45		91.86	91.69		
Detector DQ Has PV	77.56	82.25	81.14	88.92	88.45	83.35	91.86	91.69	90.37	84.82
	77.56		81.14	88.92	88.45	83.35	91.86	91.69	90.37	84.82
2 loose photons	58.57	59.26	59.46	60.98	61.10	61.23	63.06	63.11	62.69	62.65
Trigger match	53.29	54.64	54.12	58.45	58.19	55.83	61.60	61.46	60.02	57.10
tight ID	45.04	46.47	46.07	49.67	49.36	47.09	52.24	52.01	50.49	47.84
isolation	36.73	39.99	38.98	44.28	43.61	39.70	47.45	46.98	44.37	40.26
rel. pT cuts	34.16	35.51	34.57	39.95	39.10	35.11	43.62	43.15	39.97	35.50
myy in [105, 160]GeV	33.81	35.18	34.16	39.51	38.59	34.34	43.21	42.64	39.11	34.43
b-veto	30.75	31.49	30.52	34.97	34.19	30.35	38.03	37.52	34.18	30.19
At least 11ep	19.32	19.81	20.30	21.27	22.71	20.67	21.92	24.46	23.73	20.55
pass WW11	11.01	13.12	13.85	15.20	16.58	16.11	16.27	18.60	18.92	16.95
WW21, DSID	800963	800964	800965	800966	800967	800968	800969	800970	800971	800972
All events	100	100	100	100	100	100	100	100	100	100
No duplicates	100	100	100	100	100	100	100	100	100	100
GRL	100	100	100	100	100	100	100	100	100	100
Pass trigger	84.51	87.68	87.25	91.92	91.75	89.45	93.83	93.99	93.39	91.03
Detector DQ	84.51	87.68	87.25	91.92	91.75	89.45	93.83	93.99	93.39	91.03
Has PV	84.51	87.68	87.25	91.92	91.75	89.45	93.83	93.99	93.39	91.03
2 loose photons	58.15	57.75	58.43	59.10	58.94	60.23	60.91	60.68	60.45	61.59
Trigger match	53.03	53.45	53.28	56.75	56.22	55.25	59.63	59.21	58.15	56.72
tight ID	45.22	45.74	45.55	48.59	48.07	47.34	50.94	50.69	49.77	48.45
isolation	38.12	39.65	39.06	43.23	42.55	40.57	45.96	45.60	43.99	41.37
rel. pT cuts	35.49	34.90	34.68	38.88	38.01	35.87	42.10	41.73	39.45	36.56
myy in [105, 160]GeV	34.79	34.22	33.88	38.02	36.96	34.43	41.17	40.68	37.95	34.67
b-veto	33.56	32.74	32.39	36.23	35.17	32.95	39.05	38.65	36.08	32.96
At least 2lep	17.14	18.06	18.12	20.55	20.72	19.45	22.16	23.23	22.35	20.15
pass WW21	17.01	17.90	17.60	20.34	20.09	18.95	21.90	22.44	21.73	19.76
pass ZZ21	0.07	0.10	0.43	0.13	0.52	0.40	0.14	0.65	0.46	0.23
WW21-em	8.46	8.91	8.85	10.17	10.27	9.64	10.96	11.50	11.02	10.03
fall to 1lepton category	11.93	10.51	10.99	11.07	11.14	10.93	11.54	11.82	11.33	10.58
ZZ2I, DSID	800983	800984	800985	800986	800987	800988	800989	800990	800991	800992
All events	100	100	100	100	100	100	100	100	100	100
No duplicates	100	100	100	100	100	100	100	100	100	100
GRL .	100	100	100	100	100	100	100	100	100	100
Pass trigger	77.68	81.12	80.26	87.03	86.52	81.65	89.98	89.82	88.24	82.69
Detector DQ	77.68	81.12	80.26	87.03	86.52	81.65	89.98	89.82	88.24	82.69
Has PV	77.68	81.12	80.26	87.03	86.52	81.65	89.98	89.82	88.24	82.69
2 loose photons	53.42	53.66	54.13	54.92	55.21	55.79	56.92	57.19	56.96	57.33
Trigger match	48.43	49.46	49.14	52.63	52.49	50.88	55.57	55.65	54.47	52.29
tight ID	40.75	41.91	41.52	44.61	44.41	42.81	46.87	46.93	45.85	43.71
isolation	32.83	35.78	34.68	39.36	38.81	35.77	42.31	42.05	39.74	36.32
rel. pT cuts	30.54	31.61	30.81	35.43	34.77	31.78	38.92	38.53	35.90	32.00
myy in [105, 160]GeV	29.93	30.98	30.14	34.67	33.94	30.73	38.17	37.69	34.73	30.70
b-veto	25.04	24.53	23.71	26.65	25.77	22.89	28.65	28.14	25.25	21.89
At least 2lep	12.82	24.33 12.97	12.87	13.79	13.86	13.75	14.16	14.69	15.67	13.50
pass WW2l	10.13	9.66	6.13	9.94	6.21	5.69	9.99	6.26	6.18	5.16
pass W W 21 pass ZZ21	2.64	3.24	6.68	3.77	7.60	7.99	4.08	8.35	9.40	8.25
WW21-em	0.07	5.24 0.09	0.08	0.09	0.09	0.13	4.08	0.11	9.40 0.14	0.11
fall to 1lepton category	8.52	8.06	7.69	8.76	8.32	6.26	9.56	9.20	6.33	5.53
ian to hepton category	6.32	8.00	7.09	0.70	0.34	0.20	9.30	9.20	0.33	3.35

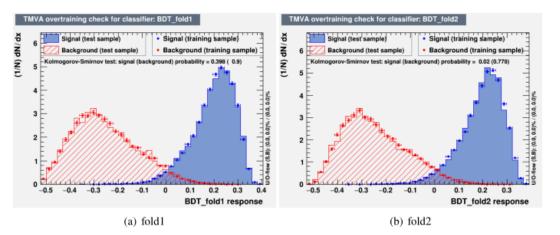

X S	750 170	750 200	750 300	750 400	750 500	1000 170	1000 200	1000 300	1000 400	1000 500
S WW11, DSID	800953	800954	800955	400 800956	800957	800938	800939	800940	800941	800942
All events	100	100	100	100	100	100	100	100	100	100
No duplicates	100	100	100	100	100	100	100	100	100	100
GRL	100	100	100	100	100	100	100	100	100	100
Pass trigger	93.90	93.92	93.60	92.95	90.06	95.70	95.56	95.69	95.69	95.31
Detector DO	93.90	93.92	93.60	92.95	90.00	95.70	95.56	95.69	95.69	95.31
Has PV	93.90	93.92	93.60	92.95	90.06	95.70	95.56	95.69	95.69	95.31
2 loose photons	66.12	65.98	65.50	64.81	63.87	70.26	70.03	69.93	69.35	68.60
Trigger match	65.35	65.15	64.43	63.04	60.41	69.85	69.62	69.50	68.81	67.87
tight ID	55.30	55.05	54.46	52.80	50.27	59.30	58.99	58.67	58.08	56.94
isolation	51.01	50.75	49.51	46.92	43.19	55.65	55.44	54.89	53.74	51.84
rel. pT cuts	47.92	47.61	46.04	43.00	38.47	53.12	52.95	52.20	50.81	48.79
myy in [105, 160]GeV	47.57	47.12	45.22	41.89	37.09	52.87	52.51	51.55	49.92	47.62
b-veto	41.45	41.08	39.16	36.33	32.17	45.53	45.14	44.30	42.94	40.86
1lep	21.69	25.62	27.08	24.90	21.87	19.71	25.60	30.14	29.57	27.95
pass WW11	16.62	20.31	22.32	20.98	18.68	15.49	20.95	25.37	25.19	24.01
WW21, DSID	800973	800974	800975	800976	800977	800958	800959	800960	800961	80096
All events	100	100	100	100	100	100	100	100	100	100
No duplicates	100	100	100	100	100	100	100	100	100	100
GRL	100	100	100	100	100	100	100	100	100	100
Pass trigger	95.43	95.31	95.49	95.37	94.10	96.61	96.77	96.84	96.88	96.82
Detector DQ	95.43	95.31	95.49	95.37	94.10	96.61	96.77	96.84	96.88	96.82
Has PV	95.43	95.31	95,49	95.37	94.10	96.61	96.77	96.84	96.88	96.82
2 loose photons	63.62	63.33	63.21	62.85	62.67	67.11	67.07	67.16	66.86	66.30
Trigger match	62.94	62.62	62.21	61.51	59.53	66.77	66.70	66.76	66.37	65.70
tight ID	53.72	53.75	53.21	52.64	50.85	57.43	57.28	57.33	56.91	56.27
isolation	49.43	49.29	48.39	47.13	44.22	53.56	53.49	53.36	52.56	51.50
rel. pT cuts	46.18	46.00	44.78	42.90	39.40	50.90	50.75	50.38	49.46	48.15
myy in [105, 160]GeV	45.32	44.96	43.35	40.95	37.02	50.16	49.81	49.12	47.84	46.02
b-veto	42.79	42.47	41.01	38.49	35.14	46.94	46.63	46.05	44.92	43.22
At least 2lep	23.96	25.67	26.20	24.56	22.24	24.54	28.04	29.91	29.17	28.33
pass WW21	23.65	24.75	25.38	24.11	21.87	24.14	26.97	28.89	28.49	27.84
pass ZZ21	0.17	0.74	0.63	0.29	0.16	0.22	0.86	0.80	0.42	0.22
WW2I-em	11.90	12.65	12.93	12.22	11.08	12.22	13.90	14.75	14.40	14.12
fall to 1lepton category	12.27	12.52	12.14	11.62	10.76	13.54	13.04	12.99	12.88	12.34
ZZ21, DSID	800993	800994	800995	800996	800997	800978	800979	800980	800981	80098
All events	100	100	100	100	100	100	100	100	100	100
No duplicates	100	100	100	100	100	100	100	100	100	100
GRL	100	100	100	100	100	100	100	100	100	100
Pass trigger	92.35	92.38	91.98	90.73	87.54	94.41	94.56	94.45	94.11	93.63
Detector DQ	92.35	92.38	91.98	90.73	87.54	94.41	94.56	94.45	94.11	93.63
Has PV	92.35	92.38	91.98	90.73	87.54	94.41	94.56	94.45	94.11	93.63
2 loose photons	59.89	60.04	59.63	59.11	58.35	63.46	63.58	63.61	63.33	62.62
Trigger match	59.27	59.25	58.55	57.46	55.16	63.09	63.17	63.14	62.80	61.87
tight ID	49.98	50.14	49.17	48.08	45.78	53.39	53.43	53.22	52.85	51.68
isolation	45.90	46.00	44.42	42.29	38.80	49.83	49.88	49.41	48.66	46.80
rel. pT cuts	42.91	42.97	41.25	38.70	34.58	47.48	47.40	46.85	46.02	43.98
myy in [105, 160]GeV	42.22	42.23	40.22	37.43	33.09	46.95	46.78	45.99	44.92	42.68
b-veto	30.66	30.57	28.53	26.06	22.68	33.10	32.64	31.58	30.64	28.72
At least 2lep	13.68	14.63	17.85	16.51	14.55	12.22	13.08	19.37	19.46	18.42
pass WW2l	9.64	6.18	6.58	5.93	5.20	8.72	5.85	6.76	6.58	6.17
pass ZZ21	3.95	8.36	11.15	10.48	9.25	3.39	7.12	12.48	12.72	12.14
WW2I-em	0.11	0.13	0.17	0.18	0.16	0.12	0.10	0.20	0.21	0.21
fall to 1lepton category	10.88	10.59	6.77	5.98	5.06	12.07	12.17	7.12	6.21	5.84

Table 29: Efficiencies in percent for event selection for signals.(Continued)

46

BDT Overtraining

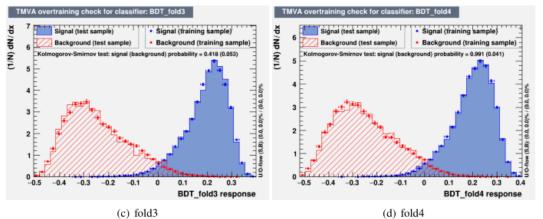
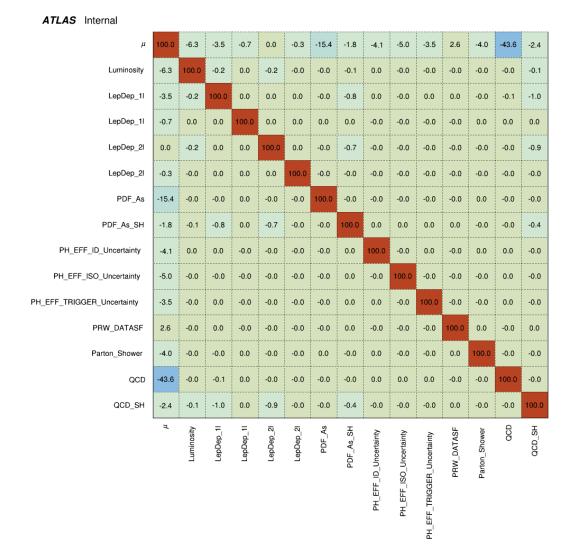
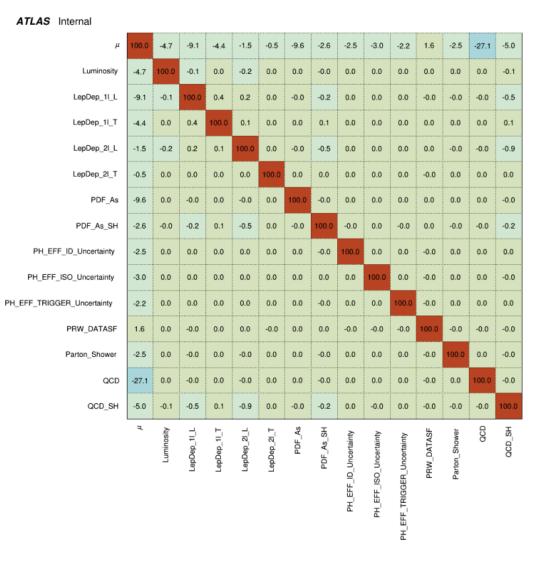
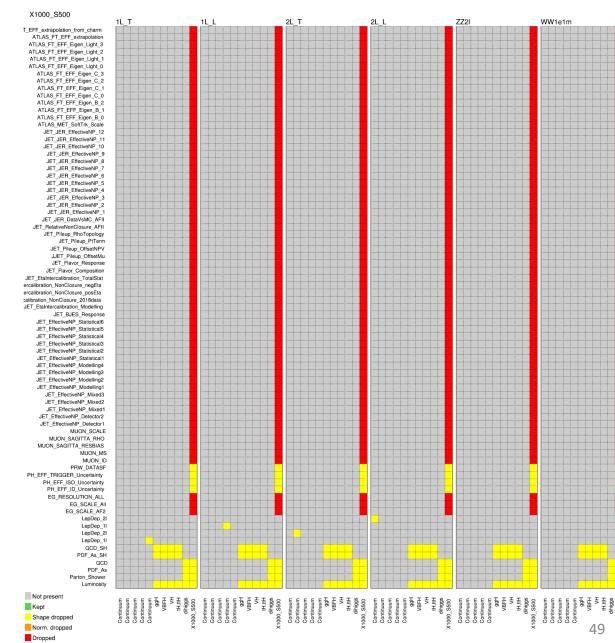



Figure 16: The overtraining plots with ks test values for 4 individual folds in 2 leptons $m_S \ge 400$ GeV group.

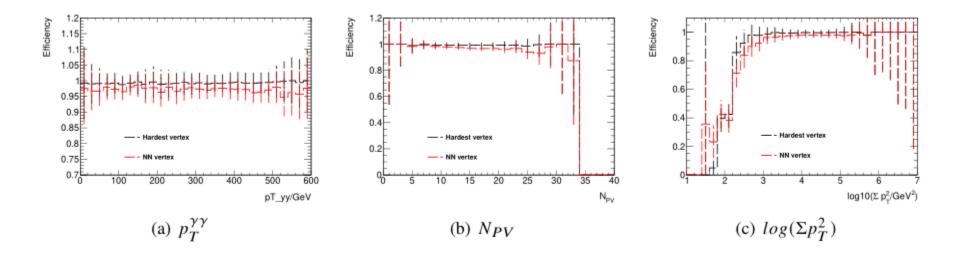

Correlation matrix

X1000S500


X400S200

Pruning situations for X1000S500

Most of the NPs are pruned by 0.5% threshold.


23/5/29

Kaili

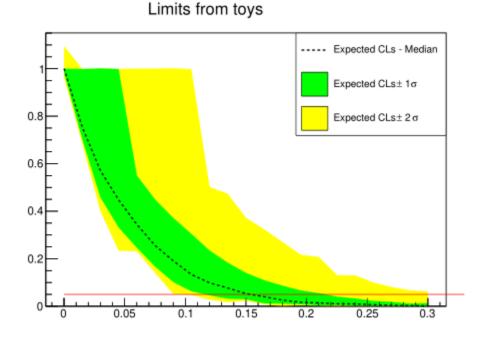
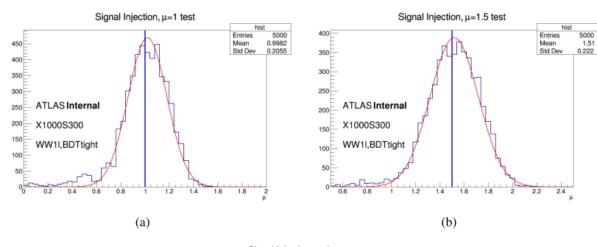
Vertex check

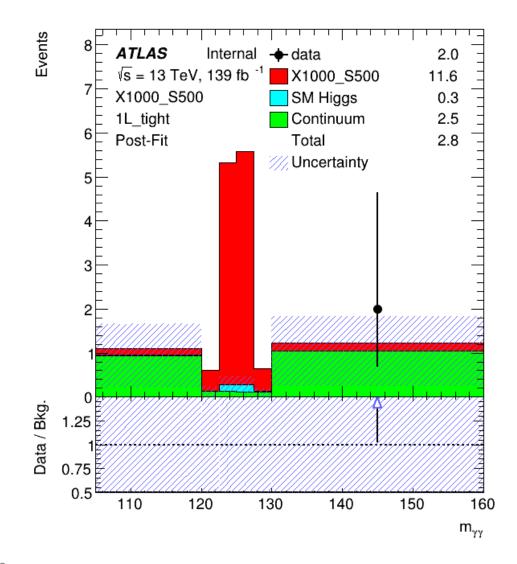
• Hgam usually use NN vertex while with leptons, it is possible to use the hardest vertex.

Toy limits & signal injections

	+20	$+1\sigma$	Median	-1σ	-2σ
Asymptotic	0.348	0.227	0.152	0.109	0.081
toy	10.00	0.215	0.153	0.116	0.097

Table 30: The expected limits of the search $m_X = 1000$ GeV, $m_S = 300$ GeV with asymptotic and toy.


Figure 91: The expected limits of the search $m_X = 1000$ GeV, $m_S = 300$ GeV with toy.

3 bin test

• Rebinning to 3 bins, the limit change is in 1%.