

第十六届TeV物理工作组学术研讨会 暨邝宇平院士学术思想研讨会

徽扰场论研究进展

马滟青北京大学

2022/11/07-11,北京·友谊宾馆

Outline

I. Higgs — as an introduction

II. Phenomenology — H, W, t...

III. Methodology — Feynman integrals

IV. Summary

> At the central of the Standard Model

- It is the only spin-0 particle
- The source all masses of elementary particle
- That is the reason we exist $(v \sim \alpha)$
- Sensitive to new physics

> But

- We do not know dynamics behand the Higgs condensation
- We do not know its potential

• ...

Announcement of Higgs discovery: July 4, 2012

At the time of discovery

Current status

ATLAS: $\mu = 1.05 \pm 0.06 = 1.05 \pm 0.04(\text{th}) \pm 0.03(\text{exp}) \pm 0.03(\text{stat})$ CMS: $\mu = 1.002 \pm 0.057 = 1.002 \pm 0.036(\text{th}) \pm 0.033(\text{exp}) \pm 0.029(\text{stat})$

- Theoretical error dominant!
- Theorists also working hard, but experimentalists are excellent...

Looking ahead

> High-precision data expected

- Run III of LHC
- High luminosity LHC: expect O(2%) uncertainty
- Requirement: reducing theoretical uncertainties by at least a factor of 4 (one higher order in α_s !)

Can theory keep up?

- A "billion-dollar project"
- Halving total uncertainty \approx building another LHC
- Note: LHC cost about 10 billion

1902.00134 Assuming theoretical errors halved

Uncertainty budget

Era of precision physics at the LHC

High-precision data

ATL-PHYS-PUB-2022-009

- Many observables probed at
 precent level precision
- Discovery via precision: search anomalous deviations from SM

 At least NNLO QCD and NLO EW corrections generally required (plus parton shower, resummation, etc.)

Automatic NNLO correction is highly demanded

Outline

I. Higgs — as an introduction

II. Phenomenology — H, W, t...

III. Methodology — Feynman integrals

IV. Summary

$pp \rightarrow H$

Require: $2 \rightarrow 1$ processes at 4 loops!!!

$pp \rightarrow H + Z$

Probe Higgs-Z coupling

- Total XS agree with Wang, Xu, Xu, L.L.Yang, 2107.08206
- Huge corrections at high p_T !
- Contribution from low $p_T Z$, due to fragmentation?

L. Chen, et. al., 2204.05225

K factor~10-20

$e^+e^- \rightarrow H + Z$

> Up to EW+QCD correction

- 1.3% (\overline{MS} , $\alpha(M_Z)$) Gong, Li, Xu, Yang, Zhao, 1609.03955
- 0.4 1.3% (Scheme dependence: $\alpha(0), \alpha(M_Z), G_{\mu}$) Sur
- $0(\alpha^2)$ EW correction is indispensable!

Sun, Feng, Jia, Sang, 1609.03995

The first two-loop EW correction with 4 legs

Freitas, Song, 2209.07612

Chen, Guan, He, Li, Liu, YQM, 2209.14953

With Fermion loops

Complete EW two-Loop

(25377 Feynman diagrams)

Calculation of real emissions are under going,

full NNLO EW corrections will be obtained soon.

$pp \rightarrow W$

> 7 standard deviations for W mass!

CDF: $M_W = 80,433.5 \pm 6.4_{\text{stat}} \pm 6.9_{\text{syst}}$ MeV

• SM precision fit: $M_W = 80,357 \pm 6 \text{ MeV}$

> PDF uncertainties

•

- Spread of predictions from different PDF sets can be much larger than the PDF uncertainty predicted by a specific PDF set
- PDF variation cannot explain CDF deviations

Science 376 (2022) 6589, 170-176

CDF Run II at NLO

Gao, Liu, Xie, 2205.03942

$pp \rightarrow W$

N3LO prediction

- Reduce W mass uncertainty to 100MeV
- Not enough to explain CDF anomaly
- LHC aims for 10MeV uncertainty, further (non) perturbative improvements needed

X.Chen, Gehrmann, Glover, Huss, Yang, Zhu, 2205.11426

Better choice of scale

Meng, Wang, Sun, Luo, Shen, Wu, 2202.09978

Top quark decay

- Principle of Maximal Conformality: absorbing all-order beta functions to α_s
- Error dominated by $\Delta m_t = \pm 1 \text{GeV}$
- The PMC improved predictions for the top-quark decay are helpful for detailed studies of properties of the top-quark.

Anomalous dim. and resummation

➤ 4-loop rapidity anomalous dimension

- Result enables the resummation of the Energy-Energy Correlators (EEC) in the back-to-back region at N4LL
- A reduction of perturbative uncertainties on the resummed cross section to below 1%.

Moult, Zhu, Zhu, 2205.02249

Duhr, Mistlberger, Vita, 2205.02242

Quarkonia

Incredible progress!!!

- Many important processes have been pushed to N2LO or N3LO
 - 1. 2202.11615: Sang, Feng, Jia, Mo, Zhang, N2LO for $e^+e^- \rightarrow J/\psi + \chi_{cJ}$
 - 2. 2205.06124: Zhang, Sang, Zhang, Two-loop for $\Upsilon \rightarrow$ double charmonia
 - 3. 2207.14259: Feng, Jia, Mo, Pan, Sang, Zhang, N3LO for leptonic width of vector quarkonium
 - 4. 2208.04302: Feng, Jia, Mo, Pan, Sang, Zhang, N3LO for the decay constant of B_c
 - 5. 2208.10118: Sang, Yang, Zhang, N2LO $Z \rightarrow P$ wave quarkonium
 - 6. 2209.15521: Tao, Zhu, Xiao, N2LO B_c and B_c^* decay constant
 - 7. 2210.02979: Sang, Zhang, Zhou, N3LO B_c^* decay constant
- Taking advantage of AMFlow package Liu, YQM, 2201.11669

Strange high order behavior

- Breaking down of perturbation theory?
- Unknown mechanism to be explored?

State-of-the-art computation

> 2→2 process with massive particles at twoloop order: almost done $g + g \rightarrow t + \overline{t}, \quad g + g \rightarrow H + H(g), \quad e^+ e^- \rightarrow H Z$

Frontier in the following decade:

- 2 \rightarrow 3 processes at two loops (3j/ γ , V/H+2j $t\bar{t}$ +j, $t\bar{t}H$,...)
- 2 \rightarrow 2 processes at three loops (2j/ γ , V/H+j, $t\bar{t}$, HH, ...)
- $2 \rightarrow 1$ processes at four loops (j, V/H, AP kernel)
- Very a few obtained, usually no exact pure virtual contribution

Very challenging

Davies, Herren, Steinhauser, 1911.10214

- Four-loop $g + g \rightarrow H$ (NNLP in HTL): 860 days (wall time!)
- Bottleneck: computing multi-loop Feynman integrals

Outline

I. Higgs — as an introduction

II. Phenomenology — H, W, t...

III. Methodology — Feynman integrals

IV. Summary

Main strategy

Reduce all FIs to Master Integrals (bases), mainly integration-by-parts. Improvements:

1) Finite field: solving intermediate express swell

Manteuffel, Schabinger, 1406.4513

2) Syzygy equations: trimming IBP system Larsen, Zhang, et. al., 1511.01071, 1805.01873, 2104.06866

3) Block-triangular form: minimize IBP system

Liu, YQM, 1801.10523, Guan, Liu, YQM, 1912.09294

Calculate MIs

. . .

Improvement for tensor reduction

Reduction using auxiliary momenta

- Changing tensor integrals to scalar integrals
- Applied to one loop and two-loop sunrise diagram

$$I_{a_1,a_2,a_3}^{(r_1,r_2)} \equiv \int \frac{d^D \ell_1}{i\pi^{D/2}} \frac{d^D \ell_2}{i\pi^{D/2}} \frac{(2\ell_1 \cdot R_1)^{r_1} (2\ell_2 \cdot R_2)^{r_2}}{D_1^{a_1} D_2^{a_2} D_3^{a_3}}$$

where the propagators are

$$D_1 \equiv \ell_1^2 - M_1^2$$
, $D_2 \equiv \ell_2^2 - M_2^2$, $D_3 \equiv (\ell_1 + \ell_2 - K)^2 - M_3^2$

Reduction using generation function

• In principle can reduce any degree of tensor integrals

$$I_{bub}(t,R) \equiv \int d\ell \frac{e^{t(2\ell \cdot R)}}{(\ell^2 - M_0^2)((\ell - K)^2 - M_1^2)}$$

Feng, Li, 2203.16881 Feng, Gong, Li, 2204.03190 Feng, 2209.09517

How to find canonical integrals?

Using leading singularity

Henn, Peraro, Xu, Zhang, 2112.10605

- Find canonical integrals with 6 legs for the first time
- An important step in the analytic calculation of planar two-loop six-particle Feynman integrals

Using intersection theory

Chen, Jiang, Ma, Xu, Yang, 2202.08127

- A novel method, very promising
- Success in examples with massive propagators

See also Yifan Wang's talk for tW production at two loops

Determining FIs by linear algebra

$FIs \triangleq Linear algebra$

AMFlow package

> Automatic calculation of general multi-loop integrals for the first time!

Liu. YQM. 2201.11669

https://gitlab.com/multiloop-pku/amflow

AMFlow: A Mathematica package for Feynman integrals computation via au	uxiliary mass flow	r i
Xiao Liu (Peking U., SKLNPT and Oxford U., Theor. Phys.), Yan-Qing Ma (Peking U., SKLNPT and Peking U., CHEP Jan 27, 2022	and CICQ M, Beijing)	
30 pages Published in: <i>Comput.Phys.Commun.</i> 283 (2023) 108565 Published: Feb, 2023 e-Print: 2201.11669 [hep-ph] DOI: 10.1016/j.cpc.2022.108565 (publication) View in: ADS Abstract Service		
🗈 pdf 🖃 cite 🗟 claim	🗟 reference search	

Already been used in many physical processes

Packages on the way

	Generate amplitudes	Manipulate amplitudes	Integral reduction	Master integrals calculation
Package used	FeynArts or Qgraf	LoopCalc	Blade	AMFlow
Notes	Open source	(Since 2009) To be released	(Since 2020) To be released	Open source

- Fully automatic, valid to any-loop order
- Main challenge: integral reduction is time/resource consuming

Implementing block-triangular form, usually improves efficiency by $O(10^2)$

The dawn of automatic multi-loop calculation!

Automatic NLO correction obtained more than 10 years ago: MadGraph, Helac, etc.

Summary

- Understanding QCD (& EW) corrections is crucial for drawing conclusions from precision measurements and direct searches for new physics
- Remarkable progress from experimental side, big pressure for theorists
- Significant progress in perturbative calculation, still huge gap from requirements
- Feynman integrals calculation remains the main bottle neck, stay tune

