Constraining the Higgs boson self-coupling from singleand double-Higgs production with the ATLAS detector using pp collisions at $\sqrt{s} = 13$ TeV

Mingxu He¹, on behalf of the ATLAS collaboration ¹IHEP, CAS

November 9th 2022

中國科學院為能物現研究所 Institute of High Energy Physics Chinese Academy of Sciences

Higgs boson

- SM predicts a scaler boson, Higgs boson, that gives mass to elementary particles through the spontaneous EW symmetry breaking and Yukawa couplings
- Higgs boson is discovered by ATLAS and CMS experiment at July 4th, 2012
- A new era of particle physics!

The ultimate probe of the scalar sector

- With the Higgs boson discovery, only a portion of the Higgs potential has been measured.
- Its shape completely determines the properties of the scalar sector.
- > SM: $V(\phi) = -\mu^2 \phi^2 + \lambda \phi^4$

$$\succ V(H) = \frac{m_H^2}{2}H^2 + \lambda v H^3 + ...$$

- Higgs couplings to vector bosons and fermions have been discovered through single Higgs production and decay.
- But Higgs self-coupling has not been discovered by experiment.
- Higgs boson pair (HH) production allows to probe directly the Higgs boson self-interaction and, ultimately, the shape of the Higgs potential.

Large Hadron Collider (LHC) and ATLAS detector

- The Large Hadron Collider (LHC) is the world's largest and most powerful particle accelerator
- ATLAS is the largest general purpose particle detector for recording final states of pp collisions
- 10 years later after the discovery, ~9 million Higgs are predicted to be produced (0.3% are accessible) in Run 2, 30 times more than the time of discovery due to higher integrated luminosity (~139 fb⁻¹), higher energy (~8 TeV 13 TeV)
- Studying Higgs coupling properties by combing Run 2 analyses to celebrate the 10th anniversary of the Higgs discovery!

DOUBLE-HIGGS COMBINATION

Higgs boson pair production

Non-resonant pairs of Higgs bosons (HH) arise from several diagrams, some of which interfere destructively. Very small cross-sections!

Gluon-gluon fusion: $\sigma_{ggF}^{SM} \simeq 31$ fb [13 TeV].

Vector-boson fusion: $\sigma_{VBF}^{SM} \simeq 1.7$ fb [13 TeV].

Other production modes (e.g. VHH, ttHH) have even smaller cross-sections.

HH decays and search channels

- **Combine 3 most sensitive channels** (no single "golden" channel)
- **bbbb** (<u>ATLAS-CONF-2022-035</u>)
 - Highest branching ratio, but large multi-jet background!
 - Mostly probes large $m_{HH} \Rightarrow$ sensitivity to HH events with large p_T^H
- *bb***ττ** (<u>ATLAS-CONF-2021-030</u>)
 - Intermediate branching ratio, but clean final state with moderate backgrounds!
- *bb***γγ** (Phys. Rev. D 106, 052001)
 - Tiny branching ratio, but very clean signature: excellent $m_{\gamma\gamma}$ resolution and small backgrounds!
 - Enhanced sensitivity at low m_{HH} , hence sensitive to the Higgs boson self-interaction.

Multitude of Higgs boson decay modes \Rightarrow $\mathcal{O}(multitude^2)$ of HH search channels, each with specific experimental challenges and sensitivity reach.

Branching ratio of HH decay mode

	bb	ww	ττ	zz	YY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
YY	0.26%	0.10%	0.028%	0.012%	0.0005%

HH combined results

- Overlaps among 3 analyses are negligible
- Upper limits of HH XS are measured

$$\mu_{HH} \equiv \frac{\sigma_{ggF+VBF}}{\sigma_{ggF+VBF}^{SM}} = -0.73 \pm 1.25, p_{SM} = 20\%$$

- Upper limit of σ_{HH} at 95% CL: 73 fb (85 fb)
- Compare to 36 fb⁻¹ ATLAS HH combination [<u>Phys.</u>
 Lett. B 800 (2020) 135103]
 - 3.4 times better exp. upper limit
 - Additional VBF mode; Better particle reconstruction algorithms; Greater number of simulated events; Better analysis strategies; Improved theory predictions

HH combined results (κ_{λ})

• Shape of $\sigma_{HH}(\kappa_{\lambda})$ exclusion limit are determined by $A \times \epsilon$ and kinematic dependence on κ_{λ}

- Most sensitive: $bb\gamma\gamma$ due to low m_{HH}
- 2.4 times better κ_{λ} limit than <u>36 fb⁻¹ ATLAS HH combination</u>

HH combined results (κ_{2V})

• VBF is sensitive to *HHVV* interaction, constrain κ_{2V} first time in combination

- Tight m_{HH} is more sensitive to κ_{2V} , **bbbb** contributes most
- Only include resolved *bbbb* final states, expect higher significance in boosted case
 - $(\kappa_{2V} \in [0.62, 1.41] \text{ at } 95\% \text{ CL in boosted } bbbb \text{ in } \underline{\text{CMS}}$, exclude $\kappa_{2V} = 0 \text{ at } 6.3\sigma$)

SINGLE-/DOUBLE-HIGGS COMBINATION

κ_{λ} interpretation on single Higgs productions

- Single Higgs boson processes do not depend on κ_{λ} at LO.
- However, NLO electroweak loops allow κ_{λ} to affect single Higgs boson production and decay modes.

- PS. The dependence of was evaluated to be negligible ۲ in single Higgs
 - Only single Higgs XS/BR are parameterized ٠

Combine with single Higgs

- Combine single- and double-Higgs to have more stringent constraints on κ_{λ}
- Comprehensive combination to relax assumptions on other Higgs couplings (κ_t , κ_V , etc.)

Channel	Integrated luminosity (fb ⁻¹)
$HH \rightarrow b\bar{b}\gamma\gamma$	139
$HH \rightarrow b \bar{b} \tau \bar{\tau}$	139
$HH \rightarrow b\bar{b}b\bar{b}$	126
$H \to \gamma \gamma$	139
$H \to ZZ^* \to 4\ell$	139
$H \to \tau^+ \tau^-$	139
$H \rightarrow WW^* \rightarrow e \nu \mu \nu \text{ (ggF,VBF)}$	139
$H \rightarrow b\bar{b}$ (VH)	139
$H \rightarrow b\bar{b}$ (VBF)	126
$H \rightarrow b\bar{b} ~(t\bar{t}H)$	139

- Overlaps are mostly negligible between single-Higgs and double-Higgs
- Except 4% $HH \rightarrow bb\tau\tau$ SR events overlapping with ttH, $H \rightarrow \tau\tau$
 - ➢ Remove *ttH*, *H* → *ττ* categories (low sensitivity to $κ_λ$) in combination

HH+H: constraints on κ_{λ}

- Two assumptions:
 - HH+H κ_{λ} only: κ_{λ} is the only source of physics beyond SM
 - HH+H κ_{λ} generic: κ_{λ} , κ_{V} , κ_{t} , κ_{b} , κ_{τ} all included for the source of physics beyond SM

HH+H: constraints on κ_{λ}

- Marginal contribution from single H, ~5%
- However, it helps to remove assumptions on other kappa

Observed value and	95% CL limits of κ_{λ}
--------------------	-------------------------------------

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$
HH combination	$-0.6 < \kappa_{\lambda} < 6.6$	$-2.1 < \kappa_{\lambda} < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
Single-H combination	$-4.0 < \kappa_\lambda < 10.3$	$-5.2 < \kappa_\lambda < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
HH+H combination	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_{\lambda} < 7.5$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t floating	$-0.4 < \kappa_{\lambda} < 6.3$	$-1.9 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.3 < \kappa_\lambda < 6.1$	$-2.1 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

> A less model dependent but still strong constraint on the Higgs boson self-coupling

> The most stringent constraints on the Higgs boson self-interactions

HH+H: constraints on κ_{λ} versus κ_t

- HH only can't constrain κ_t , κ_λ simultaneously
 - κ_t , κ_λ almost fully correlated in ggF HH XS interpretation
- With single-Higgs, assumption on can be relaxed without losing sensitivity

- Elusive non-resonant pairs of Higgs bosons are the prime experimental signature of the Higgs boson self-interaction
- > Di-Higgs only results are included as it is done for the first time using full Run 2 data
- Electroweak corrections in single-H processes provide additional sensitivity to the Higgs boson selfinteraction
- A combination of single- and double-Higgs full Run 2 analyses is presented to provide the most constraint results on the Higgs self-coupling to date
- Results were published in July 4, 10 year Higgs Symposium and already submitted to PLB (arXiv:2211.01216 [hep-ex])

κ_{λ} parametrisation in single Higgs

• κ_{λ} contributes to NLO EW correction to Higgs production and decay

$$\mu_{if}(\kappa_{\lambda}) = \mu_{i}(\kappa_{\lambda}) \times \mu_{f}(\kappa_{\lambda}) \equiv \frac{\sigma_{i}(\kappa_{\lambda})}{\sigma_{\text{SM},i}} \times \frac{\text{BR}_{f}(\kappa_{\lambda})}{\text{BR}_{\text{SM},f}}$$

PI	roduction
$\mu_i(\kappa_\lambda,\kappa_i) = \frac{\sigma^{\rm BSM}}{\sigma^{\rm SM}} =$	$Z_{H}^{\text{BSM}}(\kappa_{\lambda}) \left[\kappa_{i}^{2} + \frac{(\kappa_{\lambda} - 1)C_{1}^{i}}{K_{\text{EW}}^{i}} \right]$
$\mu_f(\kappa_\lambda,\kappa_f) = \frac{\mathrm{BR}_f^{\mathrm{BSM}}}{\mathrm{BR}_f^{SM}} =$	$= \frac{\kappa_f^2 + (\kappa_\lambda - 1)C_1^f}{\sum_j BR_j^{SM} \left[\kappa_j^2 + (\kappa_\lambda - 1)C_1^j\right]}$

- C_1^i and K_{EW}^i values are taken from <u>LHCHWG-2022-02</u>
- STXS 1.2 differential values applied to Hjj, V(let)H, ttH; inclusive values applied to ggH, tHj; no values available for tHW, bbH and ggZH
- Uncertainties on these values are not considered and are expected to be negligible
- Acc x eff assumed to be constant wrt κ_{λ} in each STXS bin
- κ_i is parametrized in terms of κ_V , κ_t , κ_b , κ_τ

Single H workspace parametrized as a function of κ_{λ} , κ_{V} , κ_{t} , κ_{b} , κ_{τ}

Di-Higgs production diagrams

- Di-Higgs decay is parametrized the same way as for single H
- Single Higgs background is parametrized the same way as for single H

• Di-Higgs production is directly sensitive to κ_{λ} at LO in EW

 $\sigma_{ggF}(\kappa_t,\kappa_\lambda) \propto |\kappa_t^2 \mathcal{A}_1 + \kappa_t \kappa_\lambda \mathcal{A}_2|^2$

- $|\mathcal{A}_1|^2$, $|\mathcal{A}_2|^2$, $|\mathcal{A}_1\mathcal{A}_2|$ determined by reweighting three ggF signal samples at reconstruction level
 - $\sigma_{VBF}(\kappa_{\lambda},\kappa_{V},\kappa_{2V}) \propto \left| \frac{\kappa_{\lambda}\kappa_{V}\mathcal{A}_{1} + \kappa_{V}^{2}\mathcal{A}_{2} + \kappa_{2V}\mathcal{A}_{3} \right|^{2}$
- $|\mathcal{A}_1|^2$, $|\mathcal{A}_2|^2$, $|\mathcal{A}_3|^2$, $|\mathcal{A}_1\mathcal{A}_2|$, $|\mathcal{A}_2\mathcal{A}_3|$, $|\mathcal{A}_1\mathcal{A}_3|$ are determined by reweighting six VBF signal samples at reconstruction level

Double H workspace parametrized as a function of κ_{λ} , κ_{2V} , κ_V , κ_t , κ_b , κ_{τ}

2022/11/9