

中國科學院為能物品湖完備 Institute of High Energy Physics Chinese Academy of Sciences

Search for Higgs boson pair production in bbyy final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Zihang Jia^{1,2}

¹*IHEP*, ²*Nanjing University*

Motivation – Higgs self-coupling

- The Higgs boson completes the Standard Model of Particle Physics.
- However, the shape of **the Higgs potential** has yet to be measured.
- We can probe the Higgs potential by measuring the Higgs self-coupling (λ).

HH production at LHC

HHyybb Analysis overview

Search for Non-resonant and Resonant HH production in *bbyy* channel (full Run2 data, 139 fb^{-1}).

One of the most sensitive HH final states:

- $H \rightarrow bb$: largest branching ratio
- $H \rightarrow \gamma \gamma$: excellent photon resolution, clean final state

	bb	ww	ττ	ZZ	ΥY
bb	34%				
ww	25%	4.6%			
ττ	7.3%	2.7%	0.39%		
ZZ	3.1%	1.1%	0.33%	0.069%	
ΥY	0.26%	0.10%	0.028%	0.012%	0.0005%

HHyybb Analysis overview

Search for Non-resonant and Resonant HH production in $\gamma\gamma bb$ channel (full Run2 data, 139 fb^{-1}).

Main backgrounds

- Single Higgs production $H \rightarrow \gamma \gamma$
- Non-resonant $\gamma\gamma$ +jets backgrounds

Common Preselection

- 2 identified and isolated photons
- 2 b-tagged jets (77% DL1r b-tagging efficiency)
- < 6 central jets (reject $t\bar{t}H$ hadronic decay)
- 0 leptons (reject $t\bar{t}H$ leptonic decay)

Statistical results obtained from a fit of $m_{\gamma\gamma}$ distribution.

Event categorization

Both Non-resonant and Resonant search rely on a combination of $(m^*_{\gamma\gamma bb} + BDT \text{ score})$.

Modified invariant mass

 $m^*_{\gamma\gamma bb} = m_{\gamma\gamma bb} - m_{\gamma\gamma} - m_{bb} + 250 \; GeV$

Provide cancellation of experimental resolution effects

> particularly for the resonant signals

Event categorization

Non-resonant analysis: target SM HH $\rightarrow \gamma\gamma bb$ processes, and possible modifications to κ_{λ} .

- > Two $m^*_{\gamma\gamma bb}$ mass regions
- Provide enhanced sensitivity to κ_{λ}

- Boosted Decision Tree, one BDT in each mass region
- Against diphoton continuum and single Higgs backgrounds

Input variables: photon, jet and missing transverse energy variables

Boundaries chosen to maximize combined expected significance

Event categorization

Resonant analysis: target $X \rightarrow HH \rightarrow \gamma\gamma bb$ processes, with $m_X \in [251, 1000]$ GeV.

- > One mass region for each m_X
- 2σ window cut around each m_X

 σ from a fit to $m^*_{\gamma\gamma bb}$ using Crystal Ball function Relaxed to 4σ for m_X = 900, 1000 GeV

Boosted Decision Tree

- Two separate BDTs against $\gamma\gamma + t\bar{t}\gamma\gamma$ and single Higgs backgrounds
- Cut on the combined BDT score for each m_X
- Input variables: photon, jet and missing transverse energy variables

Signal and background modeling

Signal parameterization - Double sided crystal ball (DSCB) function

Non-resonant analysis

- Fit to SM *HH* signal MC, model shared with *H* background
- No sizable dependence on κ_{λ} is observed

Resonant analysis

• Fit to resonance signal MC, model shared with SM HH and H background

Continuum background parameterization - Exponential function

- Function form determined from **spurious signal** study
- Spurious signal = a bias estimated from a S+B fit to a B-only MC template also a systematic uncertainty assigned to the function choice
- Functions with smaller **spurious signal** are preferred

Statistical results obtained from a **maximum-likelihood fit** to the $m_{\gamma\gamma}$ distribution

Results

No signal is observed. Exclusion limits at 95%CL are set.

Non-resonant

	Upper limit on $\sigma(HH)$	κ_{λ} constraint
Observed	<mark>4.2 x SM</mark>	<mark>[-1.5, 6.7]</mark>
(Expected)	5.7 x SM	[-2.4, 7.7]

ATLAS 36 *f b*⁻¹ <u>JHEP 11 (2018) 040</u>

CMS JHEP 03 (2021) 257

σ(*HH*) limit: 7.7 (5.2) x SM

 κ_{λ} constraint: [-3.3, 8.5] ([-2.5, 8.2])

Results

No signal is observed. Exclusion limits at 95%CL are set.

Resonant

 $\sigma(X \rightarrow HH)$ upper limits vary between 610 fb and 47 fb (360 fb and 43 fb) in $m_X \in [251, 1000]$ GeV

ATLAS 36 fb⁻¹ JHEP 11 (2018) 040

 $\pmb{\sigma}(\mathbf{X} \rightarrow \mathbf{H}\mathbf{H})$ upper limits vary between 1.1 pb and 0.12 pb

(0.9 *pb* and 0.15 *pb*) in $m_X \in [260, 1000]$ GeV

Improved by a factor of 2-3 depending on the m_X value. The analyzed mass range expanded to **lower values**.

Summary

- Searches for non-resonant and resonant HH production are performed in the $bb\gamma\gamma$ final state (139 fb^{-1}).
- No significant excess with respect to the SM background expectation is observed.
- Upper limits on $\sigma(HH)$ and constraints on κ_{λ} are set.

Improvement compared to the previous ATLAS result based on 36 fb^{-1} data:

- Extended **data set** by a factor of ~4
- **Categorization** based on $m^*_{\gamma\gamma bb}$ and **multivariate** event selections
- More precise object reconstruction and calibration

Publication: PhysRevD.106.052001

中國科學院為能物現湖完所 Institute of High Energy Physics Chinese Academy of Sciences

Thanks!

<u>JHEP 11 (2018) 040</u> (ATLAS 36 *f b*⁻¹)

JHEP 03 (2021) 257 (CMS)

ATLAS-PHYS-PUB-2021-031 (HH summary)

HH production

$HH \rightarrow b\bar{b}\gamma\gamma$ analysis in a nutshell

March 2021

V. M. M. Cairo

Background Samples

Table 1: Summary of single Higgs boson background samples, split by production modes, and continuum background samples. The generator used in the simulation, the PDF set, and tuned parameters (tune) are also provided.

Process	Generator	PDF set	Showering	Tune
ggF	NNLOPS [65–67] [68, 69]	PDFLHC [42]	Рутніа 8.2 [70]	AZNLO [71]
VBF	Powheg Box v2 [39, 66, 72–78]	PDFLHC	Рутніа 8.2	AZNLO
WH	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
$qq \rightarrow ZH$	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
$gg \rightarrow ZH$	Powheg Box v2	PDFLHC	Рутніа 8.2	AZNLO
tŦH	Powheg Box v2 [73–75, 78, 79]	NNPDF3. 0 nlo[<mark>80</mark>]	Рутніа 8.2	A14 [<mark>81</mark>]
bbH	Powheg Box v2	NNPDF3.0nlo	Рутніа 8.2	A14
tHqj	MadGraph5_aMC@NLO	NNPDF3.0nlo	Рутніа 8.2	A14
tHW	MadGraph5_aMC@NLO	NNPDF3.0nlo	Рутніа 8.2	A14
$\gamma\gamma$ +jets	Sherpa v2.2.4 [56]	NNPDF3.0nnlo	Sherpa v2.2.4	_
$t\bar{t}\gamma\gamma$	MadGraph5_aMC@NLO	NNPDF2.310	Рутніа 8.2	_

Fig. 12: Examples of LO Feynman diagrams for the partonic processes $q\overline{q}, gg \rightarrow t\overline{t}H$.

Event preselection

Photon identification (Tight WP)

Calorimeter- and track-based **isolation** within a cone of $\Delta R = 0.2$ $E_T^{iso} < 0.065 \cdot E_T$ and $p_T^{iso} < 0.05 \cdot E_T$

- ▶ $105 < m_{\gamma\gamma} < 160 \, GeV$
- $\succ p_T^{\gamma 1}/m_{\gamma \gamma} > 0.35, p_T^{\gamma 2}/m_{\gamma \gamma} > 0.25$
- DL1r b-tagging (a deep-learning neural network)
 WP: 77% efficiency
- Energy correction
- muon-in-jet correction: muons from semileptonic
 b-hadron decays
- *p_T*-reco correction: *p_T* loss due to neutrinos and objects outside of the jet cone

 m_{bb} resolution improved by about 22%

Non-resonant BDT variables

Table 2: Variables used in the BDT for the non-resonant analysis. The *b*-tag status identifies the highest fixed *b*-tag working point (60%, 70%, 77%) that the jet passes. All vectors in the event are rotated so that the leading photon ϕ is equal to zero.

-	Variable	Definition	
-	Photon-related kind	ematic variables	
-	$p_{\rm T}/m_{\gamma\gamma}$	Transverse momentum of the two photons scaled by their invariant mass $m_{\gamma\gamma}$	
	η and ϕ	Pseudo-rapidity and azimuthal angle of the leading and sub-leading photon	
:	Jet-related kinemat	ic variables	
-	<i>b</i> -tag status	Highest fixed <i>b</i> -tag working point that the jet passes	
	p_{T},η and ϕ	Transverse momentum, pseudo-rapidity and azimuthal angle of the two jets with the highest <i>b</i> -tagging score	
	$p_{\mathrm{T}}^{bar{b}}$, $\eta_{bar{b}}$ and $\phi_{bar{b}}$	Transverse momentum, pseudo-rapidity and azimuthal angle of b -tagged jets system	
*	m _{bb}	Invariant mass built with the two jets with the highest <i>b</i> -tagging score	
\bigstar	H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event	$(m_{1}, m_{2})^{2}$ $(m_{2}, m_{2})^{2}$
	Single topness	For the definition, see Eq. (1) $\chi_{Wt} = 1$	$\min \sqrt{\left(\frac{m_{j_1 j_2} - m_W}{m_W}\right)} + \left(\frac{m_{j_1 j_2 j_3} - m_t}{m_t}\right),$

Missing transverse momentum-related variables

 $E_{\rm T}^{\rm miss}$ and $\phi^{\rm miss}$ Missing transverse momentum and its azimuthal angle

Non-resonant Categorization

$$Z = \sqrt{2} * [(s+b) * \log(1 + s/b) - s]$$

ATLAS √s = 13 TeV, 139 fb⁻¹ HH→b̄bγγ m^{*}_{b̄bγγ} ≥ 350 GeV

120

130

140

BDT Tight

10

6

4

110

Low mass region

🔶 Data

ttγγ

γγbb γγ+other jets

HH (SM)

Single Higgs

DataDriven γj

DataDriven jj

150

m_{yy} [GeV]

160

High mass region

🔶 Data

ttγγ

γγbb

HH (SM)

Single Higgs

γγ+other jets

DataDriven γj

DataDriven jj

150

m_{γγ} [GeV]

Events / 2.5 GeV

25

20

15

10

5

0

110

ATLAS $\sqrt{s} = 13$ TeV, 139 fb⁻¹

120

130

140

HH→bbγγ m^{*}_{bbγγ} < 350 GeV

BDT Loose

Resonant BDT variables

Table 4: Variables used in the BDT for the resonant analysis. For variables depending on *b*-tagged jets, only jets *b*-tagged using the 77% working point are considered as described in Section 4.1.

Variable	Definition
Photon-related kinematic variable	les
$p_{\rm T}^{\gamma\gamma}, y^{\gamma\gamma}$	Transverse momentum and rapidity of the di-photon system
$\Delta \phi_{\gamma\gamma}$ and $\Delta R_{\gamma\gamma}$	Azimuthal angular distance and ΔR between the two photons
Jet-related kinematic variables	
$m_{b\bar{b}}, p_{\rm T}^{b\bar{b}}$ and $y_{b\bar{b}}$	Invariant mass, transverse momentum and rapidity of the <i>b</i> -tagged jets system
$\Delta \phi_{b\bar{b}}$ and $\Delta R_{b\bar{b}}$	Azimuthal angular distance and ΔR between the two <i>b</i> -tagged jets
$N_{\rm jets}$ and $N_{b-\rm jets}$	Number of jets and number of <i>b</i> -tagged jets
H_{T}	Scalar sum of the $p_{\rm T}$ of the jets in the event
Photons and jets-related kinemat	tic variables
$m_{bar{b}\gamma\gamma}$	Invariant mass built with the di-photon and <i>b</i> -tagged jets system
$\Delta y_{\gamma\gamma,b\bar{b}}, \Delta \phi_{\gamma\gamma,b\bar{b}}$ and $\Delta R_{\gamma\gamma,b\bar{b}}$	Distance in rapidity, azimuthal angle and ΔR between the di-photon and the <i>b</i> -tagged jets system

di-photon and the *b*-tagged jets system

$$BDT_{tot} = \frac{1}{\sqrt{C_1^2 + C_2^2}} \sqrt{C_1^2 \left(\frac{BDT_{\gamma\gamma} + 1}{2}\right)^2 + C_2^2 \left(\frac{BDT_{SingleH} + 1}{2}\right)^2}$$

2-stage optimization

- 1. Maximize significance for each resonance
 - Different coefficients and BDT scores
- 2. Select coefficients providing a significance within 5% from the maximum value, for each resonance
 - A common $C_1 = 0.65$ coefficient is found, individual BDT cuts are used

Signal modeling - DSCB

A Gaussian core + asymmetric power law tails

where N is a normalization factor and the six parameters are

- μ_{CB} and σ_{CB} describe the mean and the width of the Gaussian core, which are combined in $t = (m_{\gamma\gamma} \mu_{CB}) / \sigma_{CB};$
- α_{low} and α_{high} are the positions of the transitions with respect to μ_{CB} from the Gaussian core to power-law tails, in unit of σ_{CB} , on the low and high mass sides respectively;
- n_{low} and n_{high} are the exponents of the low and high mass tails. With the α 's, they define $R_{low} = \frac{n_{low}}{\alpha_{low}}$ and R_{high} similarly.

non-Gaussian tails can arise from experimental effects, such as photon energy mismeasurements.

One of the main benefits is the ability to describe the effects of systematic uncertainties in its shape with extra parameters

Diphoton background decomposition

- Reconstructed $\gamma\gamma$ events is mainly composed of $\gamma\gamma$, γ -jets and jet-jet events, where **the jet(s) fake(s) a real photon**.
- The 2x2D sideband method is developed using the discriminating power of **photon identification and isolation criteria**.
- The event yields in the signal region and the 15 sidebands can be expressed as **functions** of the photon efficiencies, jet fake rates and correlation coefficients.

Reference

Suffers from low statistics, not used in constructing the background templates for the spurious signal procedure.

Spurious signal

Spurious signal: a bias estimated from a signal + background fit to a background-only MC template.

$$N_{sp} = \max_{121 < m_H < 129 \ GeV} |N_s(m_H)|$$

Selection criteria:

□ $N_{sp} < 20\%$ of the data's statistical uncertainty + 2 × the MC background template statistical uncertainty □ must satisfy a simple χ^2 requirement in a background-only fit to the MC template: $p - value(\chi^2) > 1\%$

- The least number of parameters is preferred.
- The **smaller systematic uncertainty** (spurious signal) is preferred.

Wald tests show that the data do not prefer a higher degree functional form with respect to the exponential form.

Systematic uncertainties

In general the analysis is almost completely statistically dominated with the Run 2 dataset

		Relative impact of the sy	stematic uncertainties [%]
Source	Туре	Nonresonant analysis HH	Resonant analysis $m_X = 300 \text{ GeV}$
Experimental			
Photon energy resolution	Norm. + Shape	0.4	0.6
Jet energy scale and resolution	Normalization	< 0.2	0.3
Flavor tagging	Normalization	< 0.2	0.2
Theoretical			
Factorization and renormalization scale	Normalization	0.3	< 0.2
Parton showering model	Norm. + Shape	0.6	2.6
Heavy-flavor content	Normalization	0.3	< 0.2
$\mathcal{B}(H \to \gamma \gamma, b \bar{b})$	Normalization	0.2	< 0.2
Spurious signal	Normalization	3.0	3.3

Statistical framework

> The results of the analysis are obtained from a **maximum-likelihood fit** of the $m\gamma\gamma$ distribution.

Likelihood

$$\mathcal{L} = \prod_{c} \left(\operatorname{Pois}(n_{c} | N_{c}(\boldsymbol{\theta})) \cdot \prod_{i=1}^{n_{c}} f_{c}(m_{\gamma\gamma}^{i}, \boldsymbol{\theta}) \cdot G(\boldsymbol{\theta}) \right)$$

Event parameterization

$$N_{c}(\boldsymbol{\theta}) = \mu \cdot N_{HH,c}(\boldsymbol{\theta}_{HH}^{\text{yield}}) + N_{\text{bkg,c}}^{\text{res}}(\boldsymbol{\theta}_{\text{res}}^{\text{yield}}) + N_{\text{SS,c}} \cdot \boldsymbol{\theta}^{\text{SS,c}} + N_{\text{bkg,c}}^{\text{non-res}}$$

Model PDF

$$\frac{f_c(m_{\gamma\gamma}, \boldsymbol{\theta})}{f_c(m_{\gamma\gamma}, \boldsymbol{\theta})} = [\mu \cdot N_{HH,c}(\boldsymbol{\theta}_{HH}^{\text{yield}}) \cdot f_{HH,c}(m_{\gamma\gamma}, \boldsymbol{\theta}_{HH}^{\text{shape}}) + N_{\text{bkg,c}}^{\text{res}}(\boldsymbol{\theta}_{\text{res}}^{\text{yield}}) \cdot f_{\text{bkg,c}}^{\text{res}}(m_{\gamma\gamma}, \boldsymbol{\theta}_{\text{res}}^{\text{shape}}) \\ + N_{\text{SS,c}} \cdot \boldsymbol{\theta}_{HH}^{\text{SS,c}} \cdot f_{HH,c}(m_{\gamma\gamma}, \boldsymbol{\theta}_{HH}^{\text{shape}}) + N_{\text{bkg,c}}^{\text{non-res}} \cdot f_{\text{bkg,c}}^{\text{non-res}}(m_{\gamma\gamma}, \boldsymbol{\theta}_{\text{non-res}}^{\text{shape}})]/N_c(\boldsymbol{\theta}_{\text{non-res}}^{\text{yield}}) + N_{\text{bkg,c}}^{\text{non-res}}(m_{\gamma\gamma}, \boldsymbol{\theta}_{\text{non-res}}^{\text{yield}})]/N_c(\boldsymbol{\theta}_{\text{non-res}}^{\text{yield}}) + N_{\text{bkg,c}}^{\text{non-res}}(m_{\gamma\gamma}, \boldsymbol{\theta}_{\text{non-res}}^{\text{yield}})]/N_c(\boldsymbol{\theta}_{\text{non-res}}^{\text{yield}}) + N_{\text{bkg,c}}^{\text{non-res}}(m_{\gamma\gamma}, \boldsymbol{\theta}_{\text{non-res}}^{\text{yield}})]/N_c(\boldsymbol{\theta}_{\text{non-res}}^{\text{yield}}) + N_{\text{bkg,c}}^{\text{non-res}}(m_{\gamma\gamma}, \boldsymbol{\theta}_{\text{non-res}}^{\text{yield}})]/N_c(\boldsymbol{\theta}_{\text{non-res}}^{\text{yield}})$$

Statistical framework

The measurement of the parameter of interest is carried out using a statistical test based on the profile likelihood ratio

the profile likelihood ratio

the profile-likelihood-ratio-based test statistic

$$\Lambda(\mu) = \frac{\mathcal{L}(\mu, \hat{\hat{\theta}}(\mu))}{\mathcal{L}(\hat{\mu}, \hat{\theta})}$$

$$\tilde{q}_{\mu} = \begin{cases} -2\ln\frac{\Lambda(\mu,\hat{\hat{\boldsymbol{\theta}}}(\mu))}{\Lambda(0,\hat{\hat{\boldsymbol{\theta}}}(0))} & \hat{\mu} < 0, \\ -2\ln\frac{\Lambda(\mu,\hat{\hat{\boldsymbol{\theta}}}(\mu))}{\Lambda(\hat{\mu},\hat{\boldsymbol{\theta}}(\mu))} & 0 \le \hat{\mu} \le \mu, \\ 0 & \hat{\mu} > \mu. \end{cases}$$

κ_{λ} reweighting for ggF HH samples

Common HH procedure. The method derives the scale factors as a function of κ_{λ} in bins of m_{HH} by performing a linear combination of samples generated at $\kappa_{\lambda} = 0, 1, 20$.

$$\sigma(\kappa_t = 1, \kappa_{\lambda} = 0) \sim |\mathcal{A}_1|^2$$

$$\sigma(\kappa_t = 1, \kappa_{\lambda} = 1) \sim |\mathcal{A}_1|^2 + 2\Re \mathcal{A}_1^* \mathcal{A}_2 + |\mathcal{A}_2|^2$$

$$\sigma(\kappa_t = 1, \kappa_{\lambda} = 20) \sim |\mathcal{A}_1|^2 + 2 \cdot 20\Re \mathcal{A}_1^* \mathcal{A}_2 + 20^2 |\mathcal{A}_2|^2$$

$$\sigma(\kappa_{t},\kappa_{\lambda}) \sim \kappa_{t}^{2} \left[\left(\kappa_{t}^{2} + \frac{\kappa_{\lambda}^{2}}{20} - \frac{399}{380} \kappa_{\lambda} \kappa_{t} \right) |S(1,0)|^{2} + \left(\frac{40}{38} \kappa_{\lambda} \kappa_{t} - \frac{2}{38} \kappa_{\lambda}^{2} \right) |S(1,1)|^{2} + \left(\frac{\kappa_{\lambda}^{2} - \kappa_{\lambda} \kappa_{t}}{380} \right) |S(1,20)|^{2} \right]$$

$$+ \left(\frac{\kappa_{\lambda}^{2} - \kappa_{\lambda} \kappa_{t}}{380} \right) |S(1,20)|^{2} \right]$$

$$U_{t}^{2} = \frac{1}{2022/11/2}$$

$$U_{t}^{2} = \frac{1}{2022/11/2}$$

$$U_{t}^{2} = \frac{1}{2022/11/2}$$

HH summary

good sensitivity at low resonant masses

ttgammagamma

```
import model sm-no_b_mass
define p = g u c d s b u \sim c \sim d \sim s \sim b \sim
define |+ = e + mu + ta +
define vl = ve vm vt
define uc \sim = u \sim c \sim
define ds = ds
define I- = e- mu- ta-
define vl~ = ve~ vm~ vt~
define uc = uc
define ds \sim = d \sim s \sim
generate p p > t t~ > I+ vI b ds uc~ b~ a a QCD=2 QED=6 \
add process p p > t t~ > uc ds~ b l- vl~ b~ a a QCD=2 QED=6 n
add process p p > t t~ > I+ vI b I- vI~ b~ a a QCD=2 QED=6 """
```