# Constraints on Physics Beyond the Standard Model with LIGO's Third Observing Run Data

郭怀珂

犹他大学→中国科学院大学ICTP-AP

2022年11月9日



## LIGO Interferometers

First direct detection of gravitational waves.

A new tool for astronomy, and fundamental physics



https://nobelprize.org/

https://www.ligo.caltech.edu

nd-station @ 4 ki

Mid-station @ 2 k

| 01 🛑 02 | <b>O</b> 3                              | 04 05                                                                        | ě                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|-----------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80 100  | 105-130                                 | 160-190                                                                      | Target                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Мрс Мрс | Mpc                                     | Мрс                                                                          | 330 Mpc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30      | 50                                      | 90-120                                                                       | 150-260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Мрс     | Mpc                                     | Мрс                                                                          | Mpc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         | 8-25                                    | 25-130                                                                       | 130+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|         | Mpc                                     | Mpc                                                                          | Mpc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|         |                                         |                                                                              | Target<br>330 Mpc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|         | O1 02<br>80 100<br>Mpc Mpc<br>30<br>Mpc | O1 O2 O3<br>B0 100 105-130<br>Mpc Mpc Mpc<br>30 50<br>Mpc Mpc<br>8-25<br>Mpc | 01       02       03       04       05         80       100       105-130       160-190       Mpc         30       50       90-120       Mpc         30       50       Mpc       Mpc         8-25       Mpc       Mpc       Mpc         40       40       40       Mpc       Mpc |

### **Related Publications**

#### See also Fapeng's talk

3

Cosmological First Order Phase Transitions: PRL126 (2021) 15, 151301

Romero, Martinovic, Callister, H.G, Martínez, Sakellariadou, Yang, Zhao

**Cosmic Strings:** 

PRL 126,241102, LVK Collaboration Paper (key author) Editor's Suggestion, featured in Phys.org

Dark Photon Dark Matter:

O1: (Nature) Commun.Phys. 2 (2019) 155, H.G, Riles, Yang, Zhao O3: PRD 105 (2022) 063030, LVK Collaboration Paper (key author)

Acknowledgement: This material is based upon work supported by NSF's LIGO Laboratory which is a major facility fully funded by the National Science Foundation.

# **Cosmological First Order Phase Transitions**

#### Symmetry-breaking in the early universe

See also Yongcheng's, Kepan's talks



Temperature drops





Hindmarsh, et al, 2015

Scale of a generic PT can be arbitrary

4

## **Flow of Studies**

#### theoretical calculation of gravitational wave spectrum and detector simulation





$$\Omega_{
m BPL}(f) = \Omega_* \left(rac{f}{f_*}
ight)^{n_1} \left[1 + \left(rac{f}{f_*}
ight)^{\Delta}
ight]^{(n_2 - n_1)/\Delta}$$

$$\Omega_{\rm CBC} = \Omega_{\rm ref} (f/f_{\rm ref})^{2/3}$$
  
 $f_{\rm ref} = 25 \ {\rm Hz}$ 

### **Generic Features**

![](_page_6_Figure_1.jpeg)

## Results

### 01+02+03@LIGO (H1, L1), Virgo

- No Evidence for Broken Power Law Signal
- No Evidence for Bubble Collision Domination Signal
- No Evidence for Sound Waves Domination Signal

**Bubble Collision** 

![](_page_7_Figure_6.jpeg)

![](_page_7_Figure_7.jpeg)

#### Sound Waves

95% CL UL with fixed Tpt and beta/Hpt  

$$\Omega_{sw}(25 \text{ Hz}) \quad 5.9 \times 10^{-9}$$
  
 $\beta/H_{pt} < 1 \text{ and } T_{pt} > 10^8 \text{ GeV}$ 

First result from gravitational wave data!

# **Cosmic Strings**

#### See also Chen's talk

9

#### Topology of cosmic domains and strings

J.Phys.A 9 (1976) 1387-1398

www.theguardian.com

Blackett Laboratory, Imperial College, Prince Consort Road, Lor

Received 11 March 1976

T W B Kibble

![](_page_8_Picture_6.jpeg)

Form irrespective of phase transition's order

Can be detected with gravitational waves

GW measurement tells scale ( $\eta$ ) of symmetry breaking ( $G \rightarrow H$ )

$$G\mu \sim \left(\frac{\eta}{10^{19} \text{GeV}}\right)^2$$

μ: line mass density

![](_page_8_Figure_12.jpeg)

The Cosmological Kibble Mechanism in the Laboratory: String Formation in Liquid Crystals Science, 263 (1994) Mark J. Bowick,\* L. Chandar, E. A. Schiff, Ajit M. Srivastava

![](_page_8_Picture_14.jpeg)

### From Particle Physics Model to String

![](_page_9_Figure_1.jpeg)

![](_page_10_Figure_0.jpeg)

Results

Symmetry breakings at scales higher than  $O(10^{11})$  GeV with Cosmic String production are excluded Caveat (loop distribution model)

 $\left(\frac{\eta}{10^{19}\text{GeV}}\right)$ 

 $G\mu \sim$ 

![](_page_11_Figure_2.jpeg)

LIGO-Virgo-KAGRA collaborations, PRL 126, 241102 (2021)

![](_page_12_Figure_0.jpeg)

All can be searched for using gravitational wave detectors.

![](_page_13_Figure_0.jpeg)

### **Signal Properties**

![](_page_14_Figure_1.jpeg)

# O1 Result

### O3 Result

![](_page_15_Figure_2.jpeg)

(Nature) Commun.Phys. 2 (2019) 155, H.G, Riles, Yang, Zhao

Phys.Rev.D 105 (2022) 6, LIGO-Virgo-KAGRA Collaborations

16

#### New in O3 search:

- 1. Another search performed by the continuous wave group with a different method
- 2. An improvement factor included from finite light travel time (PRD.103.L051702, Morisaki, et al)

![](_page_16_Picture_0.jpeg)

### First search for cosmological first order phase transitions with LIGO's data

New constraint on cosmic strings with latest LIGO data

![](_page_16_Picture_3.jpeg)

![](_page_17_Picture_0.jpeg)