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* Inflation and phase transition
e Second-order phase transition during inflation

 Summary and outlook



Inflation

[Ad) el
e Slow roll inflation
 We usually assume a
potential. o
o
Use it to calculate ng, Measured by No measurement
r o CMB and LSS

* The inflaton must couple to some spectator field.

* The masses or couplings in the spectator sector can be changed
drastically due to the evolution of the inflaton field.



Phase transitions in the spectator sector

For first-order phase transitions, see
2009.12381, 2201.05171.

In this talk we focus on second-order
phase transition.

Evolution of
inflaton

Phase transitions in
spectator sector

@: inflaton field o: order parameter in the spectator sector
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First-order vs second-order

First-order phase transition
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if B> H.

pPcw can be estimated by the gravity potential
between the bubble-like structure:
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paw ~ GMg/Rp ~ GppRp.

determines the rate of
the phase transition.

Phase transition completes

Second-order phase transition

&) =7(t) = mg (1)

$q determines the

density of topological
defects.

Phase transition always
completes.

For thermal phase transition during radiation domination:
FOPT: Rg =~ B~ 1, with H/B ~ 0(1072).
SOPT: Rp =~ &,, with HE, =~ 0(10719).

During inflation, however, H/f and H¢, can be the same order.



Redshifts of the GW signal
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Gravitational waves during inflation
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The model

V(g.0) = 3 (6°6° —m*) o* + 3o

b =

Vo (d,a)

Low energy modes suffer tachyonic instability.

Around critical point, ¢, =m/g:
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Exponential growth
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Quantum-classical transition

The model
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Wigner function:

Interaction can induce a effective 1 oul? Flk.r
. Wk(gk~ﬂ-k) = —exp|— | k‘ ( ) )
mass which stop the growth. | 7




Numerical simulation
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Nonlinear evolution

Tachyonic growth




Nonlinear evolution Il

Formation of domain walls
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Power spectra of gravitational waves
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Detectability of gravitational waves

For sources happen at different e-folds, today’s GW has different frequencies

e

M

JiI('jtur:ndau,;.,r ~

Atoday




Summary and outlook

e We study the features of classical GWs produced from
second-order phase transition and domain walls during
inflation.

* |f we are lucky enough, such a signal can be detected by
future GW detectors.
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