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❖ Jet physics meets deep learning  
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III. Lorentz-symmetric design 
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❖ Pairwise features and 
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❖ Node-wise features and 
experiments 
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Jets in hadron colliders
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“A jet is a collimated shower of particles produced by the hadronization of a quark or gluon”

parton 
showering hadronization

hadronic 
decay

⇒ stable hadrons

raw data from tracker & calorimeter 
→ reconstruct to particle records
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Jet tagging

➔ Jet tagging: determine the origin of a jet 
➔ Two jet tagging prototypes
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(1) jet flavour tagging

heavy flavour tagging:  
✤ jets initiated from a b/c/light 

quark differ by constituent 
multiplicity and trajectory 
displacement

quark/gluon jet discrimination:  
✤ a quark jet has more 

constituent particles and is 
more collimated to the jet axis
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Jet tagging

➔ Jet tagging: determine the origin of a jet 
➔ Two jet tagging prototypes
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(2) boosted jet tagging

top taggingheavy flavour resonance tagging

✤ differs by (1) proneness; (2) existence of heavy flavour subjets (initiated by b/c quarks)

2 prong 2 prong 2 prong 3 prong
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View of a jet
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Δη

Δ
ϕ

proton beams

collision point

outgoing particles

η

ϕ

Viewing jets on the η-φ space

[image from link]

Each particle carries features: 
• four-momentum; or equiv. ( ) 
• particle ID * 
• track displacement (for charged particle) *

E, pT, η, ϕ

* not necessarily exists

https://github.com/jet-universe/particle_transformer
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Jet physics meets deep learning
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pT η ⋯

A jet: described 
by particle-level 

(low-level) 
features

We are embracing a new era of mankind in which AI starts to reshape science and industries. 
(the stage regarded as “The 4th Industrial Revolution”) 

Future collider physics will be highly influenced by the advancement in AI and deep learning. 
Jet physics is one of the entry points.

original of the 
jet?

other jet 
properties?

Input Output
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A jet: described 
by particle-level 

(low-level) 
features

Jet physics meets deep learning
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pT η ⋯

original of the 
jet?

other jet 
properties?

Input Output

Our research objective: 
design a most performant deep learning 

model dedicated to jet physics
build a 

“smarter” AI
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Roadmap of DL model for jet tagging

➔ DL model design draw from experiences in Computer Vision
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[image from link]
conventional “deep neural network” 

or multi-layer perceptron (MLP)

process fix-length input data

convolutional neural network (CNN) process images

recurrent neural network (RNN) & LSTM

process “sequence” of input, e.g. sentences

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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Roadmap of DL model for jet tagging
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The previous jet tagging model in CMS: DeepAK8 algorithm

Example of 

CNN

CMS, JINST 15 (2020) P06005

illustration of 2D convolution

[image from link]

https://iopscience.iop.org/article/10.1088/1748-0221/15/06/P06005
https://cms-ml.github.io/documentation/inference/particlenet.html
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Roadmap of DL model for jet tagging
➔ Graph neural networks: view input particles as a set / graph 

❖ guarantee the permutational invariance of input particles
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[image from link]

analog to point cloud 
representation of 3D objects

x

y

z

https://indico.cern.ch/event/1051967/contributions/4550543/attachments/2331603/3973494/GNN_HEP_H_Qu.pdf
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Roadmap of DL model for jet tagging
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Recap on 

ParticleNet H.Qu, L.Gouskos. PRD 101 (2020) 056019

A powerful and popular model in the HEP community with a variety of applications

[image from link]

https://doi.org/10.1103/PhysRevD.101.056019
https://cms-ml.github.io/documentation/inference/particlenet.html
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Roadmap of DL model for jet tagging
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Recap on 

ParticleNet H.Qu, L.Gouskos. PRD 101 (2020) 056019

Point cloud representation of jet

A powerful and popular model in the HEP community with a variety of applications

[image from link]

https://doi.org/10.1103/PhysRevD.101.056019
https://cms-ml.github.io/documentation/inference/particlenet.html
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Roadmap of DL model for jet tagging

15

Recap on 

ParticleNet H.Qu, L.Gouskos. PRD 101 (2020) 056019

build “edges” by finding k-nearest 
neighbours of each particle, and 
gather features from them

A powerful and popular model in the HEP community with a variety of applications

[image from link]

https://doi.org/10.1103/PhysRevD.101.056019
https://cms-ml.github.io/documentation/inference/particlenet.html
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Roadmap of DL model for jet tagging
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Recap on 

ParticleNet

A powerful and popular model in the HEP community with a variety of applications

H.Qu, L.Gouskos. PRD 101 (2020) 056019

do linear transformation

fe
at

ur
e 

di
m

en
si

on
 C

then aggregate over k-
nearest neighbours

[image from link]

https://doi.org/10.1103/PhysRevD.101.056019
https://cms-ml.github.io/documentation/inference/particlenet.html
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Roadmap of DL model for jet tagging
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Recap on 

ParticleNet H.Qu, L.Gouskos. PRD 101 (2020) 056019
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CMS. arXiv:2205.05550
CMS. arXiv:2205.06667

application to VH→cc̅ search 
Most stringent limit on H-c coupling to date

application to SM boosted HH→4b search 
First time excluding κ2V = 0

https://doi.org/10.1103/PhysRevD.101.056019
https://arxiv.org/abs/2205.05550
https://arxiv.org/abs/2205.06667
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“Post-ParticleNet” DL studies
➔ Further study to enhance the jet tagging model mainly divided into two approaches
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More advanced model physics-inspired design/modifications

disclaimer: only shows a part of relevant works

V. Mikuni et al. EPJC 2020; 135(6): 463

add attention mechanism in 
addition to graph convolution

ParticleNeXt H.Qu. Talk@ML4Jets2021
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Figure 3. (a) Illustration of the EdgeConv operation on a node of the Lund tree. (b) Architecture
of the EdgeConv block used in the LundNet model. (c) Architecture of the LundNet model.

the distribution of the number of Lund declusterings per jet for several choices of kt cut
in 2TeV QCD jets simulated using Pythia 8.223 [40]. The mean of each distribution is
indicated as a dashed line. An additional benefit of a kt threshold is that even for small cut
values the number of nodes per jet is significantly reduced, and therefore correspondingly
so the computational cost of training a machine learning model on these inputs. The right-
hand side of figure 2 shows the average number of nodes per jet as a function of the kt cut,
which decreases quadratically as the cut is increased.

3 LundNet models

The Lund plane encodes a rich set of information of the substructure and radiation patterns
of a jet, therefore serving as a natural input to machine learning models for jet physics. The
use of Lund planes for jet tagging was first proposed in ref. [33] where log-likelihood and

– 5 –

LundNet
F.Dreyer et al. JHEP 03 (2021) 052

fix graph structure 
according to Lund plane; 
use physics variables to 
build edges

C.Shimmin. arXiv:2107.02908

small improvement or comparable performance w.r.t. ParticleNet, 
evaluated on two mainstream benchmarks

dedicated η-φ 
convolution to preserve 
η-φ rotational symmetry

Particle Convolution Network

attentive pooling; 
multi-scale 
aggregation;  
additional 
pairwise features 
for edge

https://doi.org/10.1140/epjp/s13360-020-00497-3
https://indico.cern.ch/event/980214/contributions/4413544/attachments/2277334/3868991/ParticleNeXt_ML4Jets2021_H_Qu.pdf
https://doi.org/10.1007/JHEP03(2021)052
https://arxiv.org/abs/2107.02908
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“Post-ParticleNet” DL studies
➔ Further study to enhance the jet tagging model mainly divided into two approaches
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More advanced model physics-inspired design/modifications

disclaimer: only shows a part of relevant works

V. Mikuni et al. EPJC 2020; 135(6): 463

add attention mechanism in 
addition to graph convolution

ParticleNeXt H.Qu. Talk@ML4Jets2021
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Figure 3. (a) Illustration of the EdgeConv operation on a node of the Lund tree. (b) Architecture
of the EdgeConv block used in the LundNet model. (c) Architecture of the LundNet model.

the distribution of the number of Lund declusterings per jet for several choices of kt cut
in 2TeV QCD jets simulated using Pythia 8.223 [40]. The mean of each distribution is
indicated as a dashed line. An additional benefit of a kt threshold is that even for small cut
values the number of nodes per jet is significantly reduced, and therefore correspondingly
so the computational cost of training a machine learning model on these inputs. The right-
hand side of figure 2 shows the average number of nodes per jet as a function of the kt cut,
which decreases quadratically as the cut is increased.

3 LundNet models

The Lund plane encodes a rich set of information of the substructure and radiation patterns
of a jet, therefore serving as a natural input to machine learning models for jet physics. The
use of Lund planes for jet tagging was first proposed in ref. [33] where log-likelihood and

– 5 –

LundNet
F.Dreyer et al. JHEP 03 (2021) 052

fix graph structure 
according to Lund plane; 
use physics variables to 
build edges

C.Shimmin. arXiv:2107.02908

small improvement or comparable performance w.r.t. ParticleNet, 
evaluated on two mainstream benchmarks

dedicated η-φ 
convolution to preserve 
η-φ rotational symmetry

Particle Convolution Network

attentive pooling; 
multi-scale 
aggregation;  
additional 
pairwise features 
for edge

The community is eager to see 

the next leap in performance!

https://doi.org/10.1140/epjp/s13360-020-00497-3
https://indico.cern.ch/event/980214/contributions/4413544/attachments/2277334/3868991/ParticleNeXt_ML4Jets2021_H_Qu.pdf
https://doi.org/10.1007/JHEP03(2021)052
https://arxiv.org/abs/2107.02908
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Introducing LorentzNet

➔ Design of LorentzNet makes a successful attempt 
❖ made up of fully-connected GNN 
❖ its outstanding performance largely comes from Lorentz symmetry preservation 
❖ (note: recently the record is reset by ParT which we discuss in p.51) 

➔ We’ll first start our journey in LorentzNet,  
then in the next part we try to answer a  
broader question:  
which role does Lorentz-symmetry play  
in jet tagging

21

LorentzNet



Jet tagging algorithm respecting Lorentz group symmetry

Congqiao Li (Peking University) 2 September, 2022IHEP EPD Seminar

IHEP EPD Seminar

Graph neural networks
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Message passing mechanism is 
an important component of GNN

figure from https://distill.pub/2021/gnn-intro/

node edge
update

edge node
update

https://distill.pub/2021/gnn-intro/
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LorentzNet architecture
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Input Lorentz vectorInput Lorentz scalars

Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hln) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xln) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0 equals the input of the 4-momenta and h0i = si denotes
the input of the scalar variables. LGEB aims to learn deeper embeddings hl+1, xl+1 via
current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and  (·) = sgn(·) log(| · | + 1) in Equation (3.2) is a
normalizing function to make the heavy tailed distributed quantities centralized for ease
of optimization. Except for the embedding of the scalar features hli and hlj , according
to Proposition 3.1, the input of the neural network contains the Minkowski dot product
hxi, xji. The kxli � xljk2 is also included because the interaction between particles relies on
this term and we include it as a prior feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j 6=i

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, we introduce the hyperparameter c to control the forward stability together with
the shortcut connection. This step captures the interactions of the i-th particle with other
particles via the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-
preserving neural networks such as LGN and EGNN [16] (for E(n) equivariance)1 which

1
The relation with EGNN is discussed in the Appendix.

– 6 –

from node 
to edge

Construct edge features from 
  (1) scalars from two nodes 
  (2) Lorentz inner product from two vectors

figure from https://distill.pub/2021/gnn-intro/

hence it’s a Lorentz scalar

https://distill.pub/2021/gnn-intro/


Jet tagging algorithm respecting Lorentz group symmetry

Congqiao Li (Peking University) 2 September, 2022IHEP EPD Seminar

IHEP EPD Seminar

݄ିଵ

݄

ିଵݔ

Lorentz Group Equivariant Block (LGEB)

Minkowski Norm & 
Inner Product

Sum PoolingMLP

ٔ

߶௫

߶

߶

݄ ݔ

݄ାଵ ାଵݔ

ْ ْ

݄

Scalars 4-momentum

LorentzNet

ൈ ࡸ െ 

Embedding

LGEB

ݔ
LGEB

Average Pooling

Decoding

Softmax

probability

Dropout

݄ିଵ

݄

ିଵݔ

Lorentz Group Equivariant Block (LGEB)

Minkowski Norm & 
Inner Product

Sum PoolingMLP

ٔ

߶௫

߶

߶

݄ ݔ

݄ାଵ ାଵݔ

ْ ْ

݄

Scalars 4-momentum

LorentzNet

ൈ ࡸ െ 

Embedding

LGEB

ݔ
LGEB

Average Pooling

Decoding

Softmax

probability

Dropout

LorentzNet architecture
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Input Lorentz vectorInput Lorentz scalars

Construct node features (vector): 
  essentially the linear combination of all vectors, 
  where edge features are “weights”

from edge 
to node 
(step-1)

Figure 1. (left): The structure of the Lorentz Group Equivariant Block (LGEB). (right): The
network architecture of the LorentzNet.

Lorentz Group Equivariant Block. We use hl = (hl1, h
l
2, · · · , hln) to denote the node

embedding scalars, and xl = (xl1, x
l
2, · · · , xln) to denote the coordinate embedding vectors in

the l-th LGEB layer. When l = 0, x0 equals the input of the 4-momenta and h0i = si denotes
the input of the scalar variables. LGEB aims to learn deeper embeddings hl+1, xl+1 via
current hl, xl. Motivated by Equation (3.1), the message passing of LorentzNet is written
as follows. We use mij to denote the edge message between particle i and j, and it encodes
the scalar information of the particle i and j, i.e.,

ml
ij = �e

⇣
hli, h

l
j , (kxli � xljk2), (hxli, xlji)

⌘
, (3.2)

where �e(·) is a neural network and  (·) = sgn(·) log(| · | + 1) in Equation (3.2) is a
normalizing function to make the heavy tailed distributed quantities centralized for ease
of optimization. Except for the embedding of the scalar features hli and hlj , according
to Proposition 3.1, the input of the neural network contains the Minkowski dot product
hxi, xji. The kxli � xljk2 is also included because the interaction between particles relies on
this term and we include it as a prior feature for ease of learning.

According to Equation (3.1), we design Minkowski dot product attention as

xl+1
i = xli + c

X

j 6=i

�x(m
l
ij) · xlj (3.3)

where �x(·) 2 R is a scalar function modeled by neural networks. To ensure the equiv-
ariance, we can not arbitrarily apply the normalization trick to control the scale of xl+1

i .
Therefore, we introduce the hyperparameter c to control the forward stability together with
the shortcut connection. This step captures the interactions of the i-th particle with other
particles via the ensemble of the 4-momenta of all particles. Unlike most of the symmetry-
preserving neural networks such as LGN and EGNN [16] (for E(n) equivariance)1 which

1
The relation with EGNN is discussed in the Appendix.

– 6 –

figure from https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/
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Input Lorentz vectorInput Lorentz scalars

Construct node features (scalar): 
  attentive pooling on all connecting edges

only include the radial distance kxi � xik2 as the only scalars extracted from the vector
representation, we include the dot product hxi, xji in mij to recover the information of
angles according to Equation (3.1) which can not be captured by the radial distance.

The scalar features for particle i is forward as

hl+1
i = hli + �h(h

l
i,
X

j 6=i

wijm
l
ij), (3.4)

where �h(·) is also modeled by neural networks whose output dimension equals the dimen-
sion of hl+1

i . For efficient computation, we operate summation
P

j 6=iwijml
ij to aggregate

ml
ij . This can both ensure the permutation invariance but also ease the implementation

for jets with different number of particles. This operation is also widely adopted in other
types of graph neural networks [14, 16].

Decoding layer. After stacks of LGEB for L layers, we decode the node embedding
hL = (hL1 , · · · , hLN ). Note that the information of xL�1 has been included in hL through
the mL�1

ij . Therefore, to avoid redundant information, we only decode hL. First we use
average pooling to get

hav =
X

i

hLi . (3.5)

A subsequent dropout layer is applied to hav to prevent overfitting. A decoding block with
two fully connected layers, followed by a softmax function, is used to generate the output
for the binary classification task.

3.2 Theoretical Analysis

In this section, we analyze the Lorentz group equivariance of LorentzNet.

Proposition 3.2. The coordinate embedding xl = (xl1, x
l
2, · · · , xlN ) are Lorentz group equiv-

ariant and the node embedding hl = (hl1, · · · , hlN ) are Lorentz group invariant.

Proof: We denote Q as the Lorentz transformation. If ml
ij are invariant under Q for

all i, j, l, xl+1
i will be Lorentz group equivariant because

Qxl+1
i = Q(xli + c

X

j 6=i

(xli � xlj)�x(mij))

= Qxli + c
X

j 6=i

(Qxli �Qxlj)�x(mij)).

Then we illustrate the invariance of ml
ij . We start from the input. Since the 4-momentum

vector are Lorentz group equivariant, we have kx0i � x0jk2 = kQx0i � Qx0jk2 because the
determinant of Q equals 1, and similar for hx0i , x0j i. Therefore, the input of �e are invari-
ant variables under transformation Q and then m0

ij are invariant. Recursively using the
invariance of ml

ij and the equivariance of xli, we can get the conclusion. ⇤
As for the expressiveness of the LGEB structure, we have the following discussions.

Because hi is a function of the aggregation of mij , it contains the information of all the

– 7 –

from edge 
to node 
(step-2)

figure from https://distill.pub/2021/gnn-intro/

https://distill.pub/2021/gnn-intro/
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Summary of architecture

➔ Now let’s summarize the main architecture of 
LorentzNet 
❖ Graph neural network as backbone 
❖ Fully connected 

‣ i.e., all  edges are computed 

‣ ParticleNet use dynamic k-nearest neighbours to define 
edges (DGCNN), so it is not using the full pairs 

❖ Fully Lorentz invariant/equivariant 
‣ nodes can be grouped by either Lorentz scalars or vectors

N(N − 1)/2

26
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Performance
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Model Accuracy AUC 1/"B
("S = 0.5)

1/"B
("S = 0.3)

ResNeXt 0.936 0.9837 302± 5 1147± 58

P-CNN 0.930 0.9803 201± 4 759± 24

PFN 0.932 0.9819 247± 3 888± 17

ParticleNet 0.940 0.9858 397± 7 1615± 93

EGNN 0.922 0.9760 148± 8 540± 49

LGN 0.929 0.9640 124± 20 435± 95

LorentzNet 0.942 0.9868 498± 18 2195± 173

Table 1. Performance comparison between LorentzNet and other representative algorithms on top
tagging dataset. The results for LorentzNet and EGNN are averaged on 6 runs. The results for
other baselines are referred to [8, 12, 22].

Model Accuracy AUC 1/"B
("S = 0.5)

1/"B
("S = 0.3)

ResNeXt 0.821 0.8960 30.9 80.8

P-CNN 0.827 0.9002 34.7 91.0

PFN � 0.9005 34.7± 0.4 �
ParticleNet 0.840 0.9116 39.8± 0.2 98.6± 1.3

EGNN 0.803 0.8806 26.3± 0.3 76.6± 0.5

LGN 0.803 0.8141 8.30 15.2

LorentzNet 0.844 0.9156 42.4± 0.4 110.2± 1.3

Table 2. Performance comparison between LorentzNet and other representative algorithms on
quark-gluon tagging dataset. The results for LorentzNet, EGNN and LGN are averaged on 6 runs.
The results for other baselines are referred to [8, 22].

Figure 2. A comparison of ROC curves between LorentzNet and other algorithms on top tagging
dataset (left) and quark-gluon dataset (right).
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Top tagging benchmark [SciPost Phys. 7 (2019) 014] Quark-gluon tagging benchmark [JHEP 01 (2019) 121]

https://doi.org/10.21468/SciPostPhys.7.1.014
https://doi.org/10.1007/JHEP01(2019)121
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Additional tests

➔ Equivariance test: 
❖ LorentzNet is more robust when the input 

jet undergoes a Lorentz transformation 
(consider Lorentz boosts on x-axis) 
 
 

➔ Small training sample size: 
❖ LorentzNet is able to perform much better 

when trained on a smaller size of sample

28

0.5 ("B, "S are also known as the false positive and the true positive rates, respectively), and
the number of trainable parameters. Especially, the background rejection metric is widely
adopted to select the best jet tagging algorithm as it is directly related to the expected
contribution of the background [8, 12, 22].

From Table 1 and Table 2, we conclude that LorentzNet achieves the state-of-the-art
performance on both the top tagging dataset and the quark-gluon in terms of the accu-
racy, AUC, and background rejection at "S = 0.3, 0.5. The results verify the effectiveness
of LorentzNet compared with the baselines. Fig. 2 shows the background rejection at a
fine-grained signal efficiency. The ROC curves of LorentzNet achieve the highest score at
all the selected signal efficiency compared to the baselines. Especially, LorentzNet shows
superiority compared to the LGN. Especially, it achieves 4 or 5 times improvement on the
background rejection. The results verify our discussions in Section 3.2.

Training
Fraction

Model Accuracy AUC 1/"B
("S = 0.5)

1/"B
("S = 0.3)

0.5%
ParticleNet 0.913 0.9687 77± 4 199± 14

LorentzNet 0.929 0.9793 176± 14 562± 72

1%
ParticleNet 0.919 0.9734 103± 5 287± 19

LorentzNet 0.932 0.9812 209± 5 697± 58

5%
ParticleNet 0.931 0.9807 195± 4 609± 35

LorentzNet 0.937 0.9839 293± 12 1108± 84

Table 3. Performance comparison between LorentzNet and ParticleNet on top tagging dataset by
a fraction of training data. The results are all averaged on 6 runs.

4.3 Sample Efficiency

The benefit of the preservation of Lorentz group symmetry in jet tagging has not been
studied in literature. In theory, the Lorentz group symmetry injects inductive bias into
the deep learning model which restricts the function class of the hypothesis space. The
inductive bias can help to boost the generalization and improve the sample efficiency. As
the improvement on the generalization performance (i.e., the tagging accuracy) has been
shown in the previous section, we show the robustness of LorentzNet trained on smaller
training data to verify the sample efficiency of LorentzNet in this part.

We choose the best performed architecture among the models with and without fully
Lorentz group symmetry (i.e., the LorentzNet and the ParticleNet) to compare. The induc-
tive bias in ParticleNet is a subgroup symmetry of Lorentz group, which only consider the
Lorentz boosts in the z-axis and the rotation on the x� y plane, while LorentzNet is sym-
metric to Lorentz group. We random select 5%, 1%, and 0.5% fraction of training data to
train the LorentzNet and ParticleNet on top tagging dataset, and we test the performance
of them on the same test data with size 400k. The training strategy keeps the same with
the experiments on the full training data. The results are reported in Table 3. The gap of

curve (AUC) is a measure of how well a parameter can distinguish between two diagnostic groups.

– 11 –

➔ Ablation study on Lorentz 
equivariant preserving structure 
❖ replacing the pairwise scalar (mass) 

has a negative effect on the network

Model Equivariance Accuracy AUC 1/"B
("S = 0.5)

1/"B
("S = 0.3)

LorentzNet (w/o) 7 0.934 0.9832 290± 30 1105± 59

LorentzNet 3 0.942 0.9868 498± 18 2195± 173

Table 4. Performance comparison between LorentzNet and corresponding non-equivalent version
on top tagging dataset. Both of the results are averaged on 6 runs.

gap between the tagging accuracy and AUC between LorentzNet and ParticleNet becomes
larger as the number of training data becomes smaller. The results clearly show the benefit
of the preservation of Lorentz group symmetry in jet tagging.

4.4 Equivariance test

Another advantage of symmetry-preserving deep learning models is their robustness under
Lorentz transformation. To verify it, we rotate the test data by Lorentz transformation with
different scales of � along the x�axis, i.e., the value of (E, px) in the 4-momentum vector
will be rotated. As � becomes larger, the difference between the distributions of training
and test data will become larger. We test the model trained on the original training data,
and the tagging accuracy on the rotated test data is reported in Fig. 3. The horizontal
axis of Fig. 3 shows the value of � and the vertical axis shows the tagging accuracy on the
top tagging dataset under Lorentz transformation with corresponding �. The results show
that the accuracy of LorentzNet and LGN on the test data after Lorentz transformation is
robust in a large range of �, while the test accuracy of other non-equivariant models will
drop as � becomes larger. According to special relativity, the fundamental quantities to
clarify the particles will not be changed. Even compared with LGN, LorentzNet is more
stable when � approaches 1, and the instability of LGN is caused by the rounding errors in
float arithmetic as described in its original paper [61].

Figure 3. Equivariant test under Lorentz boosts on top tagging dataset.

– 12 –
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Conclusion on LorentzNet

➔ We present LorentzNet, a Lorentz group equivariant GNN 
❖ the network has now reached state-of-the-art performance, when trained and 

evaluated on two mainstream benchmarks 
❖ its equivariance property confirmed on Lorentz-transformed test dataset 
❖ ablation study shows Lorentz-symmetry-preserving mechanism does help the network 
❖ code and model available in: https://github.com/sdogsq/LorentzNet-release

29

S.Gong et al. JHEP 07 (2022) 030

https://github.com/sdogsq/LorentzNet-release
https://doi.org/10.1007/JHEP07(2022)030
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Conclusion on LorentzNet

30

 - END OF SLIDES - 

➔ We would also like to ask 
❖ why LorentzNet outperforms many networks proposed after 

ParticleNet 
❖ can we dig deeper to extract the key component in 

LorentzNet?  
can it be applied to other networks as well? 

➔ We will use experiments to confirm that one key component 
of the gain is Lorentz-symmetry preservation

S.Gong et al. JHEP 07 (2022) 030

➔ We present LorentzNet, a Lorentz group equivariant GNN 
❖ the network has now reached state-of-the-art performance, when trained and 

evaluated on two mainstream benchmarks 
❖ its equivariance property confirmed on Lorentz-transformed test dataset 
❖ ablation study shows Lorentz-symmetry-preserving mechanism does help the network 
❖ code and model available in: https://github.com/sdogsq/LorentzNet-release

https://doi.org/10.1007/JHEP07(2022)030
https://github.com/sdogsq/LorentzNet-release
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Part III: Lorentz-symmetric design

31
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LorentzNet performance on JetClass

32

0.855 0.9869 9217 3425 117 1550 4425 19802 12500 480 353LorentzNet

JetClass [arXiv:2202.03772, proceedings of 39th ICML, Vol.162]

NEW

0.855LorentzNet 233 k 2.01 G

➔ A new benchmark, JetClass is proposed in 
arXiv:2202.03772, consists of 100M jets, ~100x larger then 
previous benchmarks 

➔ LorentzNet performs much better than ParticleNet, slightly 
worse than the most advanced model: ParT (discuss in p.51) 
❖ note that for #params 

LorentzNet < ParticleNet, and << ParT 
❖ this prove that LorentzNet is a very efficient model 

➔ We may want to understand the core of such efficiency 

https://arxiv.org/abs/2202.03772
arXiv:2202.03772
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Model, data size and “inductive bias”

➔ Lessons from image classification from Computer Vision 
❖ Training on ImageNet and its extension (224x224 pixel image classification) 
‣ Transformer models have led the performance, since the first application in 2020

33

https://paperswithcode.com/sota/image-classification-on-imagenet

ImageNet

Transformer 
models

https://paperswithcode.com/sota/image-classification-on-imagenet
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Model, data size and “inductive bias”

➔ Lessons from image classification from Computer Vision 
❖ Training on ImageNet and its extension (224x224 pixel image classification) 
‣ Transformer models have led the performance, since the first application in 2020 

❖ But if we look back to MNIST dataset (hand-written digit classification) 
‣ still CNN-based networks rank higher

34

https://paperswithcode.com/sota/image-classification-on-imagenet

ImageNet

MNIST

https://paperswithcode.com/sota/image-classification-on-imagenet
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Model, data size and “inductive bias”

➔ Lessons from image classification from Computer Vision 
❖ Training on ImageNet and its extension (224x224 pixel image classification) 
‣ Transformer models have led the performance, since the first application in 2020 

❖ But if we look back to MNIST dataset (hand-written digit classification) 
‣ still CNN-based networks rank higher  

❖ Possible explanations: 
‣ for MNIST dataset, we want more “efficient” model when training on small dataset 

‣ to be more efficient, cooperating with “inductive bias” in the network design is 
crucial 

‣ CNN respects the local translational symmetry, which is an inductive bias when 
processing real-world images

35
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Interpret Lorentz-symmetry as an inductive bias 

36

➔ Goal of our new study:  
❖ we want to confirm that Lorentz-symmetry preservation the “inductive bias” 

for jet physics to boost the network performance 
❖ even better if we isolate “a patch” from LorentzNet, which can be applied to a 

wider range of networks 

➔ Our experiments 
❖ devise multiple choices of additional features, which are invariant to some or 

all Lorentz transformations 
❖ want to see if this affects network performance as we expect

C.Li et al. arXiv:2208.07814

https://arxiv.org/abs/2208.07814
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Interpret Lorentz-symmetry as an inductive bias 

37

➔ Goal of our new study:  
❖ we want to confirm that Lorentz-symmetry preservation the “inductive bias” 

for jet physics to boost the network performance 
❖ even better if we isolate “a patch” from LorentzNet, which can be applied to a 

wider range of networks 

➔ Our experiments 
❖ devise multiple choices of additional features, which are invariant to some or 

all Lorentz transformations 

❖ want to see if this affects network performance as we expect

C.Li et al. arXiv:2208.07814

First of all, we need to find a good way to 
categorize the possible Lorentz transformations 
acted on the jet

https://arxiv.org/abs/2208.07814
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Lorentz transformations

38

➔ By HEP convention, a jet is represented on Δη-Δφ plane w.r.t. its axis 
❖ equivalent as: apply a boost on z-axis → then a rotation on x-y plane (transverse 

plane) → now jet points to the x-axis 
❖ after the conventional preprocessing, we have four additional DoFs for Lorentz 

transformation! Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

x

y

z

jet after preprocessing:  
(η, φ) =(0, 0)

≈ Viewing the jet from x-direction

≈ η-φ rotation z-boost + x-z rotation y-boost + x-y rotation

transverse 
plane

beam axis
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Variable design
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Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

ΔRij ΔRij

➔ Devise variables which are invariant under some or all Lorentz (sub)symmetries 
❖ pairwise mass: invariant under all transformations 

❖ pairwise : approx. invariant under y-z rotation (≈ η-φ rotation) 

❖ manually construct variable : can prove that it is also approx. invariant 
under x-boost!

ΔRij

ΔRij(pT,i + pT,j)
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Variable design
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Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

Original

(a)

–  boostx t–  rotationy z

–tiltz –tilty

(b) (c)

(d) (e)

ΔRij

➔ Devise variables which are invariant under some or all Lorentz (sub)symmetries 
❖ pairwise mass: invariant under all transformations 

❖ pairwise : approx. invariant under y-z rotation (≈ η-φ rotation) 

❖ manually construct variable : can prove that it is also approx. invariant 
under x-boost

ΔRij

ΔRij(pT,i + pT,j)

 smaller, but  largerΔRij pT
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Experiments on ParticleNet and LorentzNet

41

Element-wise 
embedding

Input

EdgeConv block

neighbouring 
nodes form 
the message 
(xi1, ⋯, xik)

pairwise 
features

Element-wise embedding

xi

xi1 xi3

xi2

Ui,i1 Ui,i2

Ui,i3

Linear

message 
constructed from 
pairwise features 
(Ui,i1, ⋯, Ui,ik)

xixi1

xi2

Ui,i1
Ui,i2Ui,i3

…

…

Linear

EdgeConv block

xi3

embedded 
pairwise 
features

Uij

from paper arXiv:2208.07814 

➔ Two baseline networks to study pairwise feature effect: ParticleNet & LorentzNetbase 
❖ ParticleNet: now add an additional patch (in red colour) to incorporate pairwise 

features, based on ParticleNet’s intrinsic kNN pairs 
❖ LorentzNetbase: LorentzNet has already included “pairwise mass”: remove it to create 

our baseline (but complete all node features as the case of ParticleNet)

https://arxiv.org/abs/2208.07814
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Performance for adding pairwise features

42

better 
compared 
to baselines

Training on 60k top tagging dataset (smaller dataset manifest the power of inductive bias)
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Performance for adding pairwise features

43

‣ Injecting ΔR to the 
network → more robust 
to y-z rotation 

‣ Injecting ΔR(pTi+pTj) 
or mass → more robust 
to y-z rotation and now 
also the x-boost
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A step towards a general solution

➔ Pairwise features have limitations 
❖ only applicable to GNN networks which intrinsically build “edges” 

➔ Upgrade to node-wise features 
❖ “mass features” carried per node, not edge between nodes

44

(1) for each node i

pT η ⋯

(2) find a friend group  :  
composed of k nodes 

 having 
largest 

Gi

im (m = 1,⋯, k)
pμ

i pimμ

this is a Lorentz 
invariant choice

(3) calculate mass 

 

m2
Gi

= (∑
j∈Gi

pj)
2

≈ 2
j<k

∑
j,k∈Gi

pμ
j pkμ

is essentially the pre-
determined linear combination 
of all pairwise masses
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General patch structure design for node-wise features

45

Input

Unit block

node-wise 
features

Element-wise embedding Linear

…embedded 
node-wise 
features

ui

xi

Unit block

Linear

xi

…

➔ Baseline networks can be any network that treats jet as a point cloud 
➔ Integrate new node-wise features layer-by-layer 

❖ unit block is  function for PFN, EdgeConv for ParticleNet, and LEGB for 
LorentzNet

Φ(x)

Any baseline network
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Performance for adding node-wise features

46

Adding node-wise mass: 
(1) improve network performance 

(especially for PFN) 
(2) more robust to Lorentz 

transformations on test data 
(3) smaller error bars (illustrate 

more generalization ability)
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Performance summary
➔ What do the above results mean? 

❖ the full network tends to be more robust and performant, when we incorporate 
Lorentz-symmetry-preserved variables (pairwise/node-wise ones) into the 
network 

❖ even when we introduce a very small patch structure invariant under a certain 
symmetry (the original network is unaffected) helps the network to perform 
better 
‣ without need to let the network fully satisfy Lorentz symmetries 

‣ invariance property of the small sub-network has a big impact on the learning, and 
can be reflected in the entire network

47
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Performance summary
➔ What do the above results mean? 

❖ the full network tends to be more robust and performant, when we incorporate 
Lorentz-symmetry-preserved variables (pairwise/node-wise ones) into the 
network 

❖ even when we introduce a very small patch structure invariant under a certain 
symmetry (the original network is unaffected) helps the network to perform 
better 
‣ without need to let the network fully satisfy Lorentz symmetries 

‣ invariance property of the small sub-network has a big impact on the learning, and 
can be reflected in the entire network

48

‣ The experiments show that “pairwise 
mass” is the key component in network 
design 
‣We reveal that the underlying logic lies 

in the Lorentz symmetry preservation 
‣ We make a  successful attempt to 

understand the interpretability of the 
network in terms of symmetry 
preservation
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Discussions

1. We provide two general solutions to improve neural network performance 
❖ incorporate pairwise/node-wise features 
❖ the node-wise solution is more generalized to be applied 
❖ yet “pairwise mass” is still crucial if one hopes to achieve state-of-the-art 

performance (as they form a full set of Lorentz scalar basis) 

2. We address that the Lorentz-symmetric design is already used in the current 
best models 
❖ LorentzNet and ParT (discussion in p.51) both inject “pairwise mass” in network 

design 
❖ can explain to some extent their high performance

50
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Brief intro to ParT

➔ Transformer model is the new state-of-the-art architecture introduced in DL 
community 
❖ Language models: BERT, GPT-3… 
❖ Computer Vision: ViT, Swin-T 
❖ AI for Science: AlphaFold2 for protein structure prediction 

➔ Transformers architecture 
❖ consists only of self-attention blocks 
❖ more scalable with large model/data 
❖ big model (more parameters) + more training data + affordable computing 

complexity → better performance
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Brief intro to ParT
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0.855 0.9869 9217 3425 117 1550 4425 19802 12500 480 353LorentzNet

0.855LorentzNet 233 k 2.01 G

similar computation complexity with 
ParticleNet, but more performant than 
ParticleNet and LorentzNet!

JetClass [H.Qu et al. arXiv:2202.03772, proceedings of 39th ICML, Vol.162]
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Figure 3. The architecture of (a) Particle Transformer (b) Particle Attention Block (c) Class Attention Block.

as the particles in a jet are permutation invariant. The spatial
information (i.e., the flying direction of each particle) is
directly included in the particle inputs. We feed the particle
embedding x0 into a stack of L particle attention blocks
to produce new embeddings, x1, ...,xL via multi-head self
attention. The interaction matrix Y is used to augment the
scaled dot-product attention by adding it as a bias to the
pre-softmax attention weights. The same Y is used for all
the particle attention blocks. After that, the last particle
embedding xL is fed into two class attention blocks, and a
global class token xclass is used to extract information for
jet classification via attention to all the particles, following
the CaiT approach (Touvron et al., 2021). The class token
is passed to a single-layer MLP, followed by softmax, to
produce the final classification scores.

Remark. ParT can also be viewed as a graph neural network
on a fully-connected graph, in which each node corresponds
to a particle, and the interactions are the edge features.

Particle interaction features. While the ParT architecture
is designed to be able to process any kinds of pairwise in-
teraction features, for this paper we only consider a specific
scenario in which the interaction features are derived from
the energy-momentum 4-vector, p = (E, px, py, pz), of
each particle. This is the most general case for jet tagging,
as the particle 4-vectors are available in every jet tagging

task. Specifically, for a pair of particles a, b with 4-vectors
pa, pb, we calculate the following 4 features:

� =
p

(ya � yb)2 + (�a � �b)2,

kT = min(pT,a, pT,b)�,

z = min(pT,a, pT,b)/(pT,a + pT,b),

m2 = (Ea + Eb)
2

� kpa + pbk
2,

(3)

where yi is the rapidity, �i is the azimuthal angle, pT,i =
(p2x,i + p2y,i)

1/2 is the transverse momentum, and pi =
(px,i, py,i, pz,i) is the momentum 3-vector and k · k is the
norm, for i = a, b. Since these variables typically have
a long-tail distribution, we take the logarithm and use
(ln �, ln kT, ln z, ln m2) as the interaction features for each
particle pair. The choice of this set of features is motivated
by Dreyer & Qu (2021).

Particle attention block. A key component of ParT is the
particle attention block. As illustrated in Figure 3(b), the
particle attention block consists of two stages. The first
stage includes a multi-head attention (MHA) module with
a LayerNorm (LN) layer both before and afterwards. The
second stage is a 2-layer MLP, with an LN before each
linear layer and GELU nonlinearity in between. Residual
connections are added after each stage. The overall block
structure is based on NormFormer (Shleifer et al., 2021),
however, we replace the standard MHA with P-MHA, an

https://arxiv.org/abs/2202.03772
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Intro to published tool:  Weaver

➔ Introducing  Weaver, a streamlined and flexible machine learning R&D 
framework for HEP applications 

➔ use the below link to 
❖ try out ParT, ParticleNet model out-of-the-box 
❖ play with the JetClass dataset 
‣ we invite the community to explore and experiment with this dataset and extend 

the boundary of deep learning and jet physics even further. 

❖ or explore previous top tagging & quark/gluon dataset, or any custom ones 
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https://github.com/jet-universe/particle_transformer

https://github.com/jet-universe/particle_transformer
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Discussions

3. Lorentz-symmetric design (incorporating pairwise mass) can be adopted to 
other scenarios

54

(1) Jet tasks beyond jet tagging

MPGAN for generation of jets

R.Kansal et al. arXiv:2106.11535, Proceeding of 35th NIPS

SPA-Net for jet assignments

M.Fenton et al. PRD 105, 11200

https://arxiv.org/abs/2106.11535
https://doi.org/10.1103/PhysRevD.105.112008
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3. Lorentz-symmetric design (incorporating pairwise mass) can be adopted to 
other scenarios
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(2) Tasks to process whole collision event

O.Atkinson et al. JHEP 08 (2021) 080
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GNN based autoencoders for anomaly detection
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Figure 3. A schematic representation of a graph-autoencoder network. The network contains the
(a) Encoder and the (b) Decoder. We employ an edge reconstruction network in the decoder to
reconstruct the multidimensional edge information.

3 Graph Neural Networks

In this section, we describe the various components of our neural network analysis. We

briefly detail the conceptual structure of GNNs before moving on to describe the ones we

utilise in our analysis, along with the explicit form of the autoencoder’s loss function. The

network architecture and the process of training are described thereafter.

Graph Neural Networks are models that can extract features from graph-structured

data. They generalise the inbuilt inductive biases in Convolutional Neural Networks (CNNs)

like local connectivity and shared weights to variable length and possibly non-Euclidean

data [52]. For supervised learning applications, this was formalised as Message Passing

Neural Networks (MPNNs) in Ref. [53]. We sketch the general paradigm and then describe

in greater detail the two specific forms that are used in our work in the succeeding para-

graphs. In the following, h(l)
i is the ith node’s features at the lth timestep (analogous to a

layer in the usual ANNs). e(l)ij denotes the features of the edge connecting the nodes i and

j, and N (i) is the set of nodes connected to the node i. For the input layer, we take l = 0,

and h(0)
i = xi. MPNNs consist of a message passing phase and a graph readout layer. In

the first phase, a message-passing function is defined for two nodes i and j

m(l)
ij = M(l)(h(l)

i ,h(l)
j , e(l)ij ) , (3.1)

which calculates the message mij for the edge connecting the nodes. The message function

is usually a multilayer-perceptron (MLP) shared between all the edges, hence the term

graph convolutions. For each timestep (or layer), the messages between all connected

nodes are calculated, after which the features of each node are updated according to an

aggregation function

h(l+1)
i = ⇤(h(l)

i , {m(l)
ij | j 2 N (i)}) , (3.2)

– 5 –

O. Atkinson, A. Bhardwaj, C. Englert, V. S. 
Ngairangbam and M. Spannowsky

[JHEP 08 (2021) 080]

Recluster R=1.5 jets 
to R=0.1 microjets 
and use as inputs

features. The message passing function performs a broadcasted element-wise multiplication

of the form
abm(1)

ij = abFe(eij)⇥ abh̃(0)j , (3.3)

where a and b are the indices of the matrix, and abh̃(0)j is formed by repeating h(0)
j , the input

node features, n times. The aggregation step takes the mean of abm(1)
ij over all neighbouring

nodes j, and then sums over the a index of the matrix:

bh(1)i =
X

a

meanj2N (i)

⇣n
abm(1)

ij

o⌘
, (3.4)

to give updated n dimensional node features h(1)
i .

EdgeConv: The backbone of our architecture is the edge convolution operation [54]. This

involves two linear layers: ⇥w and �w, with identical input and output dimensions, which

determine the dimensions of original and updated node features respectively. The message

passing function is defined as

m(l)
ij = ⇥w(h

(l)
j � h(l)

i ) + �w(h
(l)
i ) , (3.5)

while the aggregation step involves taking the maximum value

ah(l+1)
i = max

j2N (i)
{am(l)

ij } , (3.6)

in each component a of the incoming message vectors to give the updated node features

h(l+1)
i .

Inner Product Layer: The edge-reconstruction network uses an Inner Product Layer to

reconstruct the edge features from the node features of the final edge convolution output.

The inner product makes the correspondence to the two-node indices for each edge. Since

our graphs are undirected, the layer constructs a symmetric N ⇥ N matrix, N being the

number of nodes in the graph. Its components are therefore

Âij = hi . hj , (3.7)

where hi and hj are node-feature vectors.

Loss Function: We use root-mean squared error (RMSE) for the node as well as the edge

reconstruction losses. For the node feature this is

Lnode =

sX

ia

(x̂ai � xai )
2

N ⇥ 5
, (3.8)

where a is the node-feature index, i is the node index, x̂ai and xai are the reconstructed

and input node features, respectively. We define the edge reconstruction loss as the sum

of three individual RMSEs for each edge feature

Ledge =
X

a

vuut
X

ij

(Âa
ij �Aa

ij)
2

N ⇥N
, (3.9)
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where a is the edge-feature index, i and j are node indices. Âa
ij and Aa

ij are the reconstructed

and input adjacency matrices respectively. The total loss is the weighted sum of the

individual losses,

Lauto = �node Lnode + �edge Ledge (3.10)

We choose �node = 0.3 and �edge = 1, so that the combined node features get the same

weight as each individual edge feature, which carry more relevant physics information. Note

that the loss function is invariant to node permutations of the input graph since, mean is

a permutation invariant function, and the architecture respects permutation invariance:

any change in the node ordering changes the output of each layer(via the graph readout)

in conjunction with the adjacency matrix. Our network however, does not reconstruct

an arbitrarily permuted graph for a given input, which is not strictly necessary since we

concentrate on the reconstruction error of a single graph and not of an equivalence class of

graphs.

3.2 Network Architecture and training

Neural networks require a careful optimal choice of hyperparameters. As this is a proof-of-

principle analysis, we do not perform an extensive hyperparameter scan. However, we scan

over the latent dimension, which is critical for any autoencoder. For the first layer of the

graph-encoder (NNConv), we use an MLP of hidden dimensions: 256, 128, 64, and 32 as the

edge function to map the 3-dimensional edge features to a 5⇥128 dimensional output. The

hidden layers have ReLU activations, whereas the final layer has a sigmoid activation. The

limited range of the sigmoid activation helps in giving the addition operation in aggregation

(as defined in Eq. (3.4)) an interpretation of a weighted sum over messages in an additional

dimension without the dynamics being entirely dominated by the outputs of the edge

function. Each hidden layer has a dropout layer with fraction 0.2 of disconnected nodes

between layers to avoid overfitting and achieve better generalisation. After the aggregation,

we get a 128-dimensional output that feeds into a series of edge-convolution layers with

linear layers as ⇥w and �w. The output dimensions of the linear layers are 64 and 32

and outputs a 6 dimensional latent node encoding. This value is chosen after a scan over

di↵erent latent dimensions which we elaborate on in the next section. The shared block

of the decoder uses the encoder’s reversed dimensions: 32, 64, and 128. With the 128-

dimensional vector as input, the node reconstruction layer performs an edge-convolution

to give the reconstructed node vectors x̂. Similarly, each edge reconstruction network

has three successive edge convolutions of output dimensions 32, 16, and 8. We calculate

the inner products on the 8-dimensional vector space to give the reconstructed adjacency

matrices Âa
ij .

We train the network with the Adam optimiser [55] initialised with a 0.001 learning

rate on mini-batches of 64 samples. The learning rate is decayed with a reduce-on-plateau

condition with decay factor 0.5, and a patience of five epochs with an additional five epochs

of cool-down. We use 85k jets to train the network. After each epoch, we calculate the

loss of an independent validation dataset containing 28k QCD jets. We stop the training

– 8 –

Convolutional GNN autoencoder
Convolutional GNN autoencoder 
for anomalous detection

https://link.springer.com/article/10.1007/JHEP08(2021)080
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3. Lorentz-symmetric design (incorporating pairwise mass) can be adopted to 
other scenarios
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(3) Tasks using primitive data source

J.Pata et al. EPJC 81, 381 (2021) 

MLPF, using tracks and clusters 
to reconstruct particle-flow 
candidates

G.DeZoort et al. Comput. Softw. Big Sci. 5, 26 (2021)

GNN for track reconstruction

https://link.springer.com/article/10.1140/epjc/s10052-021-09158-w
https://link.springer.com/article/10.1007/s41781-021-00073-z
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Overall summary

➔ In this talk: 
❖ we recap the evolution of DL application to jet tagging 
❖ we introduce LorentzNet, a GNN-based network respecting full Lorentz 

symmetry, which exhibits better performance than previous state-of-the-arts 
❖ we investigate the core of such enhancement, and discover the role “Lorentz 

symmetry preservation” plays in networks; we propose two patch structures 
applicable to a variety of baselines 

➔ Hints to interesting new applications 
❖ the Lorentz symmetry design as an intrinsic inductive bias in jet physics has a 

wider range of potential applications
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Backup
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ParT architecture
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(a) Particle Transformer
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H.Qu et al. arXiv:2202.03772, proceedings of 39th ICML, Vol.162

https://arxiv.org/abs/2202.03772


Jet tagging algorithm respecting Lorentz group symmetry

Congqiao Li (Peking University) 2 September, 2022IHEP EPD Seminar

IHEP EPD Seminar

Transformer illustration
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[image from link]

https://jalammar.github.io/illustrated-transformer/

