

Jet tagging algorithm respecting Lorentz group symmetry

based on: S.Gong et al. JHEP 07 (2022) 030; C.Li et al. arXiv:2208.07814

Congqiao Li (李聪乔), Peking University

in collaboration with

Shiqi Gong (AMSS, CAS; MSRA), Qi Meng, Jue Zhang, Tie-Yan Liu (MSRA) Huilin Qu (CERN), Sitian Qian, Qiang Li (PKU)

> EPD Seminar · IHEP, CAS 2 September, 2022

Preview of this talk

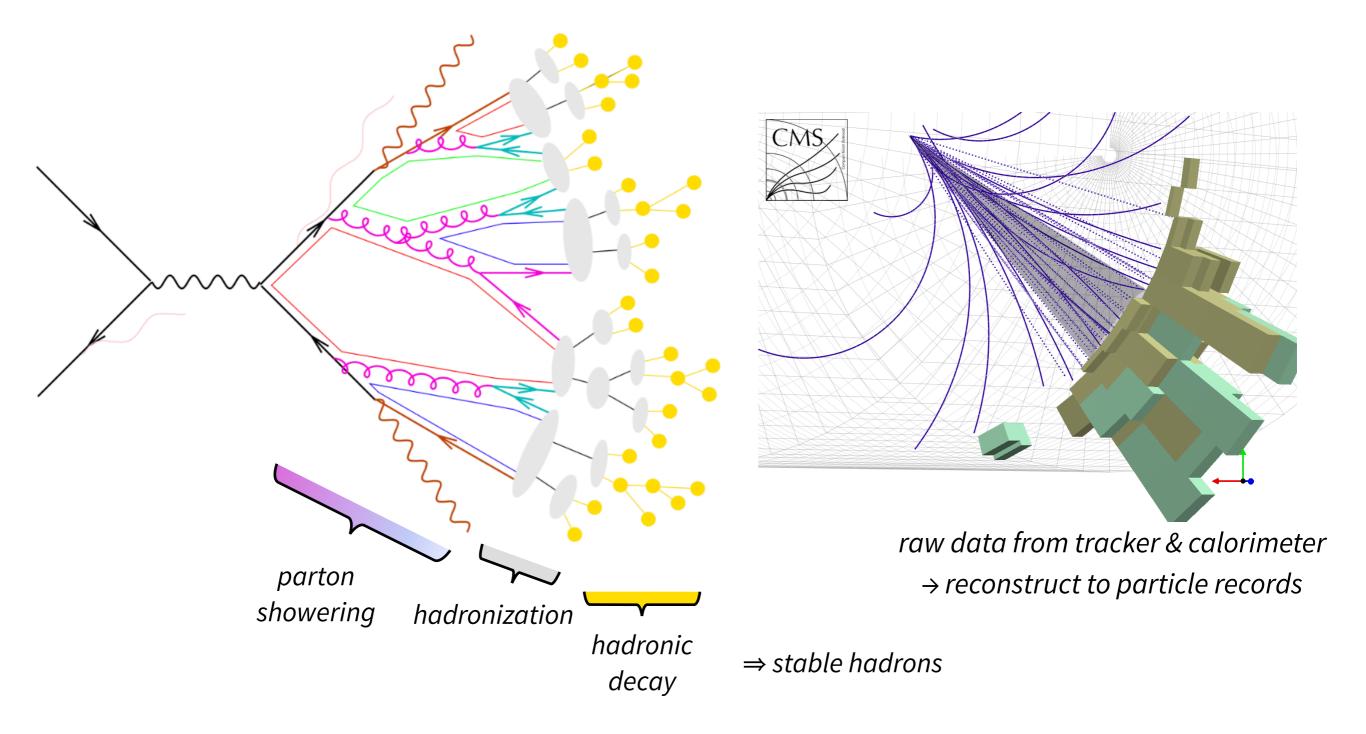
- I. Background
 - ✤ Jets, jet tagging
 - Jet physics meets deep learning
 - Roadmap of DL model for jet tagging
- II. LorentzNet
 - Architecture
 - Performance and tests
 - Conclusion

- III. Lorentz-symmetric design
 - Backgrounds to inductive bias
 - Pairwise features and experiments
 - Node-wise features and experiments
 - Performance summary
- IV. Outlook & Summary
 - Intro of ParT and published tool
 - Hints to future applications

Part I: Background

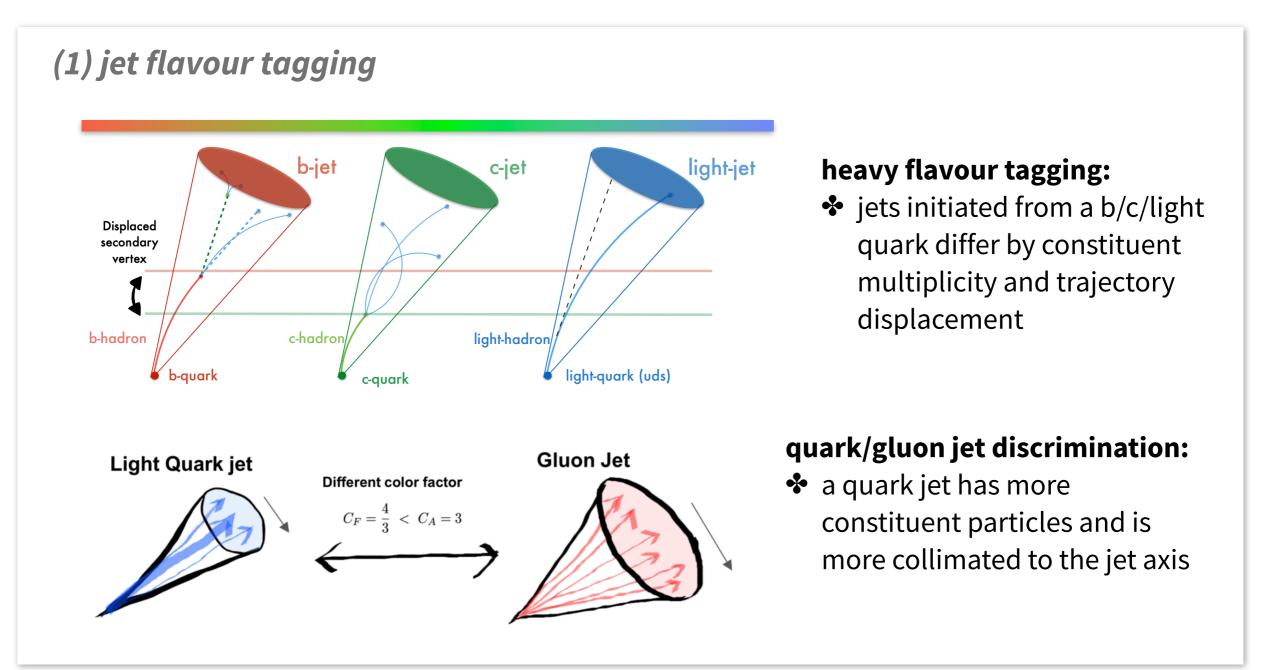
Jets in hadron colliders

"A jet is a collimated shower of particles produced by the hadronization of a quark or gluon"



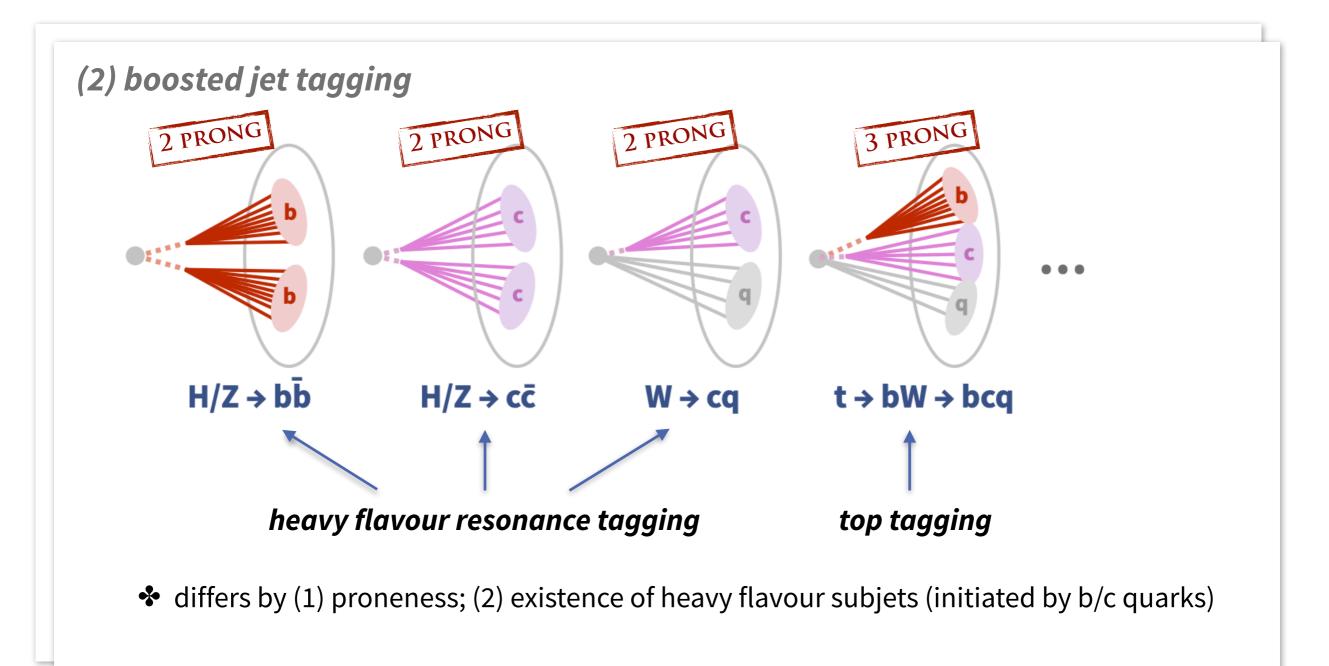
Jet tagging

- → Jet tagging: determine the origin of a jet
- ➔ Two jet tagging prototypes

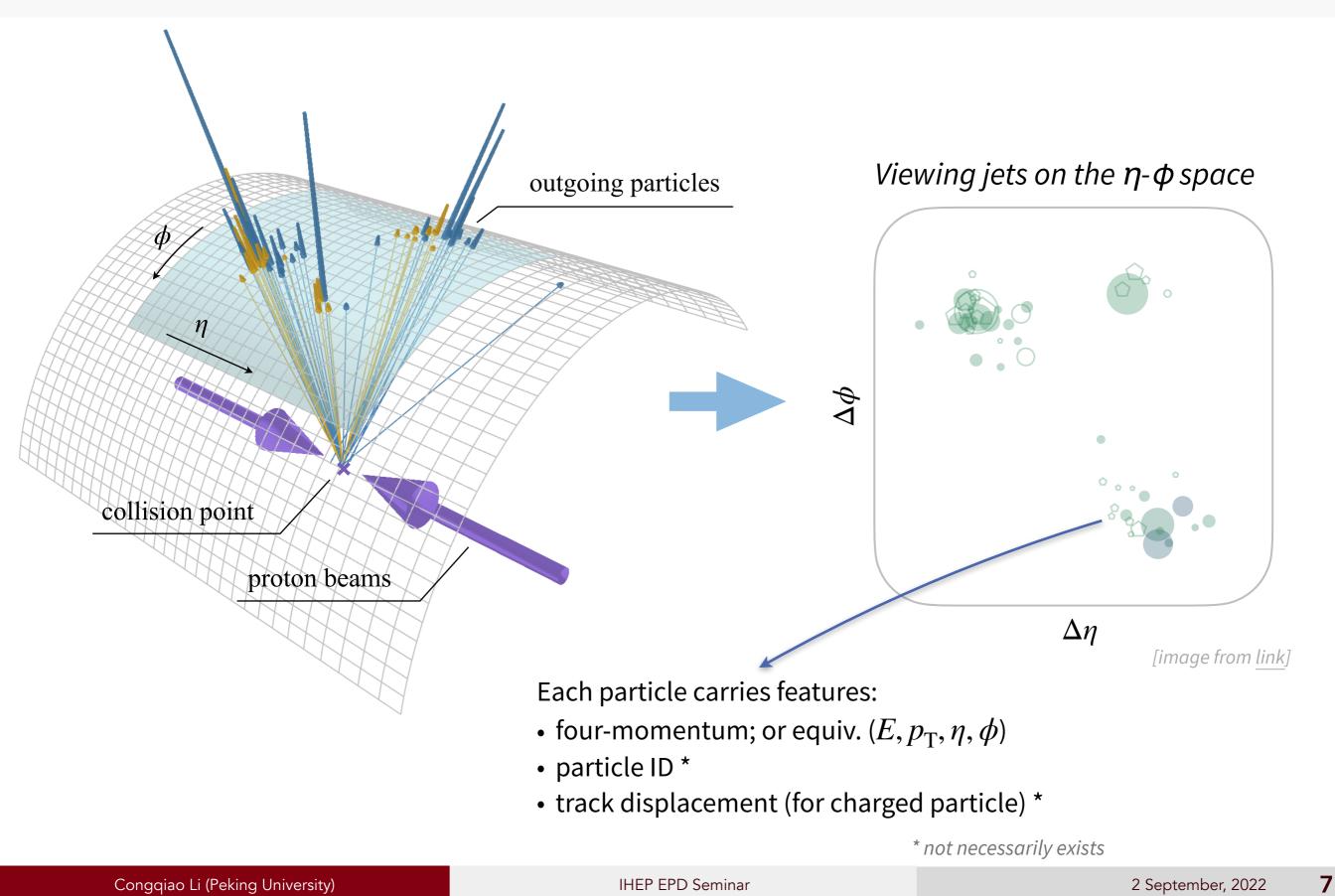


Jet tagging

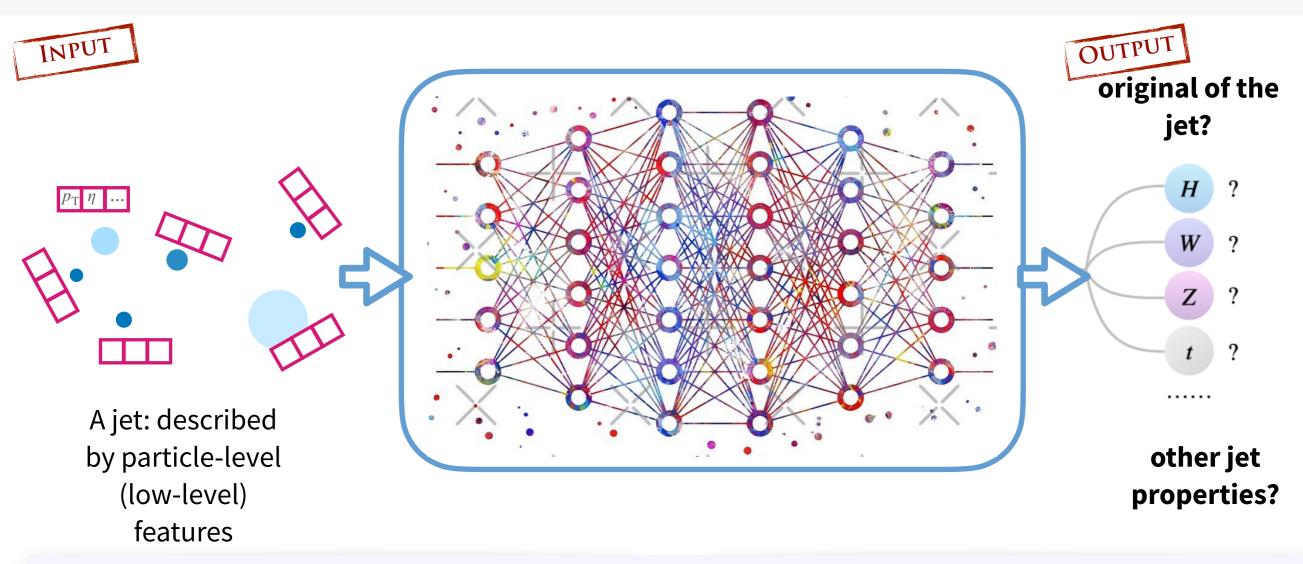
- → Jet tagging: determine the origin of a jet
- → Two jet tagging prototypes



View of a jet



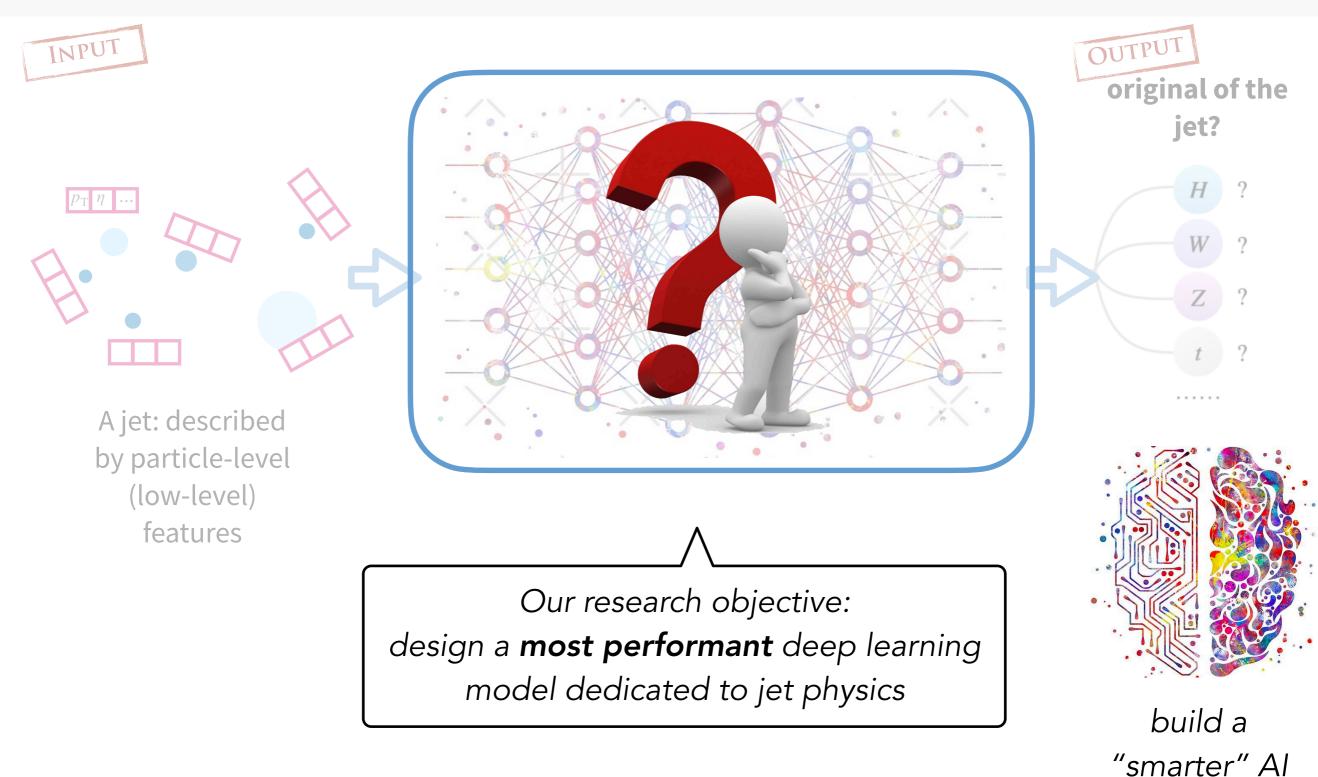
Jet physics meets deep learning



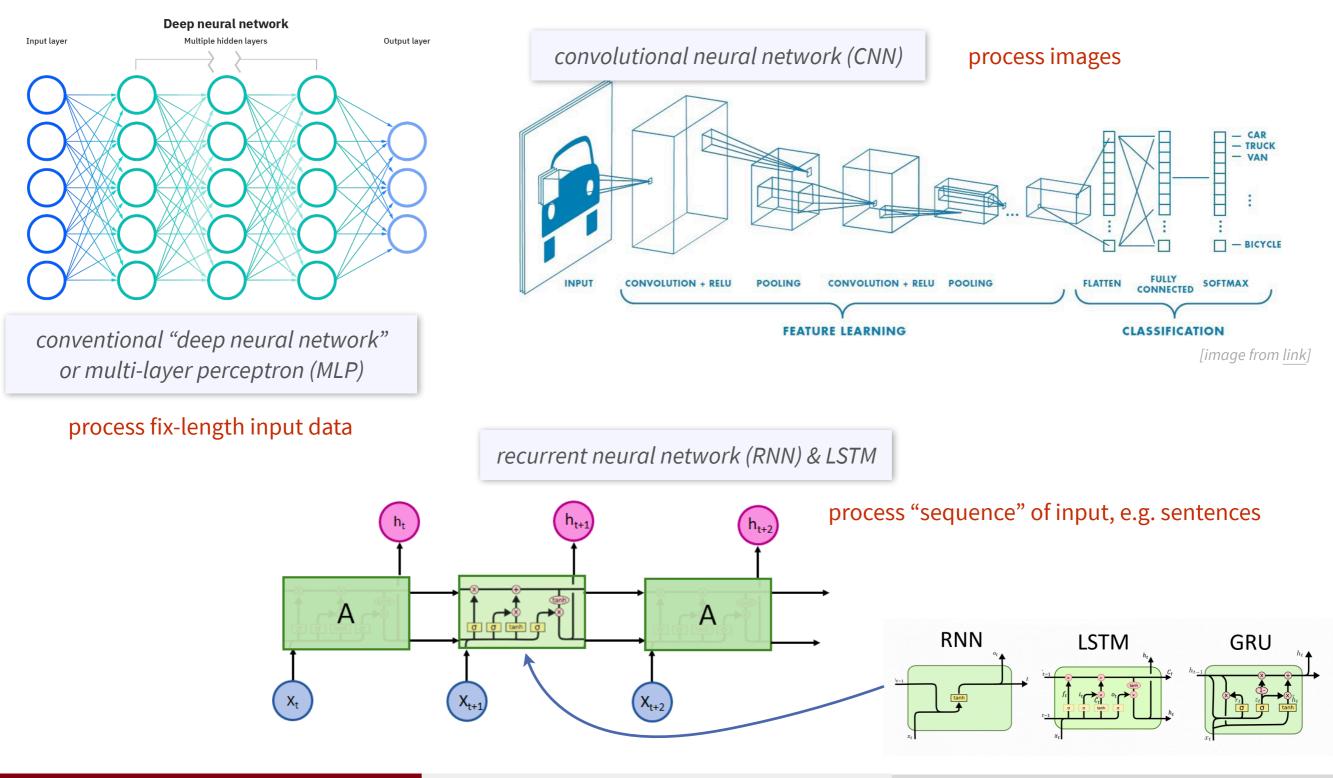
We are embracing a new era of mankind in which AI starts to reshape science and industries. (the stage regarded as "The 4th Industrial Revolution") Future collider physics will be highly influenced by the advancement in AI and deep learning.

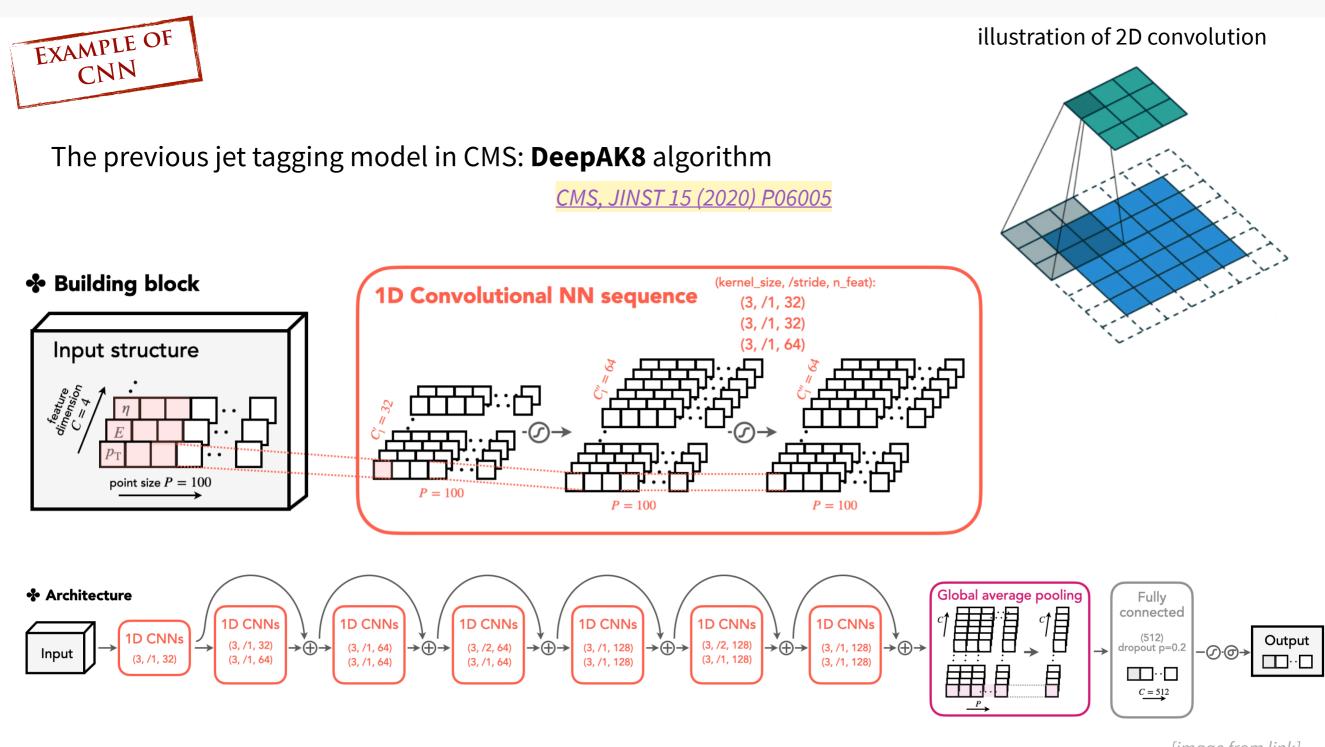
Jet physics is one of the entry points.

Jet physics meets deep learning



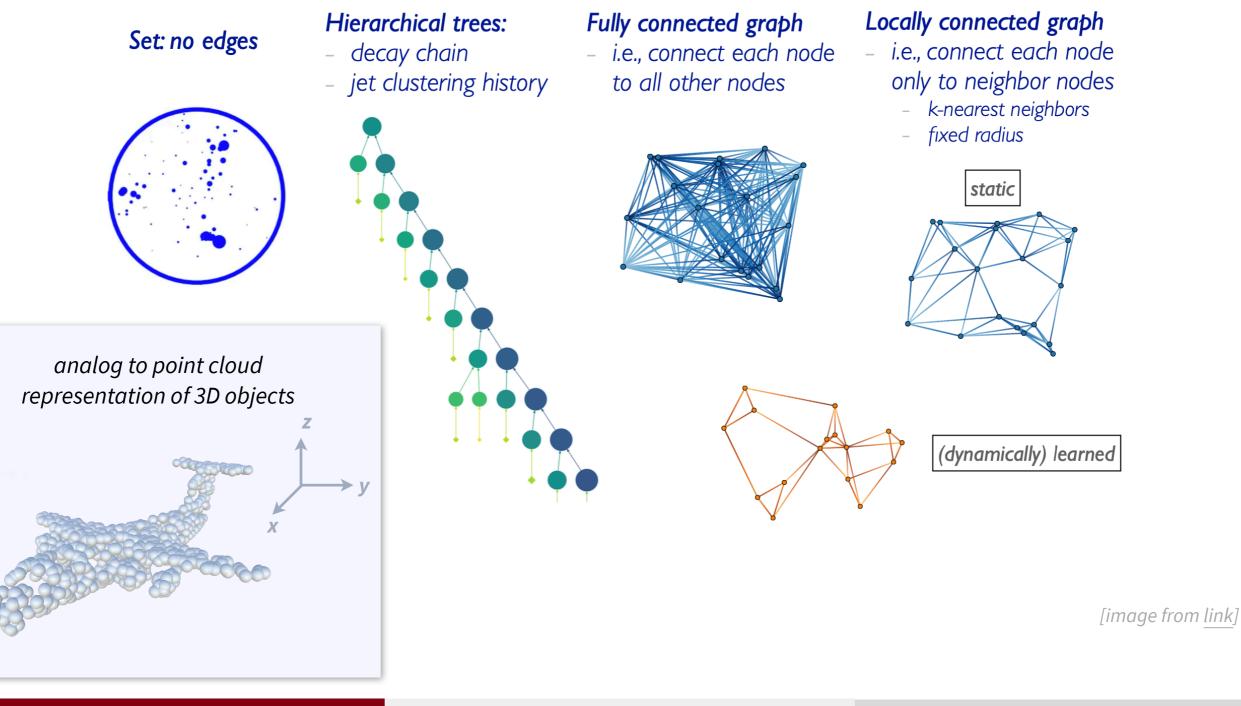
→ DL model design draw from experiences in Computer Vision





Congqiao Li (Peking University)

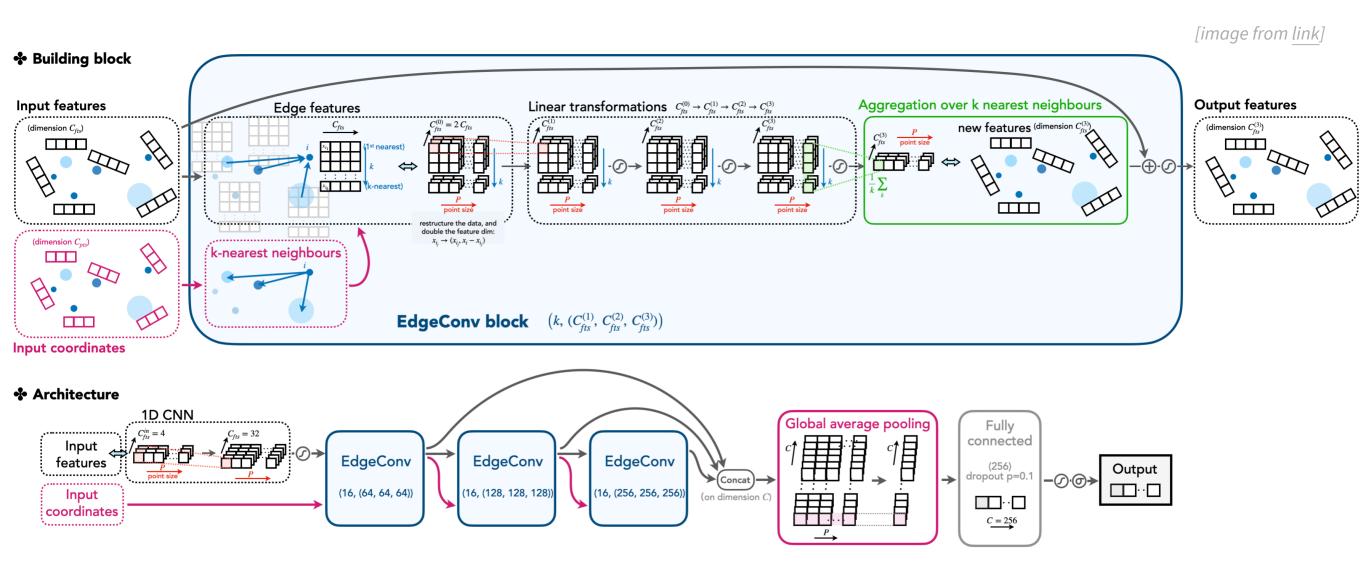
- → Graph neural networks: view input particles as a set / graph
 - guarantee the *permutational invariance* of input particles



IHEP EPD Seminar

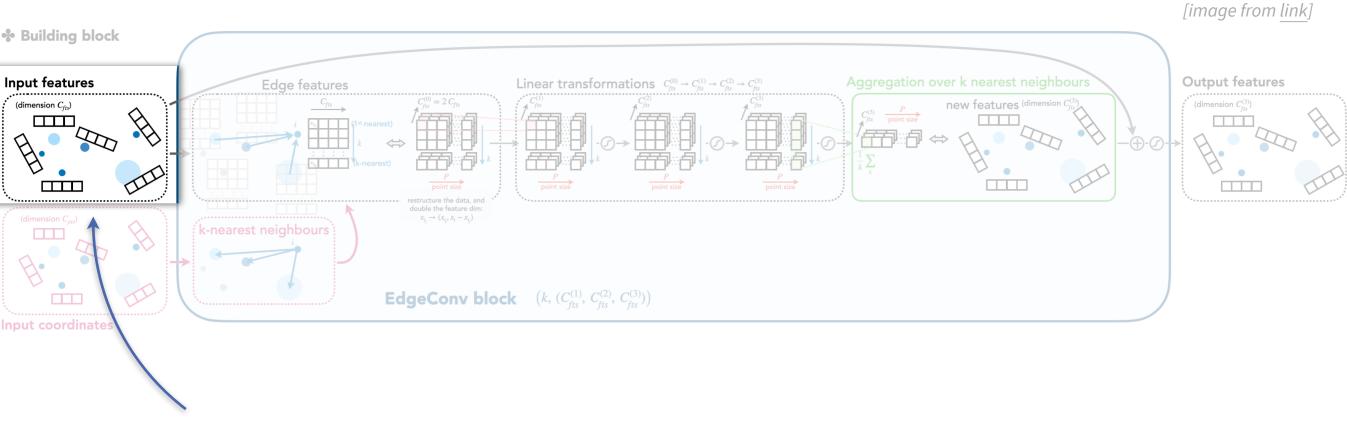
<u>H.Qu, L.Gouskos. PRD 101 (2020) 056019</u>

A powerful and popular model in the HEP community with a variety of applications



H.Qu, L.Gouskos. PRD 101 (2020) 056019

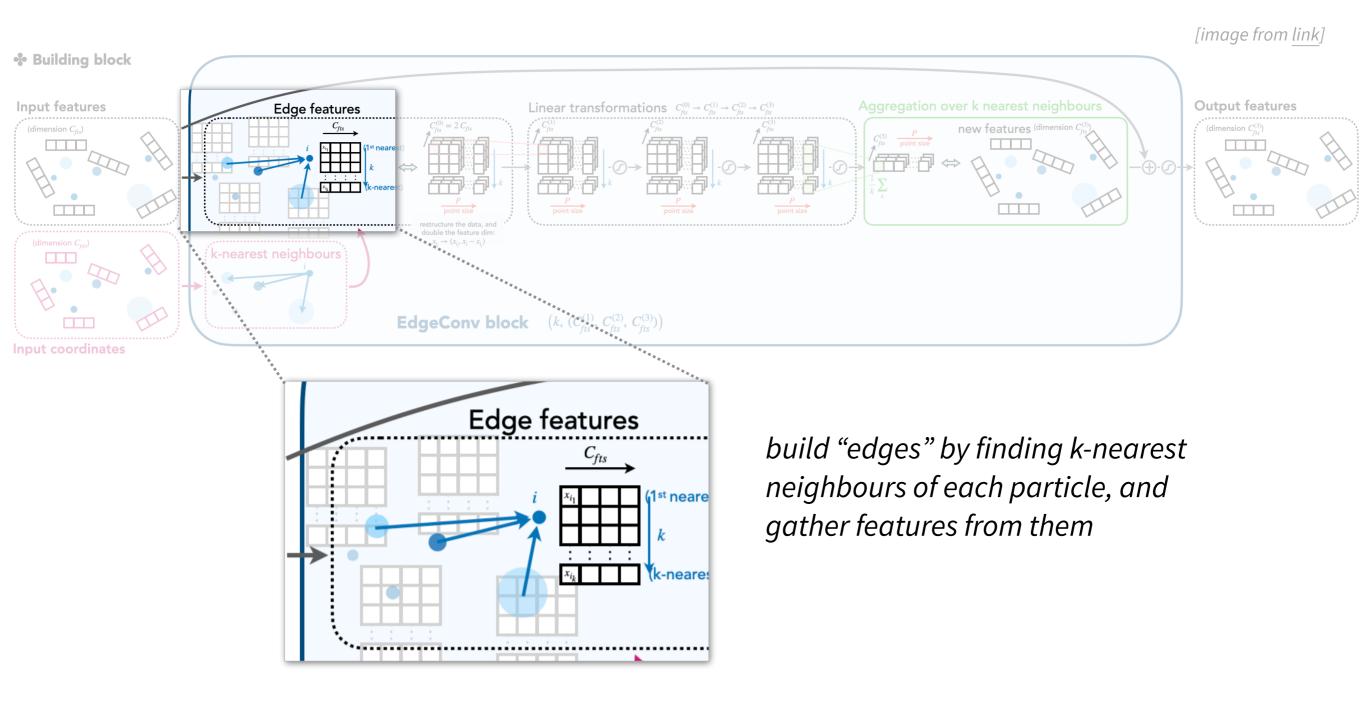
A powerful and popular model in the HEP community with a variety of applications



Point cloud representation of jet

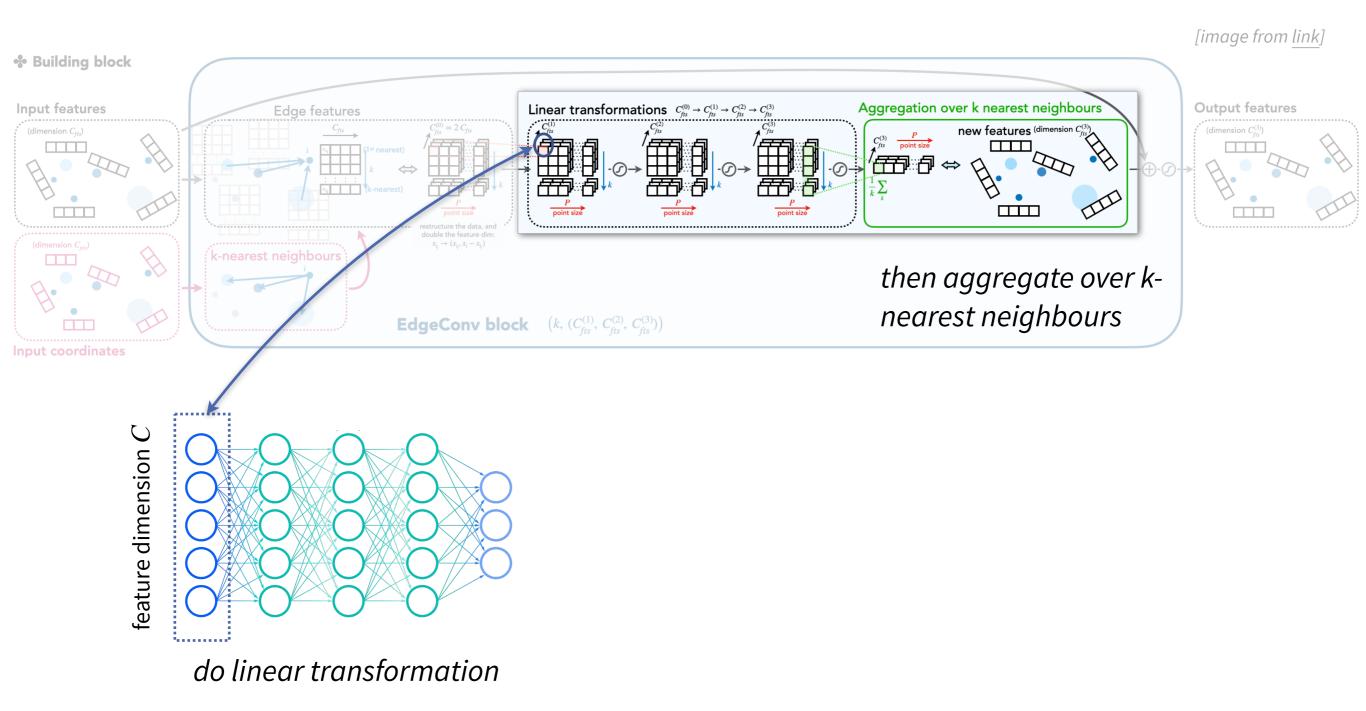
<u>H.Qu, L.Gouskos. PRD 101 (2020) 056019</u>

A powerful and popular model in the HEP community with a variety of applications

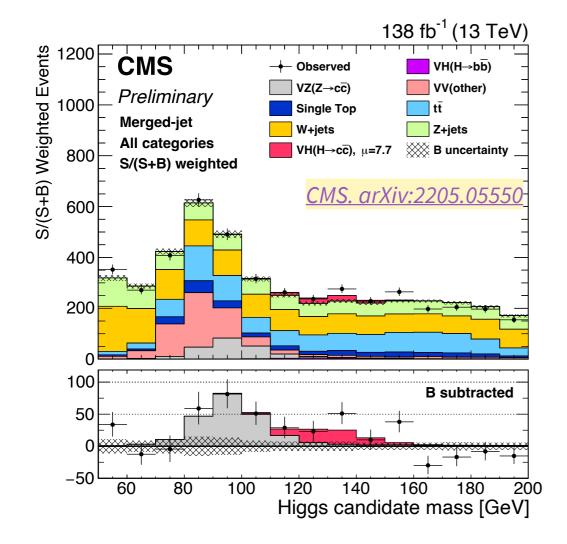


<u>H.Qu, L.Gouskos. PRD 101 (2020) 056019</u>

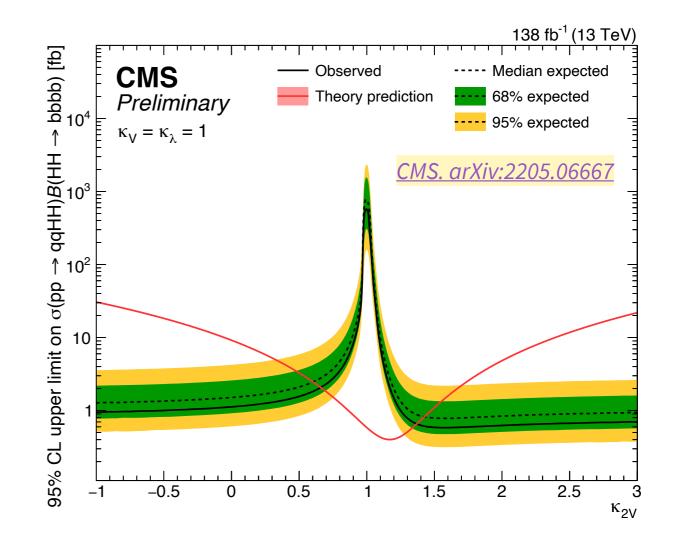
A powerful and popular model in the HEP community with a variety of applications



H.Qu, L.Gouskos. PRD 101 (2020) 056019



application to VH→cc̄ search Most stringent limit on H-c coupling to date

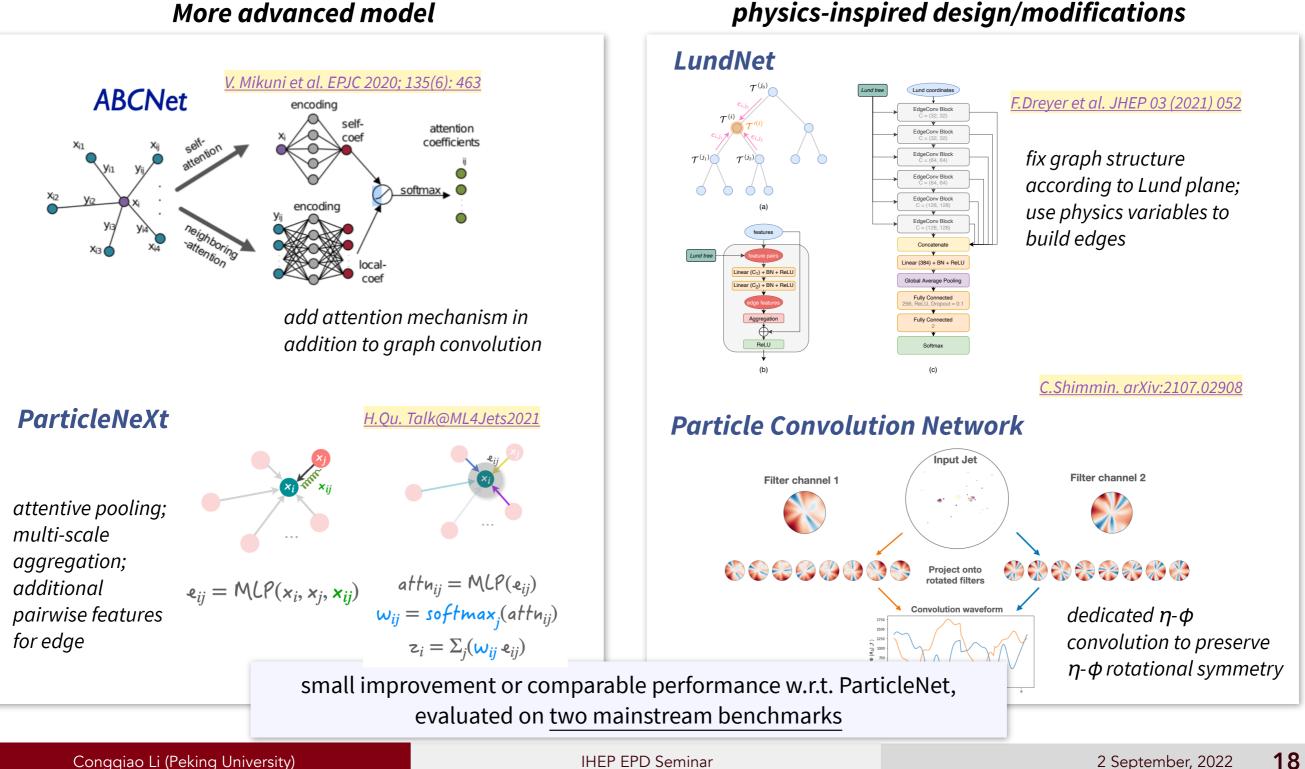


application to SM boosted HH \rightarrow 4b search First time excluding $\kappa_{2V} = 0$

"Post-ParticleNet" DL studies

disclaimer: only shows a part of relevant works

→ Further study to enhance the jet tagging model mainly divided into two approaches



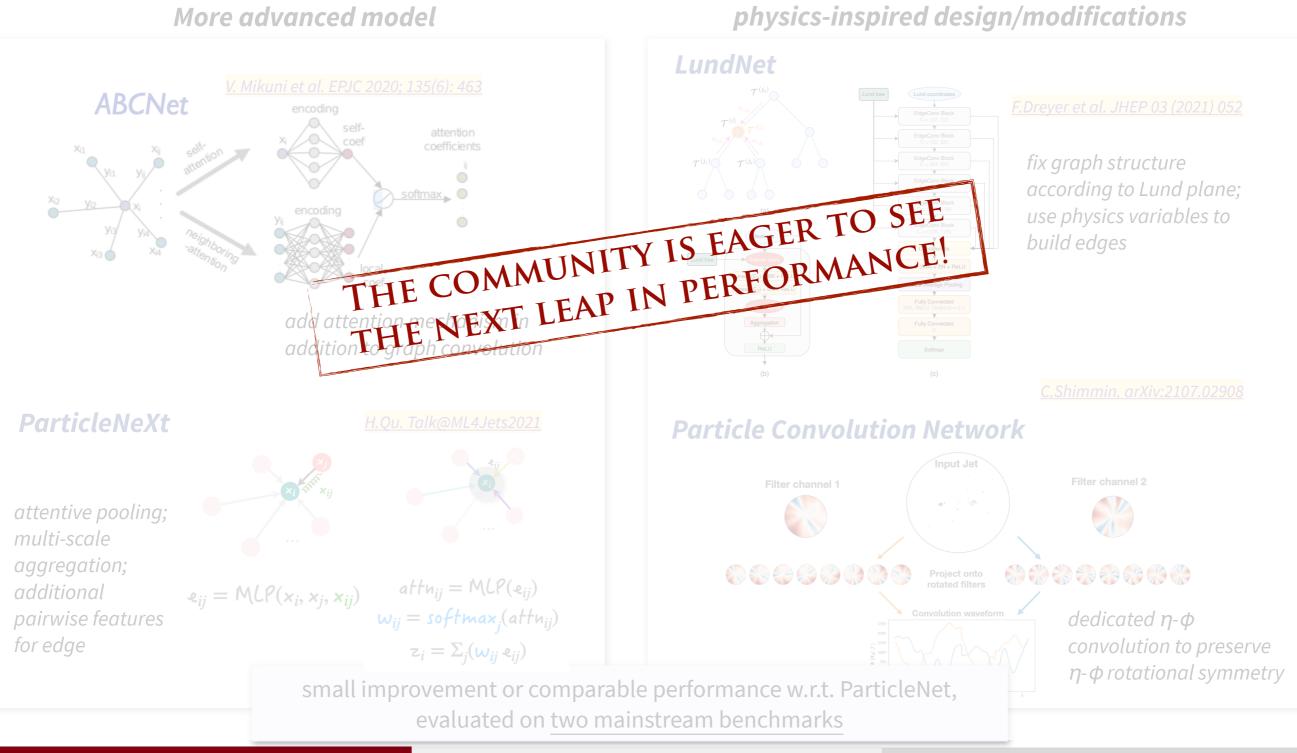
More advanced model

"Post-ParticleNet" DL studies

Conggiao Li (Peking University)

disclaimer: only shows a part of relevant works

→ Further study to enhance the jet tagging model mainly divided into two approaches



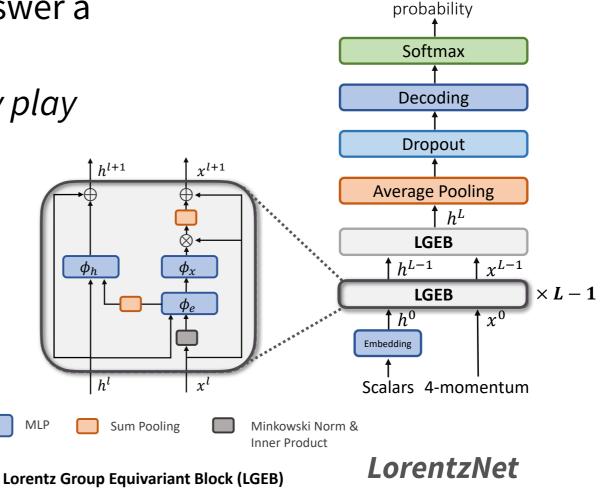
IHEP EPD Seminar

Part II: LorentzNet

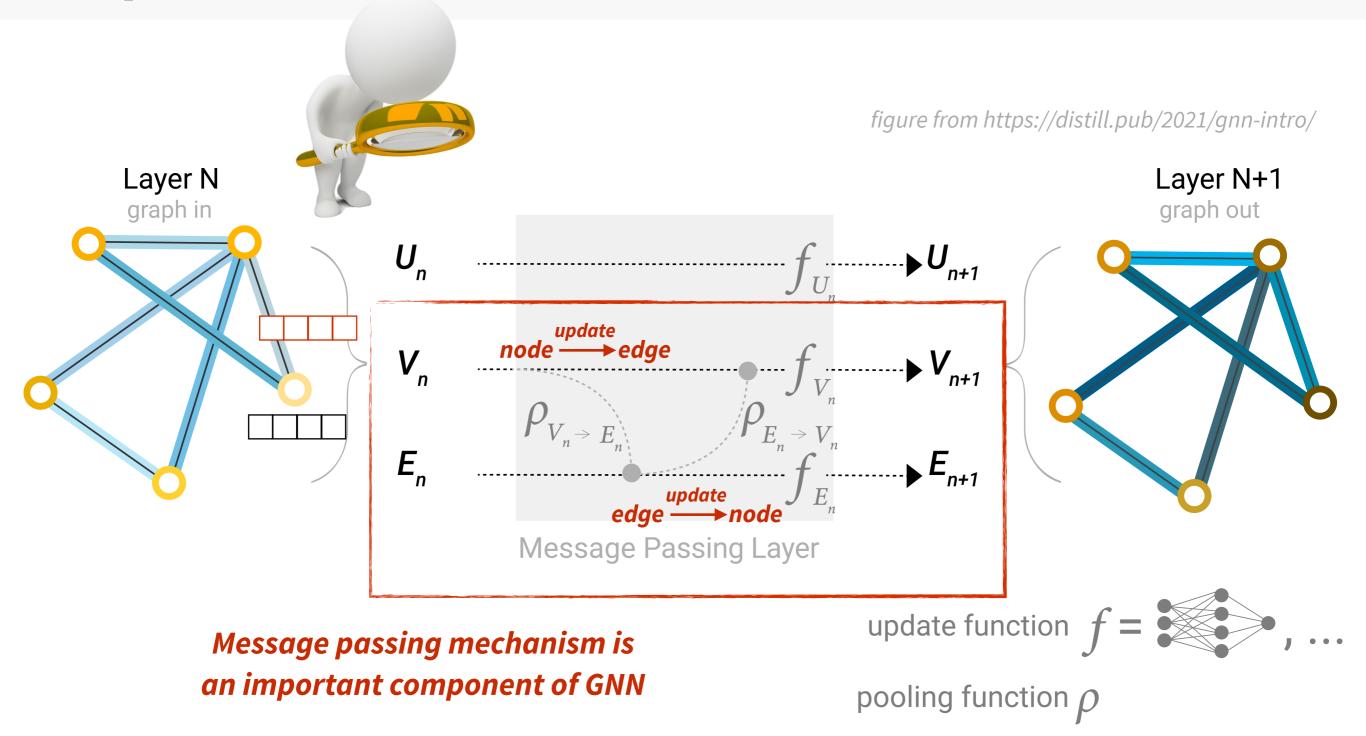
Introducing LorentzNet

→ Design of LorentzNet makes a successful attempt

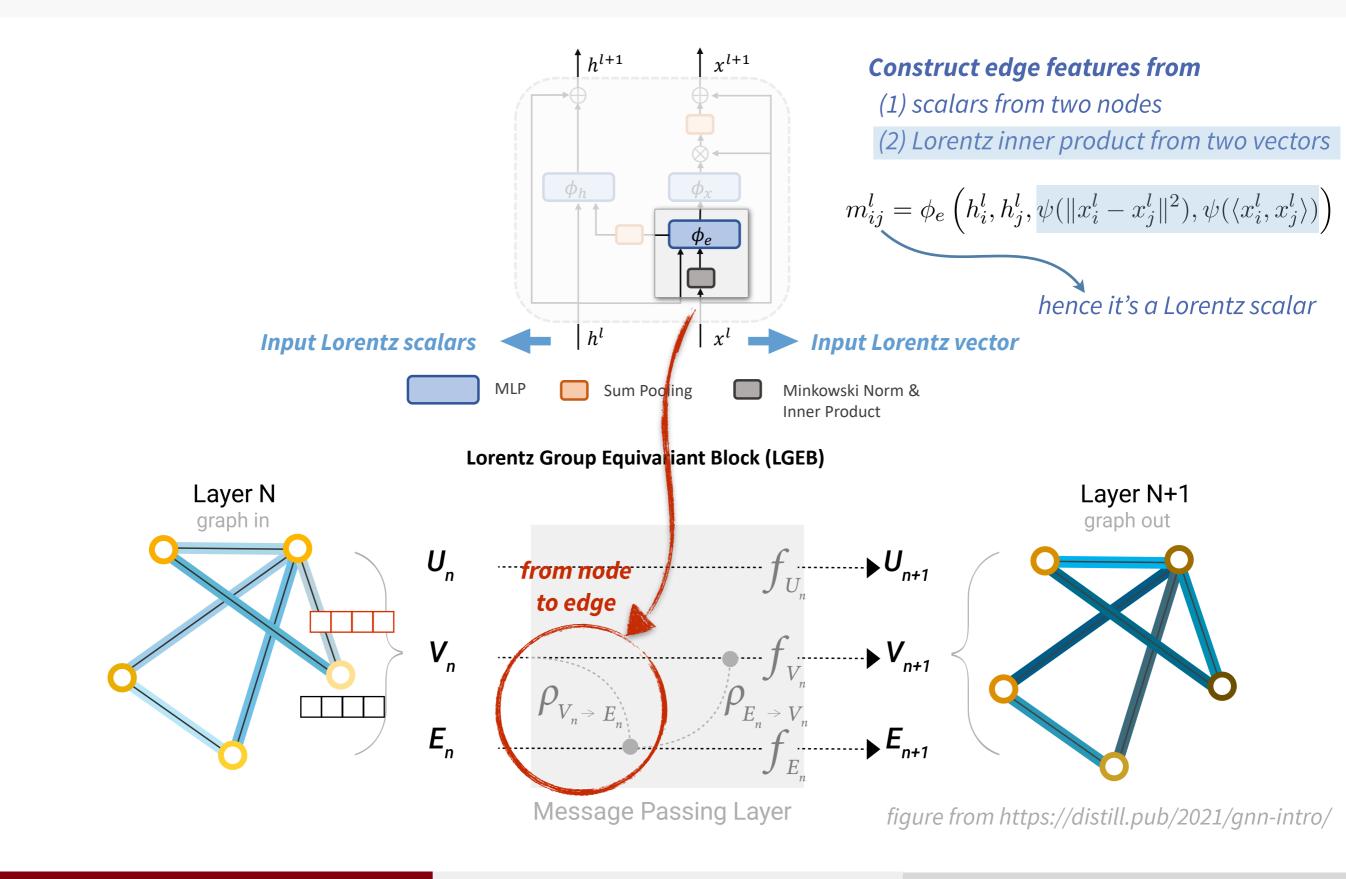
- made up of fully-connected GNN
- its outstanding performance largely comes from Lorentz symmetry preservation
- (note: recently the record is reset by *ParT* which we discuss in p.51)
- → We'll first start our journey in LorentzNet, then in the next part we try to answer a broader question: which role does Lorentz-symmetry play in jet tagging



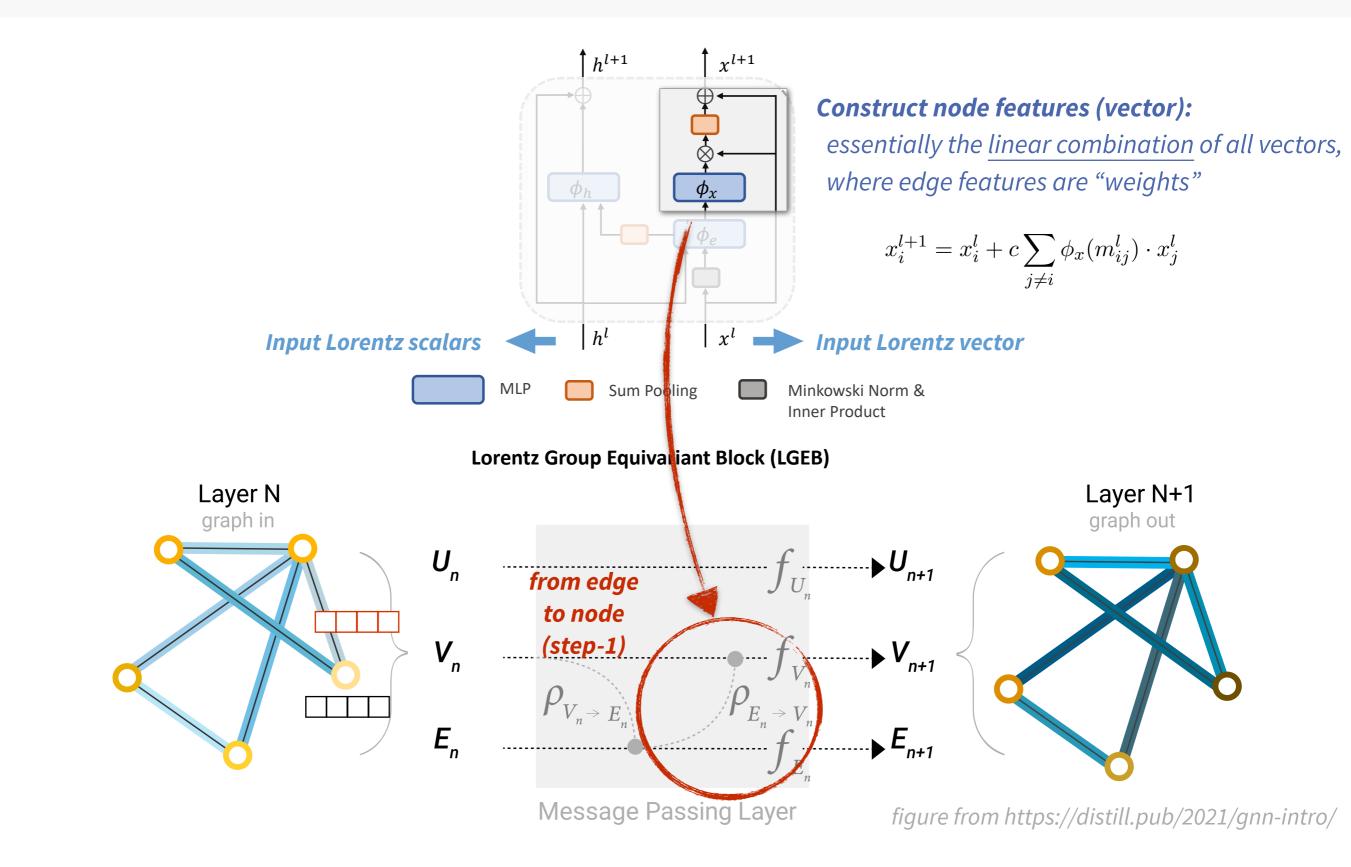
Graph neural networks



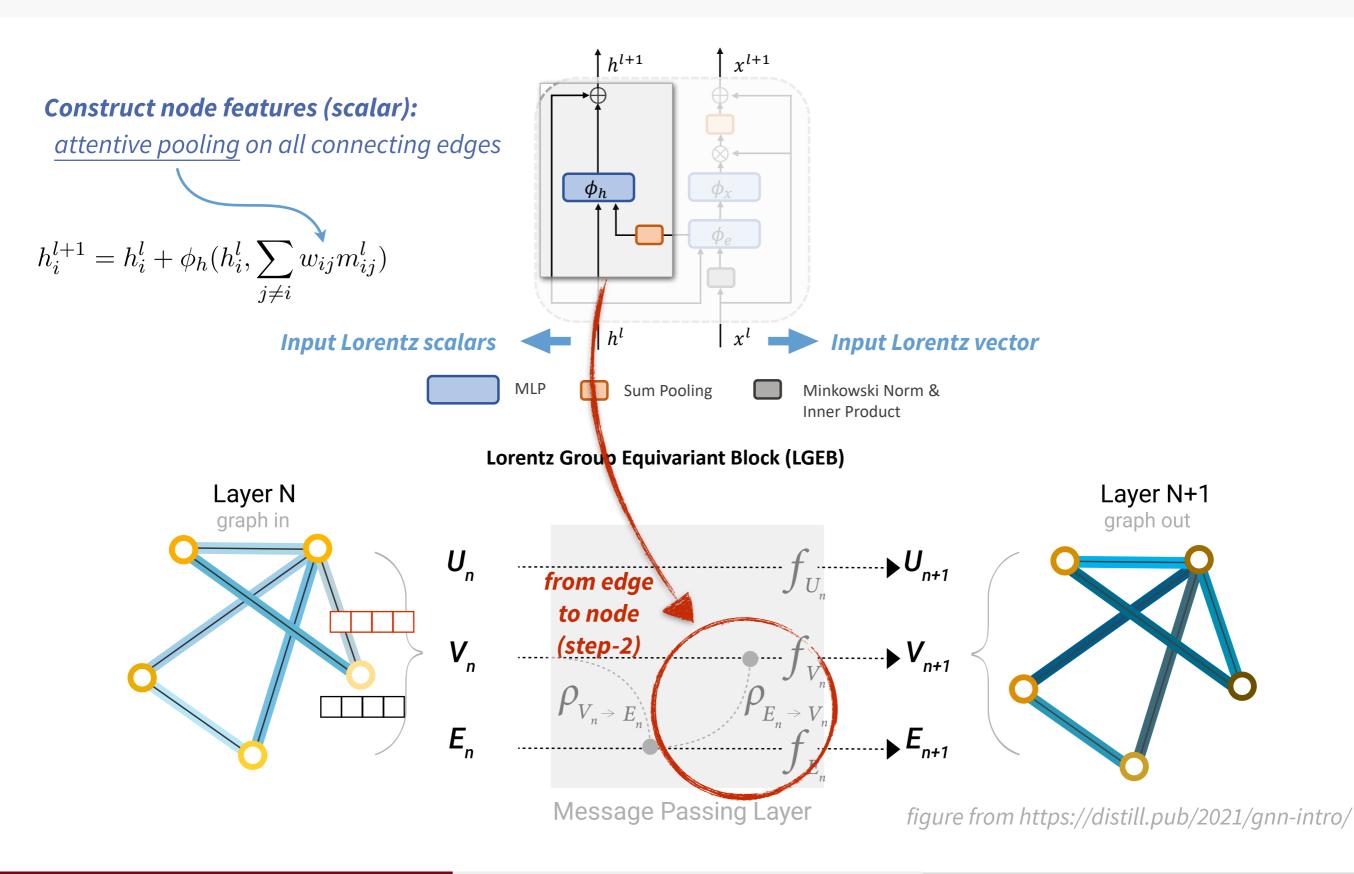
LorentzNet architecture



LorentzNet architecture



LorentzNet architecture

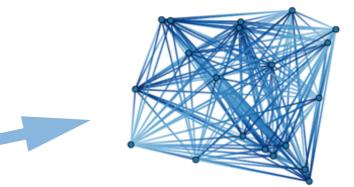


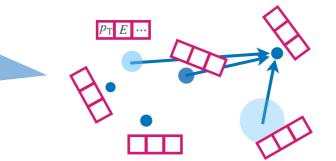
Summary of architecture

- → Now let's summarize the main architecture of LorentzNet
 - Graph neural network as backbone
 - Fully connected
 - i.e., all N(N-1)/2 edges are computed
 - ParticleNet use dynamic k-nearest neighbours to define edges (DGCNN), so it is not using the full pairs

Fully Lorentz invariant/equivariant

nodes can be grouped by either Lorentz scalars or vectors

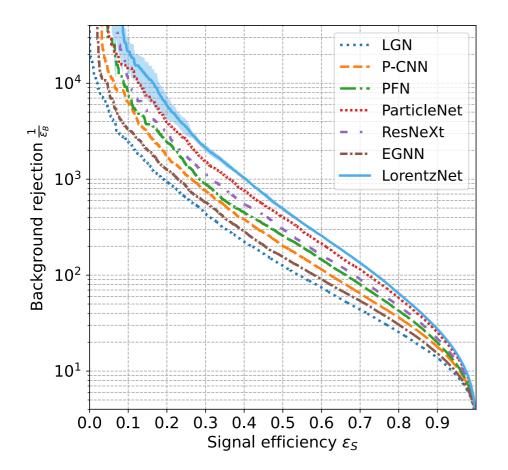




Performance

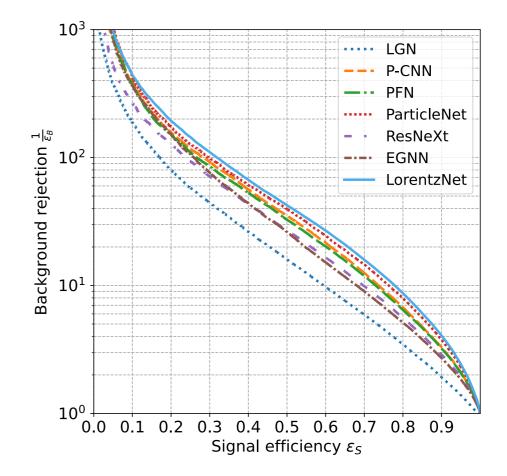
Model	Accuracy	AUC	$\frac{1/\varepsilon_B}{(\varepsilon_S = 0.5)}$	$\frac{1/\varepsilon_B}{(\varepsilon_S = 0.3)}$
ResNeXt	0.936	0.9837	302 ± 5	1147 ± 58
P-CNN	0.930	0.9803	201 ± 4	759 ± 24
PFN	0.932	0.9819	247 ± 3	888 ± 17
ParticleNet	0.940	0.9858	397 ± 7	1615 ± 93
EGNN	0.922	0.9760	148 ± 8	540 ± 49
LGN	0.929	0.9640	124 ± 20	435 ± 95
LorentzNet	0.942	0.9868	498 ± 18	2195 ± 173

Top tagging benchmark [SciPost Phys. 7 (2019) 014]



Quark-gluon tagging benchmark [JHEP 01 (2019) 121]

Model	Accuracy	AUC	$\frac{1/\varepsilon_B}{(\varepsilon_S = 0.5)}$	$\frac{1/\varepsilon_B}{(\varepsilon_S = 0.3)}$
ResNeXt	0.821	0.8960	30.9	80.8
P-CNN	0.827	0.9002	34.7	91.0
PFN	—	0.9005	34.7 ± 0.4	_
ParticleNet	0.840	0.9116	39.8 ± 0.2	98.6 ± 1.3
EGNN	0.803	0.8806	26.3 ± 0.3	76.6 ± 0.5
LGN	0.803	0.8141	8.30	15.2
LorentzNet	0.844	0.9156	42.4 ± 0.4	110.2 ± 1.3



Additional tests

→ Equivariance test:

 LorentzNet is more robust when the input jet undergoes a Lorentz transformation (consider Lorentz boosts on *x*-axis)

→ Small training sample size:

LorentzNet is able to perform much better when trained on a smaller size of sample

Training	Model	Accuracy	AUC	$1/\varepsilon_B$	$1/\varepsilon_B$	
Fraction	Model	Accuracy	AUC	$(\varepsilon_S = 0.5)$	$(\varepsilon_S = 0.3)$	
0.5%	ParticleNet	0.913	0.9687	77 ± 4	199 ± 14	
0.370	LorentzNet	0.929	0.9793	176 ± 14	562 ± 72	
1%	ParticleNet	0.919	0.9734	103 ± 5	287 ± 19	
	LorentzNet	0.932	0.9812	209 ± 5	697 ± 58	
5%	ParticleNet	0.931	0.9807	195 ± 4	609 ± 35	
	LorentzNet	0.937	0.9839	293 ± 12	1108 ± 84	



→ Ablation study on Lorentz equivariant preserving structure

replacing the pairwise scalar (mass)
 has a negative effect on the network

Model	Equivariance	Accuracy	AUC	$\frac{1/\varepsilon_B}{(\varepsilon_S = 0.5)}$	$\frac{1/\varepsilon_B}{(\varepsilon_S = 0.3)}$
LorentzNet (w/o)	×	0.934	0.9832	290 ± 30	1105 ± 59
LorentzNet	1	0.942	0.9868	498 ± 18	2195 ± 173

Conclusion on LorentzNet

S.Gong et al. JHEP 07 (2022) 030

- → We present LorentzNet, a Lorentz group equivariant GNN
 - the network has now reached state-of-the-art performance, when trained and evaluated on two mainstream benchmarks
 - its equivariance property confirmed on Lorentz-transformed test dataset
 - ablation study shows Lorentz-symmetry-preserving mechanism does help the network
 - code and model available in: <u>https://github.com/sdogsq/LorentzNet-release</u>

Conclusion on LorentzNet

S.Gong et al. JHEP 07 (2022) 030

- → We present LorentzNet, a Lorentz group equivariant GNN
 - the network has now reached state-of-the-art performance, when trained and evaluated on two mainstream benchmarks
 - its equivariance property confirmed on Lorentz-transformed test dataset
 - ablation study shows Lorentz-symmetry-preserving mechanism does help the network
 - code and model available in: <u>https://github.com/sdogsq/LorentzNet-release</u>

→ We would also like to ask

- why LorentzNet outperforms many networks proposed after ParticleNet
- can we dig deeper to extract the key component in LorentzNet? can it be applied to other networks as well?
- → We will use experiments to confirm that one key component of the gain is Lorentz-symmetry preservation

Part III: Lorentz-symmetric design

LorentzNet performance on JetClass

JetClass [arXiv:2202.03772, proceedings of 39th ICML, Vol.162]

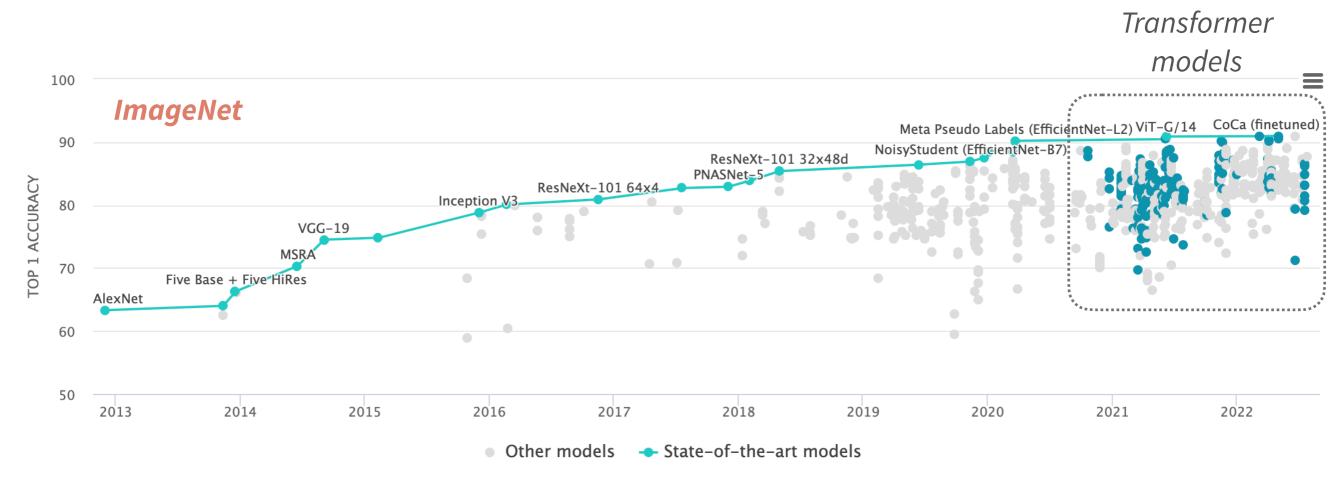
-												
		All cla	sses	$H \to b \bar{b}$	$H\to c\bar{c}$	$H \to gg$	$H \to 4q$	$H ightarrow \ell u q q'$	$t \to b q q'$	$t\to b\ell\nu$	W o qq'	$Z \to q \bar{q}$
		Accuracy	AUC	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$	Rej _{99%}	$\text{Rej}_{50\%}$	Rej _{99.5%}	$\text{Rej}_{50\%}$	$\text{Rej}_{50\%}$
_	PFN	0.772	0.9714	2924	841	75	198	265	797	721	189	159
	P-CNN	0.809	0.9789	4890	1276	88	474	947	2907	2304	241	204
\wedge	ParticleNet	0.844	0.9849	7634	2475	104	954	3339	10526	11173	347	283
NEW	LorentzNet	0.855	0.9869	9217	3425	117	1550	4425	19802	12500	480	353
home	ParT	0.861	0.9877	10638	4149	123	1864	5479	32787	15873	543	402
-	ParT (plain)	0.849	0.9859	9569	2911	112	1185	3868	17699	12987	384	311

- → A new benchmark, *JetClass* is proposed in <u>arXiv:2202.03772</u>, consists of 100M jets, ~100x larger then previous benchmarks
- → LorentzNet performs much better than ParticleNet, slightly worse than the most advanced model: ParT (discuss in p.51)
 - note that for #params
 LorentzNet < ParticleNet, and << ParT
 - this prove that LorentzNet is a very efficient model
- → We may want to understand the core of such efficiency

	Accuracy	# params	FLOPs
PFN	0.772	86.1 k	4.62 M
P-CNN	0.809	354 k	15.5 M
ParticleNet	0.844	370 k	540 M
LorentzNet	0.855	233 k	2.01 G
ParT	0.861	2.14 M	340 M
ParT (plain)	0.849	2.13 M	260 M

Model, data size and "inductive bias"

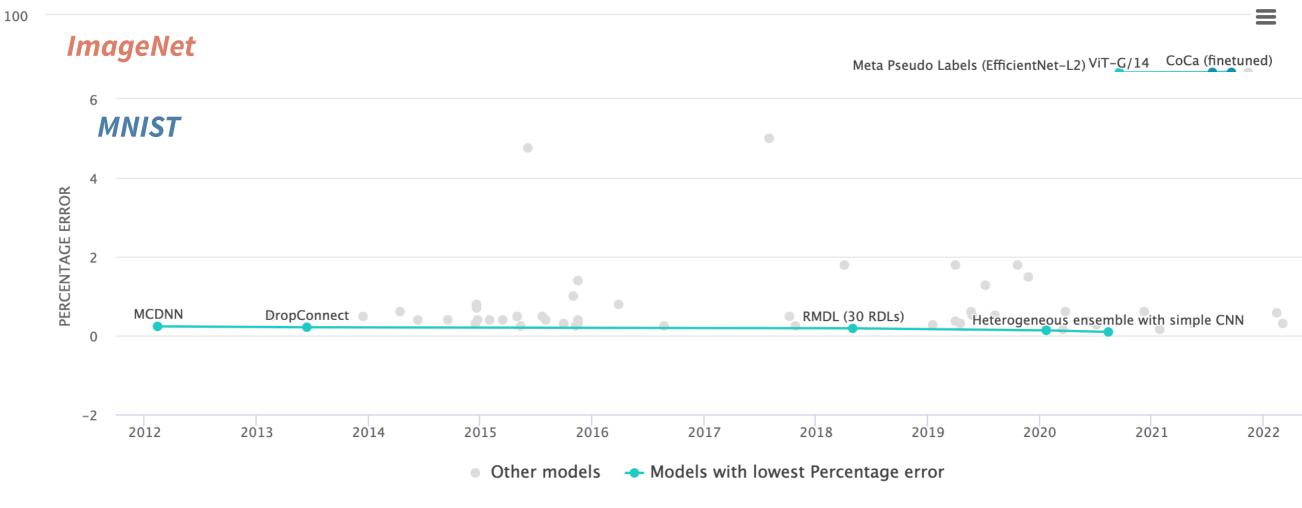
- → Lessons from image classification from Computer Vision
 - Training on ImageNet and its extension (224x224 pixel image classification)
 - Transformer models have led the performance, since the first application in 2020



https://paperswithcode.com/sota/image-classification-on-imagenet

Model, data size and "inductive bias"

- Lessons from image classification from Computer Vision
 - Training on ImageNet and its extension (224x224 pixel image classification)
 - Transformer models have led the performance, since the first application in 2020
 - But if we look back to MNIST dataset (hand-written digit classification)
 - still CNN-based networks rank higher

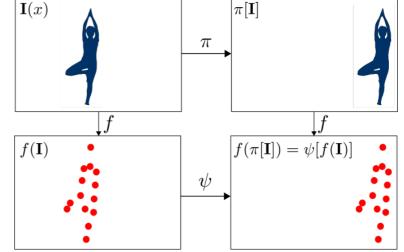


TOP 1 ACCURACY

Model, data size and "inductive bias"

- → Lessons from image classification from Computer Vision
 - Training on ImageNet and its extension (224x224 pixel image classification)
 - Transformer models have led the performance, since the first application in 2020
 - But if we look back to MNIST dataset (hand-written digit classification)
 - still CNN-based networks rank higher
 - Possible explanations:
 - for MNIST dataset, we want more "efficient" model when training on small dataset
 - to be more efficient, cooperating with "inductive bias" in the network design is crucial
 - CNN respects the local translational symmetry, which is an inductive bias when processing real-world images

 Image: Image image image



Interpret Lorentz-symmetry as an inductive bias

→ Goal of our new study:

- we want to confirm that Lorentz-symmetry preservation the "inductive bias" for jet physics to boost the network performance
- even better if we isolate "a patch" from LorentzNet, which can be applied to a wider range of networks

→ Our experiments

- devise multiple choices of additional features, which are invariant to some or all Lorentz transformations
- want to see if this affects network performance as we expect

C.Li et al. <u>arXiv:2208.07814</u>

Interpret Lorentz-symmetry as an inductive bias

→ Goal of our new study:

- we want to confirm that Lorentz-symmetry preservation the "inductive bias" for jet physics to boost the network performance
- even better if we isolate "a patch" from LorentzNet, which can be applied to a wider range of networks

→ Our experiments

- devise multiple choices of additional features, which are *invariant to some or* all Lorentz transformations
- want to see if this affects network performance as expect

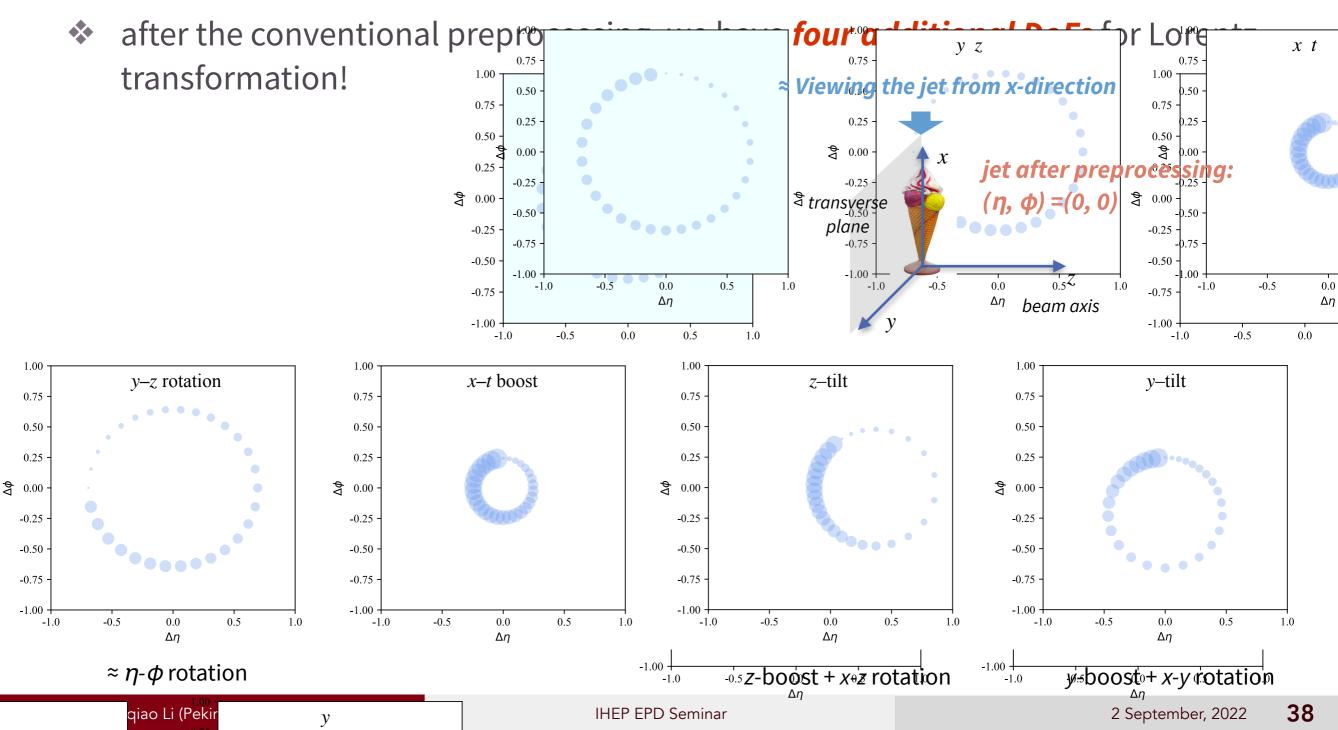
First of all, we need to find a good way to categorize the possible Lorentz transformations acted on the jet

C.Li et al. arXiv:2208.07814

Lorentz transformations

Ζ.

- → By HEP convention, a jet is represented on $\Delta\eta$ - $\Delta\phi$ plane w.r.t. its axis
 - ◆ equivalent as: apply a boost on z-axis → then a rotation on x-y plane (transverse plane) → now jet points to the x-axis



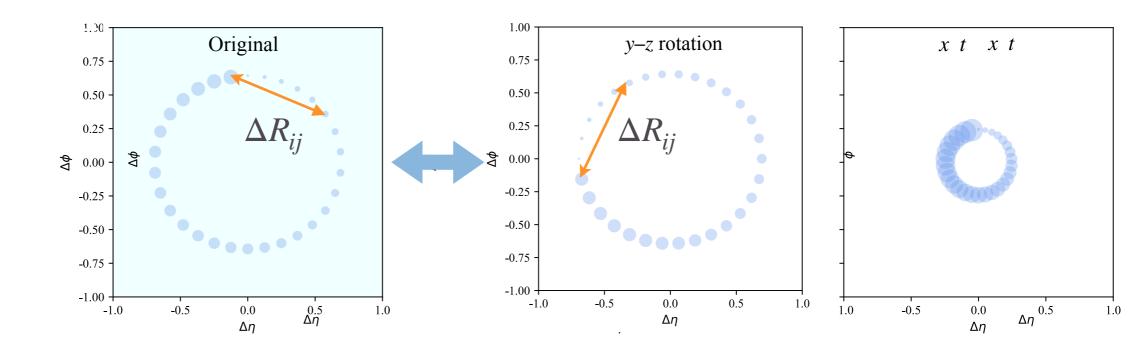
Variable design

Pairwise variable	z– t boost	x - y rotation	$y-z ext{ rotation} \ (y_{y,z} \sim o(1))$	x -t boost $(y_{y,z} \sim o(1))$	$z ext{-tilt} \ (y_{y,z} \sim o(1))$	y -tilt $(y_{y,z} \sim o(1))$
m_{ij}^2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\Delta \check{R}_{ij}$	\checkmark	\checkmark	\checkmark			
$\Delta R_{ij}(p_{\mathrm{T},i}+p_{\mathrm{T},j})$	\checkmark	\checkmark	\checkmark	\checkmark		
E_{ij} (ablation study)		\checkmark	\checkmark			

→ Devise variables which are invariant under **some or all Lorentz (sub)symmetries**

- pairwise mass: invariant under all transformations
- ◆ pairwise ΔR_{ij} : approx. invariant under y-z rotation (≈ η-φ rotation)

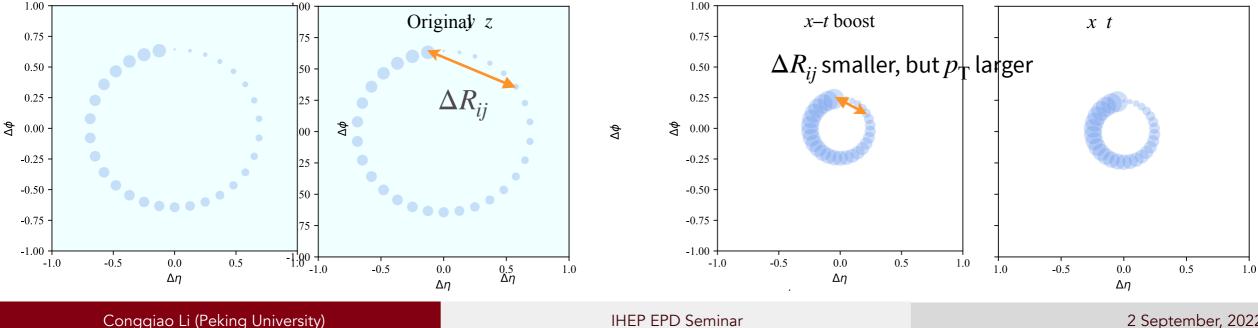
*



Variable design

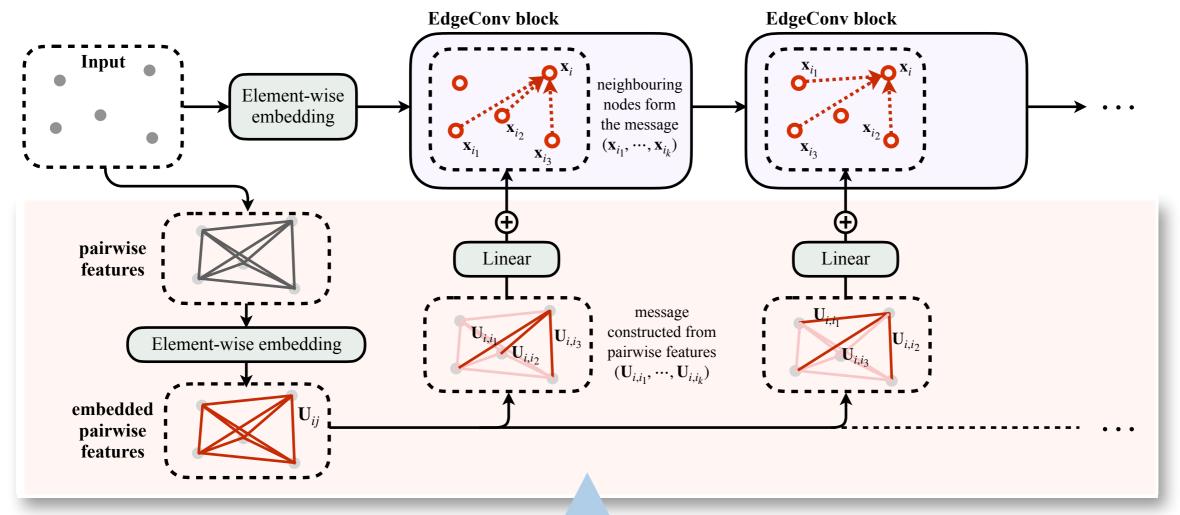
Pairwise variable	z– t boost	x - y rotation	$y-z ext{ rotation} \ (y_{y,z} \sim o(1))$	$x ext{-}t ext{ boost} \ (y_{y,z} \sim o(1))$	z -tilt $(y_{y,z} \sim o(1))$	y -tilt $(y_{y,z} \sim o(1))$
m_{ij}^2	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\Delta \check{R}_{ij}$	\checkmark	\checkmark	\checkmark			
$\Delta R_{ij}(p_{\mathrm{T},i}+p_{\mathrm{T},j})$	\checkmark	\checkmark	\checkmark	\checkmark		
E_{ij} (ablation study)		\checkmark	\checkmark			

- Devise variables which are invariant under **some or all Lorentz (sub)symmetries**
 - pairwise mass: invariant under all transformations *
 - pairwise ΔR_{ii} : approx. invariant under y-z rotation ($\approx \eta$ - ϕ rotation) *
 - manually construct variable $\Delta R_{ii}(p_{T,i} + p_{T,i})$: can prove that it is also approx. invariant * under x-boost



Experiments on ParticleNet and LorentzNet

from paper *arXiv:2208.07814*



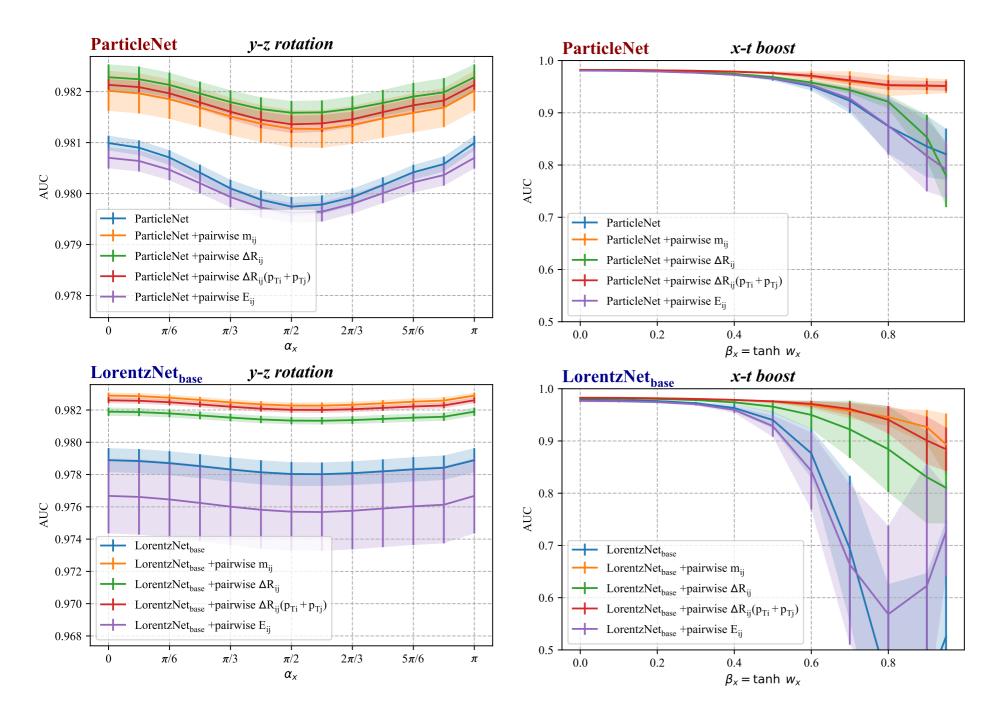
- → Two baseline networks to study pairwise feature effect: ParticleNet & LorentzNetbase
 - ParticleNet: now add an additional patch (in red colour) to incorporate pairwise features, based on ParticleNet's intrinsic kNN pairs
 - LorentzNet_{base}: LorentzNet has already included "pairwise mass": remove it to create our baseline (but complete all node features as the case of ParticleNet)

Performance for adding pairwise features

Training on 60k top tagging dataset (smaller dataset manifest the power of inductive bias)

Base model	Variation	Accuracy	AUC	$1/\epsilon_{ m B} \ (\epsilon_{ m S}=50\%)$	$1/\epsilon_{ m B} \ (\epsilon_{ m S} = 30\%)$	
		0.9310(3)	0.9810(2)	198 ± 7	640 ± 29	
	+pairwise: m_{ij}	0.9334(8)	0.9820(4)	222 ± 13	722 ± 52	
ParticleNet	+pairwise: ΔR_{ij}	0.9334(6)	0.9823(3)	$\bf 231 \pm 10$	$\textbf{752} \pm \textbf{43}$	better
	+pairwise: $\Delta R_{ij}(p_{\mathrm{T},i} + p_{\mathrm{T},j})$	0.9337(3)	0.9821(1)	223 ± 6	741 ± 36	compared
	+pairwise: E_{ij}	0.9303(5)	0.9807(2)	200 ± 6	651 ± 23	, to baselines
		0.9276(12)	0.9789(7)	172 ± 13	581±53 🔨	
	+pairwise: m_{ij}	0.9347(4)	0.9829(2)	$\bf 260 \pm 6$	931 ± 50	
$LorentzNet_{base}$	+pairwise: ΔR_{ij}	0.9328(4)	0.9819(3)	232 ± 10	807 ± 35	
	+pairwise: $\Delta R_{ij}(p_{\mathrm{T},i} + p_{\mathrm{T},j})$	0.9342(4)	0.9826(2)	251 ± 6	919 ± 34	
	+pairwise: E_{ij}	0.9243(37)	0.9767(23)	144 ± 29	485 ± 108	

Performance for adding pairwise features

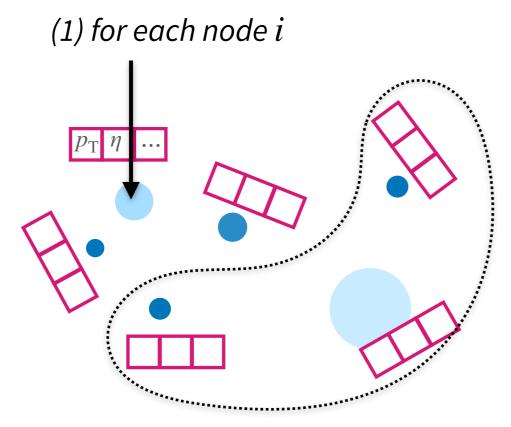


 Injecting ΔR to the network → more robust to y-z rotation

 Injecting ΔR(p_{Ti}+p_{Tj}) or mass → more robust to y-z rotation and now also the x-boost

A step towards a general solution

- ➔ Pairwise features have limitations
 - only applicable to GNN networks which intrinsically build "edges"
- → Upgrade to node-wise features
 - "mass features" carried per node, not edge between nodes



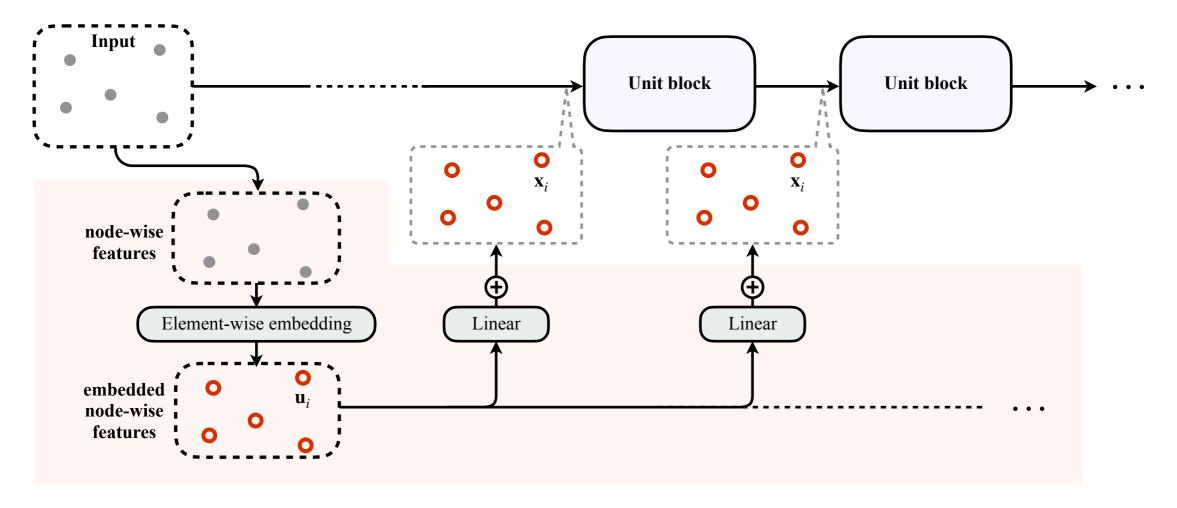
(2) find a **friend group** G_i : composed of k nodes $i_m (m = 1, \dots, k)$ having this is a Lorentz invariant choice largest $p_i^{\mu} p_{i_m \mu}$

(3) calculate mass
$$m_{G_i}^2 = \left(\sum_{j \in G_i} p_j\right)^2 \approx 2 \sum_{j,k \in G_i}^{j < k} p_j^{\mu} p_{k\mu}$$

is essentially the predetermined linear combination of all pairwise masses

General patch structure design for node-wise features

Any baseline network

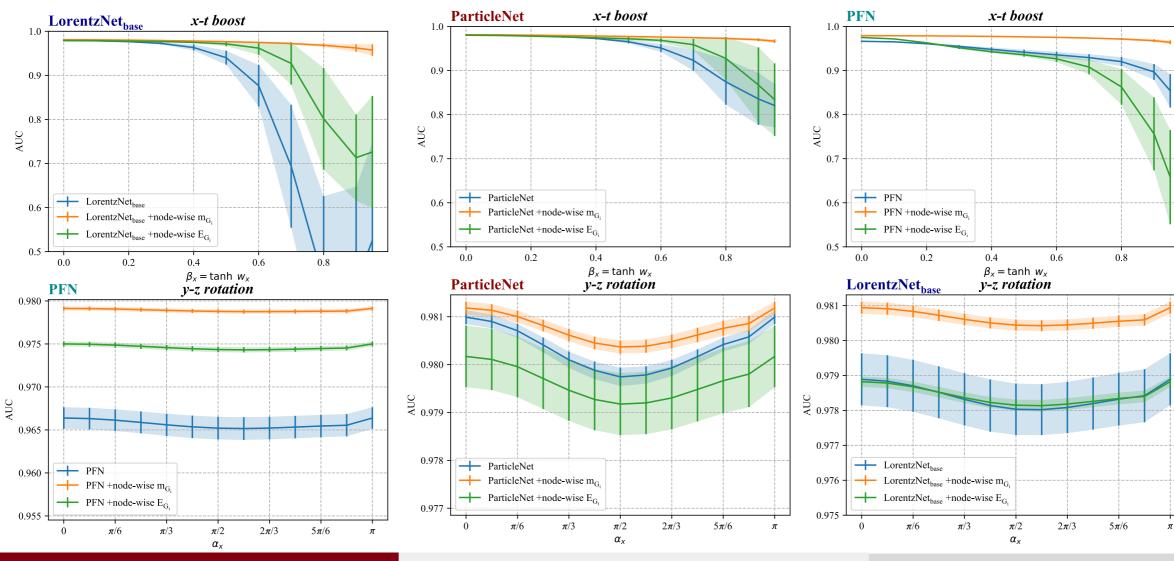


- → Baseline networks can be any network that treats jet as a point cloud
- → Integrate new node-wise features layer-by-layer
 - ✤ unit block is Φ(x) function for PFN, EdgeConv for ParticleNet, and LEGB for LorentzNet

Performance for adding node-wise features

Base model	Variation	Accuracy	AUC	$1/\epsilon_{ m B} \ (\epsilon_{ m S}=50\%)$	$1/\epsilon_{ m B} \ (\epsilon_{ m S}=30\%)$
	—	0.9104(12)	0.9664(13)	67 ± 5	198 ± 21
PFN	+node-wise: m_{G_i}	0.9281(4)	0.9791(2)	$\bf 184 \pm 5$	$\bf 714 \pm 50$
	+node-wise: E_{G_i}	0.9207(4)	0.9750(3)	125 ± 3	378 ± 19
ParticleNet		0.9310(3)	0.9810(2)	198 ± 7	640 ± 29
	+node-wise: m_{G_i}	0.9313(3)	0.9812(1)	$\bf 222\pm 5$	800 ± 40
	+node-wise: E_{G_i}	0.9300(12)	0.9802(6)	183 ± 12	572 ± 47
	_	0.9276(12)	0.9789(7)	172 ± 13	581 ± 53
$\rm LorentzNet_{base}$	+node-wise: m_{G_i}	0.9306(3)	0.9809(2)	$\bf 219 \pm 3$	887 ± 36
	+node-wise: E_{G_i}	0.9272(3)	0.9788(1)	171 ± 2	562 ± 16

- Adding node-wise mass:
- (1) improve network performance (especially for PFN)
- (2) more robust to Lorentz transformations on test data
- (3) smaller error bars (illustrate more generalization ability)



Congqiao Li (Peking University)

Performance summary

- → What do the above results mean?
 - the full network tends to be *more robust and performant*, when we incorporate Lorentz-symmetry-preserved variables (pairwise/node-wise ones) into the network
 - even when we *introduce a very small patch structure* invariant under a certain symmetry (the original network is unaffected) helps the network to perform better
 - without need to let the network fully satisfy Lorentz symmetries
 - invariance property of the small sub-network has a big impact on the learning, and can be reflected in the entire network

Base model	Variation	# parameters	FLOPs
PFN		83.84 k	4.46 M
I I IN	+ node-wise	$+26.19 { m k}$	$+3.41 \mathrm{~M}$
		366.16 k	535.73 M
ParticleNet	+pairwise	+34.91 k	$+285.29~\mathrm{M}$
	+ node-wise	$+21.97 { m k}$	+2.83 M
		226.23 k	1997.69 M
$LorentzNet_{base}$	+pairwise	+0.43 k	+7.02 M
	+ node-wise	$+37.35 \ k$	+4.8 M

Performance summary

- → What do the above results mean?
 - the full network tends to be *more robust and performant*, when we incorporate Lorentz-symmetry-preserved variables (pairwise/node-wise ones) into the network
 - even when we *introduce a very small patch structure* invariant under a certain symmetry (the original network is unaffected) helps the network to perform better
 - without need to let the network fully satisfy Lorentz symmetries
 - invariance property of the small subcan be reflected in the entire network

Variation	# parameters	FLOPs
	83.84 k	4.46 M
+ node-wise	+26.19 k	$+3.41 \mathrm{~M}$
	366.16 k	535.73 M
+pairwise	+34.91 k	$+285.29~\mathrm{M}$
+ node-wise	$+21.97 { m k}$	+2.83 M
	226.23 k	1997.69 M
+pairwise	$+0.43 {\rm k}$	+7.02 M
+ node-wise	+37.35 k	+4.8 M
	— +node-wise +pairwise +node-wise +pairwise	83.84 k +node-wise +26.19 k 366.16 k +pairwise +34.91 k +node-wise +21.97 k 226.23 k +pairwise +0.43 k

- The experiments show that "pairwise mass" is the key component in network design
- We reveal that the underlying logic lies in the Lorentz symmetry preservation
- We make a successful attempt to understand the interpretability of the network in terms of symmetry preservation

Part IV: Outlook & Summary

Discussions

- 1. We provide two general solutions to improve neural network performance
 - incorporate pairwise/node-wise features
 - the node-wise solution is more generalized to be applied
 - yet "pairwise mass" is still crucial *if one hopes to achieve state-of-the-art performance* (as they form a full set of Lorentz scalar basis)
- We address that the Lorentz-symmetric design *is already used in the current* best models
 - LorentzNet and ParT (discussion in p.51) both inject "pairwise mass" in network design
 - can explain to some extent their high performance

Brief intro to ParT

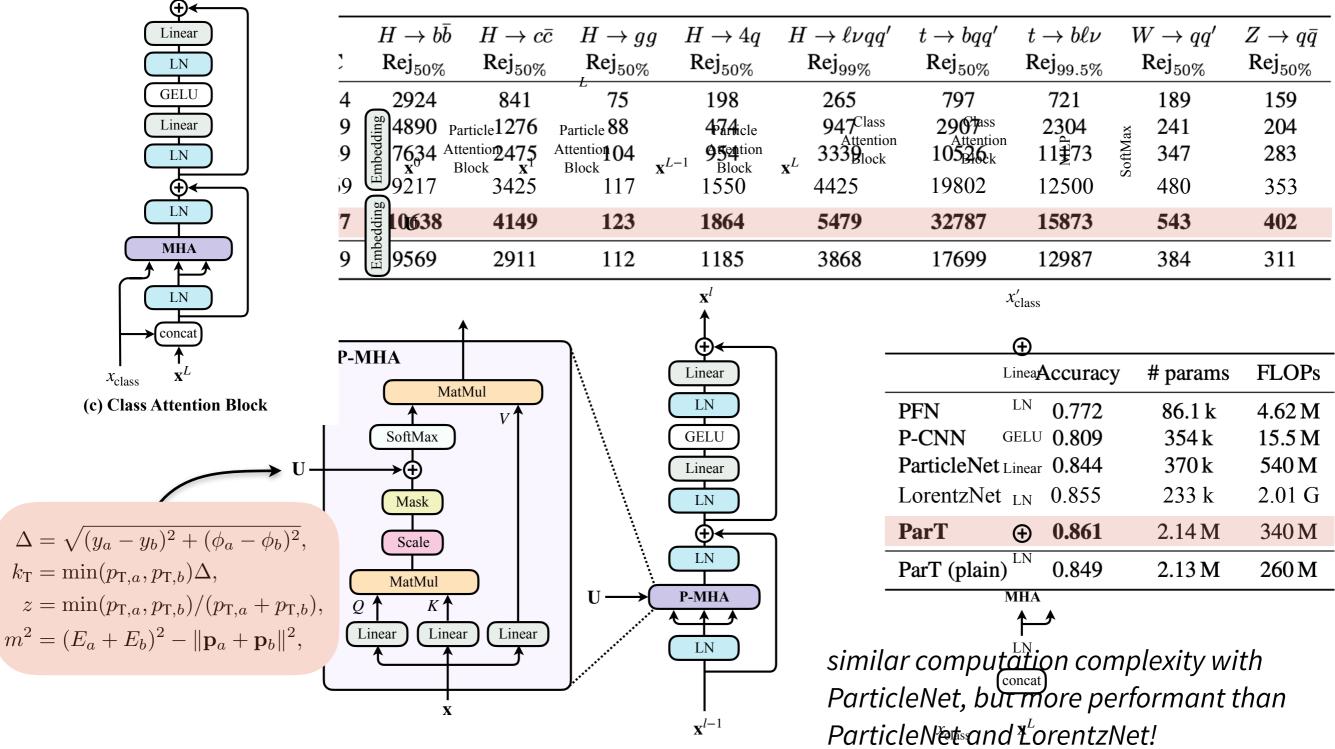
- ➔ Transformer model is the new state-of-the-art architecture introduced in DL community
 - ✤ Language models: BERT, GPT-3...
 - Computer Vision: ViT, Swin-T
 - AI for Science: AlphaFold2 for protein structure prediction
- → Transformers architecture
 - consists only of self-attention blocks
 - more scalable with large model/data
 - big model (more parameters) + more training data + affordable computing complexity > better performance

 x'_{class}

IHEP EPD Seminar

) ParT

<u>v:2202.03772</u>, proceedings of 39th ICML, Vol.162]



(b) Particle Attention Block

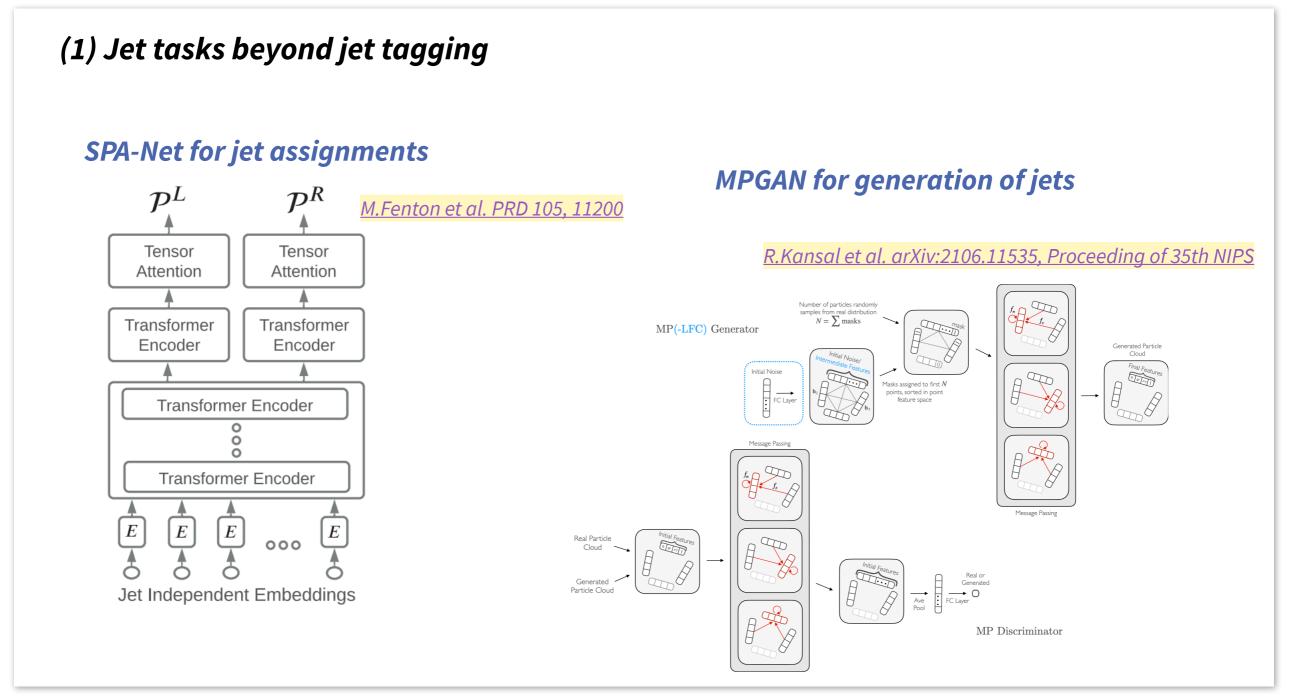
Intro to published tool: Weaver

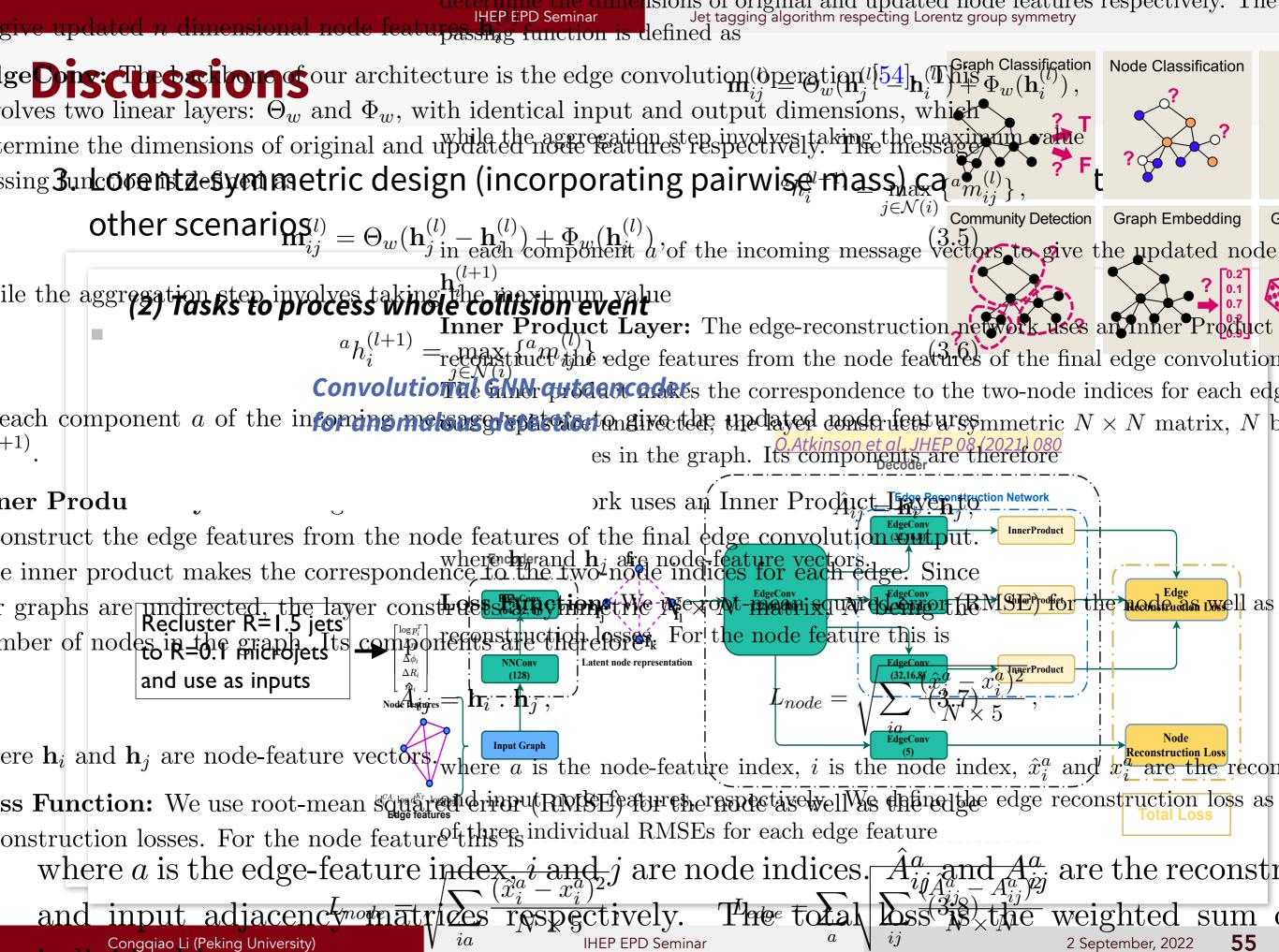
- → Introducing Weaver, a streamlined and flexible machine learning R&D framework for HEP applications
- \rightarrow use the below link to
 - try out *ParT*, *ParticleNet* model out-of-the-box
 - play with the *JetClass* dataset
 - we invite the community to explore and experiment with this dataset and extend the boundary of deep learning and jet physics even further.
 - or explore previous top tagging & quark/gluon dataset, or any custom ones

https://github.com/jet-universe/particle_transformer

Discussions

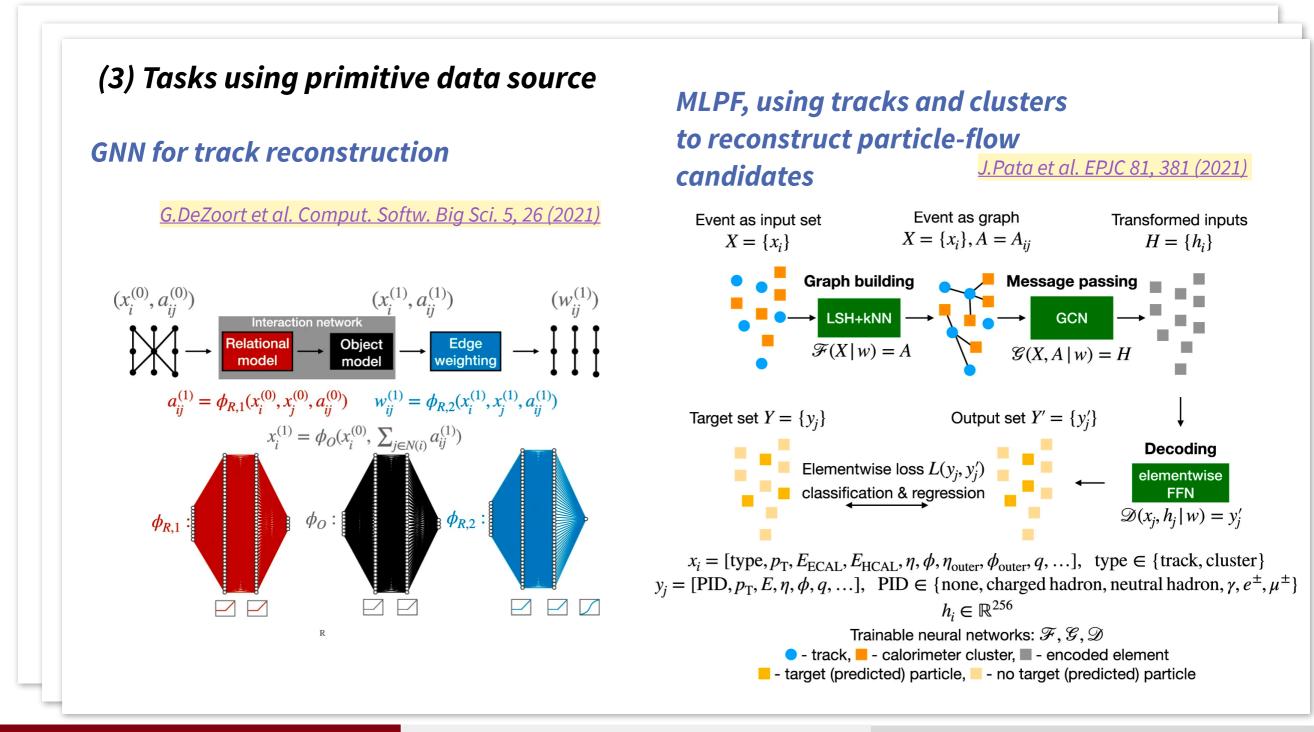
3. Lorentz-symmetric design (incorporating pairwise mass) can be adopted to other scenarios





Discussions

3. Lorentz-symmetric design (incorporating pairwise mass) can be adopted to other scenarios



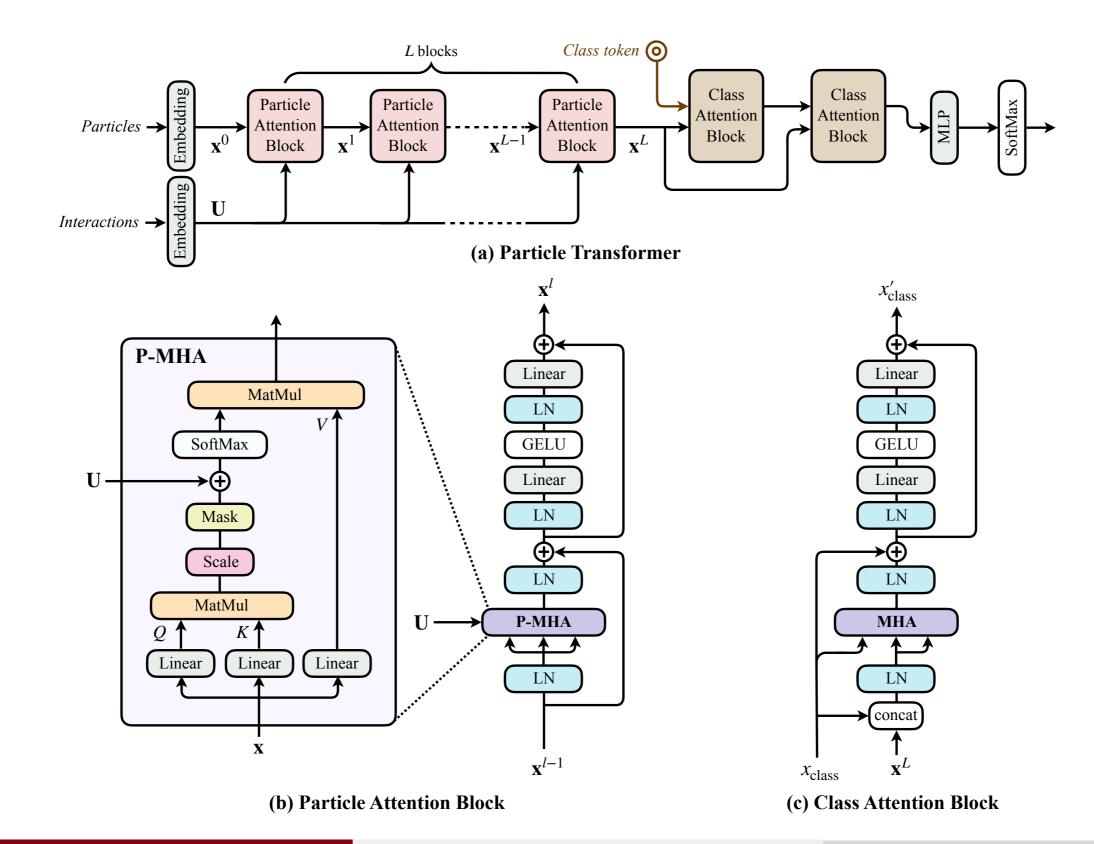
Overall summary

- \rightarrow In this talk:
 - we recap the evolution of DL application to jet tagging
 - we introduce LorentzNet, a GNN-based network respecting full Lorentz symmetry, which exhibits better performance than previous state-of-the-arts
 - we investigate the core of such enhancement, and discover the role "Lorentz symmetry preservation" plays in networks; we propose two patch structures applicable to a variety of baselines
- → Hints to interesting new applications
 - the Lorentz symmetry design as an intrinsic inductive bias in jet physics has a wider range of potential applications

Backup

ParT architecture

<u>H.Qu et al. arXiv:2202.03772</u>, proceedings of 39th ICML, Vol.162



Transformer illustration

Input	Thinking	Machines	
Embedding	X 1	X ₂	
Queries	q 1	q ₂	
Keys	k 1	k 2	
Values	V1	V2	
Score	q ₁ • k ₁ = 112	q ₁ • k ₂ = 96	
Divide by 8 ($\sqrt{d_k}$)	14	12	
Softmax	0.88	0.12	
Softmax X Value	V1	V2	
Sum	Z1	Z 2	[image from <u>link]</u>