ML at IHEP ATLAS: Status and plans

Yaquan Fang (IHEP) on behalf of IHEP ATLAS team

机器学习技术在高能物理中的应用研讨会 September 18th,2022

Motivation

- Various developments and progresses are distributed in different projects (e.g. LHC, BES, Juno …).
 - However, the efforts are scattering.
- Is it possible to work together to solve the common needs systematically for each project?
 - Identify the frontiers of ML in particle physics, especially in the facilities of the big sciences?
 - Are there any common issues & technologies?
- Can we play a leading role/roles in ML/AI applications in high energy physics?
 - So far, we are mostly following
 - What can we do to make significant scientific contributions to ML/AI at the worldwide level?
 - How to quantify our leaderships?

Working Goals

Final term :

- Significant contributions
- Play a leading roles in developing new algorithms and applications.

Longer term:

- Refine the common problems in HEP
- Solve the issues collaboratively
- Establish high level teams

Short term:

- Investigate the internal status
- Status from domestic & International efforts
- Tech. Challenges and possible breakthroughs
 - Trigger novel ideas, thoughts,

Plan to establish the efforts

Participate the discussions:

- ✓ Identify physics issues.
- ✓ Human resources : welcome junior faculties, postdocs and students.
- ✓ Computing resources needed.
- ✓ Cooperation with ATLAS ML forum.
- ✓ Cooperation with other ML societies.
- ✓ Others

Mattermost: https://mattermost.ihep.ac.cn/atlas/channels/machine-learning

ATLAS Machine Learning Forum (AML)

- <u>This forum is jointly organized by Software and Computing (S&C)</u> and Physics and Computing Coordinators for the goals of:
 - Communications and liaisons inside/outside ATLAS:
 - Organizing ML workshops every year and the bi-week meetings.
 - Topics in the bi-weekly meetings: Reports from physics group liaisons; specific applications.
 - Organizing tutorials for ATLAS users.
 - Liaising with other groups inside and outside ATLAS, facilitating collaboration with Machine Learners.
 - Forum for all ATLAS people: <u>atlas-talk</u>, <u>twiki</u>.
 - Supporting ML tools and techniques:
 - Coordinating development of common ML tools.
 - Establishing standards where useful.
 - Providing advice on new ML tools and best tools for specific applications.

Machine Learning application (ATLAS)

- Method and packages: encourage people to use non-HEP tools [twiki].
 - Interexperimental Machine Learning Pages and resource lists.
 - Do NOT recommend running trainings within analysis environment, but:
 - 1. Produce a minimal "flat" dataset using the standard ATLAS workflow
 - 2. Run training in a stand-alone environment
 - 3. (Optionally) port trained algorithms back to Analysis/Reconstruction releases via <u>ONNXruntime</u>. [tutorial]
 - Computing resources at CERN:
 - Tools for flat dataset production: <u>HDF5Utils</u> for DAOD/AOD and uproot for <u>ntuples</u>.
 - For distributed training: intelligent Data Delivery Service.
 - Docker images: ATLAS Machine Learning docker, minimalist images.
 - GPU and notebook: <u>JupyterHub at CERN</u> and <u>GPU queues</u>.

ML application in ATLAS (1)

- Optimal Transport based Unfolding and Simulation (OTUS)
 - A data-driven ML simulator with altering Variational Auto-encoders (VAEs): predict the **reco-level data (X)** from **parton interactions (Z)**. GANs only mimic the X but not learn the transformation $Z \rightarrow X$

arxiv: 2101.08944

- Design the loss: Latent loss + Data loss + any additional physically motivated constraints.
- Extra bonus: unfolding mapping from data to truth.

ML application in ATLAS (2)

- Track reconstruction algorithm with GNN in HL-LHC:
 - Connect the hits and select the truth track from all connections (edge in graph).
 - Reduce the connections with detector module maps and geometric cuts for less memory.

arXiv:2103.0091

ML application in ATLAS (3)

- Object identification with ML:
 - Electron ID with <u>high level features + DNN</u>, low level features + <u>CNN/GNN</u>.
 - Jet tagging for <u>b-jet</u>, <u>c-jet</u>, <u>di-tau</u>, <u>gluon</u> and <u>bosons</u>.
 - Similar procedure: select the input information and proper method, tune it and get the result.
 - Take e-ID as example:
 - High level info + multi-class: DNN.
 - Low level cell info (hit maps): CNN.
 - Low level cell info (hit structure): GNN.

CNN classification performance

2022/9/17

JSD_{0,1}: 0.686

Activities

IHEP ATLAS ML kickoff meeting

https://	Sep 13th		
IHEP ATLAS N	AL kick off meeting (多学科618房间) 2022, 2:00 PM → 4:40 PM Asia/Shanghai	R -	
Description https Zoon	://mattermost.ihep.ac.cn/atlas/channels/machine-learning number: 5368708448		
2:00 PM → 2:05 PM	Introduction Speaker: Yaquan FANG Yaquan (高能所) 译 EPD_ATLA	© 5m ∠ -	
2:10 PM → 2:30 PM	Status of the ML studies in ATLAS Speaker: Fangyi Guo ML kickoff	© 20m ∠ •	
2:30 PM → 2:50 PM	Computing resources for ML Speakers: 京燕 石 (高能所), 暁飞 Yan (IHEP) I Slurm GPU	© 20m ∠ •	
2:50 PM → 3:05 PM	particleNet in CEPC Higgs tagging and plan for ATLAS Speaker: Shudong Wang (高能所) P IHEP_ATL	©15m 🖉 -	
3:05 PM → 3:25 PM	Status of Quantum ML with Wuyan and Simulators Speakers: Abdualazem Mohammed (Institute of High Energy Physics) , Qiyu Sha	© 20m ∠ •	
3:25 PM → 3:40 PM	ML in physics analysis Speaker: Bo Liu (IHEP) ML_for_an	©15m ∠ •	
3:40 PM → 3:55 PM	ML in ITK hardware related work Speaker: Zhan Li (IHEP) MLZhan.pdf	©15m ∠ -	
3:55 PM → 4:10 PM	ML in physics analysis Speaker: Jiarong Yuan (開开大学) 译 ML_yuanj	©15m 🖉 -	

Tutorial of particleNet Sep 12th

particleNet tu	torial 2022, 2:00 PM → 3:30 PM Asia/Shanghai	2-		
Description https	://mattermost.ihep.ac.cn/atlas/channels/machine-learning			
Zoom number: 5368708448				
2:00 PM → 3:00 PM	particleNet tutorial Speaker: Shudong Wang (高能所)	©1h 🖉 ▾		
	ParNet_Tut			

Wechat group:

IHEP ATLAS ML discussion

该二维码7天内(9月20日前)有效,重新进入将更新

Mattermost channel:

https://mattermost.ihep.ac.cn/a tlas/channels/machine-learning

Some thoughts and plans (Need to be expanded by you)

• ML with low statistics.

• VBF Higgs $\rightarrow \gamma \gamma$ analysis

• Quantum ML (<u>talk</u> from Abdualazem/Qiyu)

- Hardware vs Simulator
- Develop effective algorithms
- Implementation of latest ML methods to particle tagging (<u>talk from Sudong</u>)

Add more ideas at the Mattermost.

- Hardware related ML (talk from Zhan)
- Computing resources (<u>talk</u> from Jingyan)

Plan for boson tagger

Shudong Wang

- Get in touch with jet tagging conveners (done)
 - Request for useful information (data samples, standard procedure, current situation, etc.)
- Get familiar with related works in the past (on-going)
 - boson taggers in the past used in both ATLAS & CMS
 - newly released ATLAS note about constituent-based top tagger
 - ····

Get started to work on it

- Understand physics behind the samples and data structure of them
- Use ParticleNet or even more powerful & state-of-the-art techs (e.g. Particle Transformer) to explore the performance of these tools on boson tagging tasks
- .
- Get involved in ATLAS ML community
 - Participate the meetings, forums
 - ...

Get it used in yyWW(hadronic decay) / yyML analyses

ATLAS event display: candidate pair of Higgs bosons decay in ATLAS

Quantum Machine Learning

Abdualazm Fadol Qiyu Sha

...

200

0.

•••

machine

support-vector

20

30

40

10

- ✓ Use CEPC H→ $\gamma\gamma$ as an example.
- ✓ QSVM is used as ML algorithm.
- ✓ Try both Simulator and Hardware (IBM/Wuyuan).

The results for simulator and quantum hardware

- Using 12000 events for training and testing datasets for the simulator (left).
- This is compared to the classical support-vector machines.
- And only 100 events are tested on Wuyuan and IBM hardware (right).

Identify Defects for ATLAS ITK Sensors with ML

Zhan Li

- ➢ So for, use microscope and scan over the sensor with eyes. Future, take a picture and inspect with ML algorithms.
- > Different algorithms can been tried :
 - 🗸 LAD
 - ✓ U-net
 - ✓ Colour-Based Segmentation
- Check the difference between one point and its neighthoods.
- Our IHEP ATLAS ITK team is going to have massive Production of the ITK chips and can use these mthodes

Future Activities and plans

• A kickoff meeting at the Lab level in one week (done) .

- Tutorial on particleNet (done)
- Tutorial on Quantum ML
- Workshop : Half a year
- Monthly meeting
 - have one before EPD ML Forum?
- Invitation of experts to present ML talks.
 - Both from industry and high energy physics community.
- Active communication with ATLAS ML forum
 - learn how to run the efforts efficiently.
 - Latest progresses and hot topics.
- Short terms: Choose some topics, e.g. particleNet in ATLAS, QML etc..
- How to play leading roles: novel algorithms, new implementations…
- Manpower : so far 5-7 students and a couple of postdocs show interests, it has to be improved.
- Some Needs to be discussed.
 - GPU resources and platform to do studies (See the <u>talk</u> from Jingyan)?
 - Fundings for machine usage?

ATLAS Machine Learning Forum (AML)

Thanks to Fangyi Guo

 <u>This forum</u> is jointly organized by Software and Computing (S&C) and Physics and Computing Coordinators for the goals of:

Communications and liaisons inside/outside ATLAS:

- Organizing ML workshops every year and the bi-week meetings.
 - Topics in the bi-weekly meetings: Reports from physics group liaisons; specific applications.
- Organizing tutorials for ATLAS users.
- Liaising with other groups inside and outside ATLAS, facilitating collaboration with Machine Learners.
- Forum for all ATLAS people: <u>atlas-talk</u>, <u>twiki</u>.
- Supporting ML tools and techniques:
 - Coordinating development of common ML tools.
 - Establishing standards where useful.
 - Providing advice on new ML tools and best tools for specific applications.

Machine Learning application (ATLAS)

- Method and packages: encourage people to use non-HEP tools [twiki].
 - Interexperimental Machine Learning Pages and resource lists.
 - Do NOT recommend running trainings within analysis environment, but:
 - 1. Produce a minimal "flat" dataset using the standard ATLAS workflow
 - 2. Run training in a stand-alone environment
 - 3. (Optionally) port trained algorithms back to Analysis/Reconstruction releases via <u>ONNXruntime</u>. [tutorial]
 - Computing resources at CERN:
 - Tools for flat dataset production: <u>HDF5Utils</u> for DAOD/AOD and uproot for <u>ntuples</u>.
 - For distributed training: intelligent Data Delivery Service.
 - Docker images: ATLAS Machine Learning docker, minimalist images.
 - GPU and notebook: <u>JupyterHub at CERN</u> and <u>GPU queues</u>.

VH(cc)

ATLAS: <u>EPJC 82, 717 (2022)</u> CMS: arXiv:2205.05550

• Three lepton channels: $ZH \rightarrow vvcc$ (0-lep), $WH \rightarrow lvcc$ (1-lep), $ZH \rightarrow llcc$ (2-lep)

0.8 Signal efficiency

(13 TeV)

DeepAK15

Some thoughts (Need to be expanded by you)

• ML with low statistics.

• Meet in VBF Higgs $\rightarrow \gamma \gamma$ analysis

• Quantum ML

- Hardware vs Simulator
- Develop effective algorithms

• Please feel free to add more now or later at the Mattermost.

ML Applications in physics (ATLAS)

• Interesting topics about ML we can do:

Many general topics are still remaining:

- Event generation and simulation: GAN …
- Jet identification/quark-gluon tagging: CNN, GNN …
- Modeling: Gaussian Processes, DNN…
- Event classification: all kinds of ML methods.
- Fresh topics:
 - Unsupervised learning for new physics.
 - Tools for ML: feature extraction, hyper-parameter optimization, robustness quantification, etc.
 - Hardware-based ML.
 - Quantum computing and quantum ML.