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Machine learning in HEP

® Modern machine learning techniques, including deep learning, is rapidly being
applied, adapted, and developed for high energy physics

® Significant amount of ML publication in recent years in HEP Inspire search

Date of paper

1972 2022

® Many are very mature, integrated and already used in HEP
® Many are very interesting/promising R&D project

® A comprehensive list of ML approaches used and developed in HEP
® Living Review of Machine Learning for Particle Physics
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Machine learning in CMS

® Machine learning techniques are extensively used and explored in CMS
® ML techniques: classification, regression, unsupervised, generative models etc.

® Analysis
® Event classification and signal extraction: BDTs, DNN, CNN, RNN, GNN
® High-level object reconstruction/tagging (e.g. Higgs, top etc)
® Likelihood-free techniques to explore EFT
® Use ML to reduce the impact of systematic uncertainties
® Reconstruction
® Object construction/identification: jet/tau tagging, electron/photon/muon reco/id etc.

® Global event interpretation: pileup mitigation, end-to-end y-reconstruction
® Detector geometry: HGCal reconstruction

®
®
®

® Simulation
® Generative models for faster/accurate simulation algorithms
® Autoregressive, flow-based, diffusion based, variational autoencoders, GAN’s

WIS 2 5] R £E 5 B FE ok g B R A 18" September 2022



https://indico.ihep.ac.cn/event/17695/

ML in CMS analysis

HLARE IR AREG A IE TNt 18" September 2022



https://indico.ihep.ac.cn/event/17695/

Analysis: Top DNN in H = yy

e The magnitude top Yukawa coupling y: can be constrained through measurements of

the ttH cross section.
e But, not sensitive to the sign of ;.

e Studying tHq production allows us to constrain the sign as well: tHq production

cross section greatly enhanced if y; = —ny.
CMS Preiiminary 137 o (13 TeV)
e CMS-PAS-HIG-19-015 employs dedicated signal § I ttyy — tHq x 200
: S [ty + jets — ttH x 10
regions for both ttH and tHq. S 10° 7y + jets
£ B vy + 2 bjets Data
e Similar final states between these two processes i v+ jets il Stat. Uncert.

make them very difficult to distinguish
experimentally.

e Dedicated “Top DNN" is trained to separate
between ttH and tHq.

e Same architecture as DNNs used in
ttH analysis.

e Shown to significantly outperform a BDT
trained for the same task.

ettty

top DNN
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Analysis: GNN for HEP events
3

® GNN: particularly well-suited for processes with high multiplicity and complex
structure

® Message Passing - Local and global sharing of information around the graph

Representing HEP Events as Graphs

e Store 4-momenta and other
information as node features
o Edge e Fully connected graph with angular
A Features: information stored as edge features
e Implies bidirectional message
passing between all nodes

e FEventlevel

gt"de Features: variables can be
Eta used as global
Global Features: Phi features
MET significance E

Njets B-tagging (if jet)
Charge (if lepton)
Node type

Ryan Roberts
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Analysis: GNN performance

@ Significant improvement in the GNN performance comparing to the BDT

ttH signal vs. yy background
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Ryan Roberts

® GNN’s natural way of representing information and flexible number of objects
will lead to performance increasing with multiplicity/event complexity
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Analysis: Constraining Effective Field Theories with ML

@ Efficiently train neural networks that precisely estimate likelihood ratios
@ Calculate the full true parton-level likelihood starting from N simulated events

@ Capture the information in the fully differential cross sections, including all
correlations between observables

® Approach 1: classification
@ Train a neural network to classify between two types of events with different poi
@ Classifier output s is a probability, then transform into likelihood ratio
® Parameterize the network

® Approach 2: regression

@ Train neural network to output the likelihood ratio

® Use joint likelihood ratio r..and score t.. obtained from matrix elements for training
data

. 1o
—— Estimate

., -- | CMS: ML4EFT package: https://bib-
- pubdb1.desy.de/record /425819

ssssssssssssssssssssssssssssssssssssssssssssssss
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ML in CMS reconstruction
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ML in CMS reconstruction

® ML in object forming
® Tracking
@ Calorimetry clustering
® ML in object level applications
@ Jets/tau etc. tagging
® Energy regression
@ Object identification
® ML in global event interpretation
@ Particle Flow
@ Pileup mitigation
® Missing energy
® End-to-End merged photon reconstruction
® ML in complex detector geometries
® HGCAL reconstruction
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- Linking of PFClusters to recover Bremsstrahlung or photon conversion
- Base object for ele/gamma reconstruction, ECAL calibration, input to PF
- Classical algo very efficiency, not very pure wrt noise/PU

- Seeded algorithm, working in small window of the detector

Reconstruction: ECAL DeepSC

ECAL DPG effort to improve the SuperClustering step

Target a replacement of the current algorithm in CMS reconstruction sequence

- Implemented in CMSSW and evaluated the performance on final Electrons/photons

Architecture:
Graph convolution network + attention layers
Targets: clusters selection, window classification
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Reconstruction: ECAL DeepSC

Improvements in the final resolution (after regression) where the material budget is larger —

DeepSC cleans the object, especially at low energy
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®
®
®
®

® Full documentation and training framework

® Next generation of ParticleNet (Huilin Qu)
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Reconstruction: jet tagger - ParticleNet

13y
® Some of the jet tagging architectures tested in CMS

DeepCSV (DNN) (paper)
Deeplet (RNN) (2008.10519)

ParticleNet (EdgeConv) (1902.08570)

Point clouds transformers (2202.03772)

® ParticleNet

® EdgeConv GNN based architecture on jet constituents
® Edge convolution and the dynamic graph CNN (DGCNN) method [arXiv:1801.07829]

® Applied on the "point cloud" data structure

(Weaver) available
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ML in CMS Triggers
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ML in CMS Triggers

ML in L1 trigger has substantial hardware
constraints s —————————— O ————ey

before pruning after ng N

@ Total L1 trigger latency is currently 4 us, is 12 ys
in Phase 2

@ Algorithms must be kept within available system
resources, latency limitations

® Most algorithms are limited to less than 1 ps

NTAD

[

A

=,
23 Tunin
RARERY pruming - __,
U NN synapses

® Need pruning method to reduce the complexity of
the arichitecture

Running ML on L1 trigger typically requires
fixed-point arithmetic, not floating point

@ Different methods of quantizing (post-training

| = ixdidt,itgr> ‘

quantization, quantization-aware-training) f 10 101 e 101110101 O. |
g§ integer " fractional -
| ===l o

Algorithms are wired onto the chip

® Programming traditionally done with low-level
hardware languages

® Possible to translate C to Verilog/VHDL using
High Level Synthesis (HLS) tools
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ML in L1 Trigger: Displaced Muons
16

® Long-lived neutral particles that may decay at macroscopic distances from the
primary vertex (heavy Higgs, SUSY models etc.)

® No info in the tracker but will be observed with displaced muons

® Use ML in LT trigger to reconstruct displaced muons
@ BDT already developed for prompt pT assignment

® NN capable of significantly improved efficiency
for displaced muons

® Outputs are pT and dO

Single NN with 2
1.0 —— L1p8°T>10GeV || L1pN > 10 GeV outputs

— L1 pfPT> 10 GeVv
—— L1 p¥N>10GeV

0.8 o A
=7 NN for displaced
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AN Sergo J. et al.
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Other ML application in L1 Trigger
iz

® Anomaly Detection

@ Design algorithms generically for signals of not-yet-theorized models or in regions of
parameter space not currently favored

® Need trigger to ensure we maintain events for later analysis
® DNN based approach reaches required latency, resource are reasonable
® Ongoing efforts with CNN and GNN

® Stay tuned for many active ML work in triggers for phase 2

Phase 2

+ HGCal taus Calorimeter trigger
Detector Backend systems

s Vertexing

¢ Track quality

Global Calorimeter
Trigger

Global Trigger

Phase-2 trigger project
triggers
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ML in CMS Simulation
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ML in CMS Simulation

® Beginning of Run 2: full detector simulation (Geant4) took ~40% of grid CPU
resources for CMS & ATLAS [arXiv:1803.04165]
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3
T

® Computing demands increase nonlinearly with increasing “pileup” in LHC
@® Detector upgrades for HL-LHC: increased complexity [arXiv:2004.02327]
® Further technical improvements expected to be limited [arXiv:2005.00949]

Need more processing power or smarter algorithms like deep learning for simulation
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ML in CMS Simulation

» Several different strategies:

v

Replace (part of) FullSim: increase speed, preserve accuracy

v

Replace (part of) FastSim: decrease speed (slightly), increase accuracy

v

Conditional: map generated — reconstructed events

v

End-to-end: map random noise — reconstructed events directly

s END-TO-END
CONDITIONAL

IR (| DETECTOR DIGITIZATION
SHOWERING/ APPROXIMATE PARTIAL |
HQEHEPRFX‘}%SS HADRONIZATION/ [N ooy 17 it v/ [ DIGITIZATION REcS&ngLllzﬂE%un m’ﬁﬁ:‘%’
UNDERLYING EVT ML EMULATION

Delphes PARAMETRIZED SMEARING
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ML in CMS Simulation
21 |

® Regression with feedforward network: arXiv:2010.01835
@ Directly map inputs (gen.) to outputs (reco.) probabilistically

® Generative adversarial networks (GANSs)

® Train two neural networks in tandem
® one to generate realistic “fake” data
® the other to discriminate “real” from “fake” data

® arXiv:1406.2661, arXiv:1912.04958

Discriminator

Training set V
N

Real
__’
4 7 D=
I|

Generator Fake image

R\ T~

® Graph-based GAN to generate particle clouds: arXiv:2012.00173,arXiv:2106.11535
® Variational autoencoders, diffusions models , CALOFLOW, MPGAN

AR FEIBRAEET R IE T N F TS 18" September 2022



https://indico.ihep.ac.cn/event/17695/
https://arxiv.org/abs/2010.01835
https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1912.04958
https://arxiv.org/abs/2012.00173
https://arxiv.org/abs/2106.11535
https://openreview.net/pdf?id=AAWuCvzaVt
https://arxiv.org/abs/2110.11377
https://arxiv.org/abs/2106.11535

ML in CMS Simulation

® Need to define evaluation metrics to
® check the quality of generated data
® compare generative models
@ Traditional method for evaluation
@ Evaluating physics simulations by comparing physical distributions

X x103
o 8r L B Q35T T T T T ]
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4t 7 -
i 1.5F - ]
o 17
[ ¥ [ 11
¢ Delphes o il . ror B
] at B
Speed 1 4 03 I o,
! e ] 1 I
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. 0.08 0.10 " 0.00 0.05 0.10 0.15 0.20
Particle p® Relative Jet Mass

® ML method for evaluation
@ High-performing classifier learns salient hidden features from data
® E.g. Frechet distance  arXiv:2106.11535
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CMS ML groups
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Machine learning groups in CMS

® The goal of the CMS ML Group is to enable, support, guide, and foster ML
developments in computing, POGs, and PAGs

@ Information organized and gathered from a variety of sources
® Machine learning forums and workshops
® Communications with external teams developing ML applications

@ Dedicated talks/feedbacks from analysis/object/detector/computing groups and
statistic community

® 3 subgroups to document/train ML knowledge, integrate production ready ML
applications and keep track of ML R&D efforts
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CMS ML knowledge group

@ Goal of the Knowledge sub-group
® Collect, maintain and disseminate knowledge of machine learning algorithms
® Development and maintenance of CMS machine learning benchmarks

® Comparing and tracking the performance of algorithms, platforms and ML
frameworks on a set of benchmark

® On-demand technical discussion with working groups

® Knowledge Sources
® Papers and talks about ML implementations in CMS and HEP

® Experts List
@ Collections of experts in different areas of ML who are open to answering questions

® Documentation
® https://cms-ml.github.io/documentation/
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CMS ML production group
2y

® The focus of the Production sub-group
@ Delivering production-level training and inference for CMS ML algorithms

@ Develop and maintain of ML application/inference workflows for CMS

@® Broad development of inference engines for CMS TensorFlow, MXNet, ONNX,
PyTorch, his4ml

® Work closely with CMS framework experts, liason to the CMS framework and
software/computing groups

@ Handling integration issues
@ Development of training tutorials, help with training facilities

® Common code repository for ML tools
® https://github.com/cms-ml/cmsml
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CMS ML innovation group
274

® The goal of the Innovation sub-Group
@ Identify and apply new machine learning techniques to CMS challenges
@ Discuss the relevance of new outside ideas
® Help with the adaptation and implementation of specific models
@ Develop specific methods for CMS that will lead to technical publications
® Lead organization of ML-oriented hackathons and challenges

® ML Journal club
@ To discuss bleeding-edge ML ideas already or not yet pursued by CMS

® Proposals for papers/topics that can be upvoted for discussion
® https://cms-ml-journalclub.web.cern.ch

all categories » all tags » Categories Latest Unread My Posts + New Topic

Previous JCs 6 A General Framework for

y g Uncertainty Estimation in 0
Papers/topics for voting 13 m Deep
m Previo

i Attribution-based Explanations
e that Provide Recourse Cannot 0

discussio be Robust
B Papers/iopit
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Summary
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Summary

® Many active machine learning projects within CMS
@® Growing usage of more advanced ML techniques in various analysis areas

® Object tagging/reconstruction ever improving with deep learning
® GNN playing a big role, increasing amount of regression applications

® Significant opportunity to accelerate simulations using machine learning

® Many ongoing developments in Level-1 trigger using ML
® Improvements can have significant impact on acceptance/performance

® Well established ML groups in CMS to document, apply ML techniques and
explore new ideas

® Good connection with experts/analysis/object/detector/computing groups

@ Stay tuned for more dedicated CMS ML talks in the future
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