

New Physics Searches in Charm Hadron Decays

Liang Sun Wuhan University 2022/09/15

STATE UNIVERSIT

Outline

- Motivation
- Experiments on charm physics
- Searches for (vary) rare charm decays
 FCNC/LFV/LNV/BNV/Invisible
- Semileptonic charm decays for NP searches
- Summary

Why New Physics?

- Standard Model extremely successful during past decades
- Some outstanding issues still unaccounted for, such as dark matter & energy

Presence of dark matter in the universe?

What is the dark matter made of?

Searches for NP

- Direct search (ATLAS / CMS): Look for production of new particles
- Indirect search (LHCb / BESIII / BelleII): Look for "hints" of new particles in loops

 \bar{B}_{s}

WTNP?

A bit of history (1970): charm suggested to explain suppression of $K_S^0 \rightarrow \mu^+ \mu^-$ before J/ψ discovery

 W^+

 B_s

An example: Higgs discovery

NP searches in b-sector: a coherent pattern?

From B. Capdevila et al.'s talk @ Flavour Anomaly Workshop 2021

by 何吉波

Why is Charm so charming?

- → charm is an up-type quark, of mass $\sim 1.25 \text{ GeV/c}^2$
 - not heavy $(m(b) \sim 4.2 \text{ GeV/c}^2)$ nor light $(m(s) \sim 100 \text{MeV/c}^2)$
- ➡ it forms charged and neutral mesons and baryons
- In particular the neutral meson D^o is the only mixing meson made of up-type quarks:
 - the top quark decays before forming bound states
 - π^0 coincides with its own antiparticle

charm flavour physics

- complementary informations provided w.r.t. K and B mixing (and CPV)
- eventual NP contributions must couple to the up-type sector
- constraints NP models probing a different parameters space

Summary of charm decays

BFs expected in SM

10-0		Charm provide	a unique environment for			
	testing the SM rare/forbidden decays and searching for NP					
10-1	Complementary information to B and K					
10 ⁻²	Cadiddo Tavor	sectors with de	own-type quarks			
10 ⁻³	Single Cabibbo suppressed					
10-4	Doubly Cabibbo supp	ressed				
10 ⁻⁵	Radiative decays		D⁰→Κ*⁰γ/φγ/ωγ/ργ			
10 ⁻⁶			$D^+_{(S)} \rightarrow K^{*+} \gamma / \rho^+ \gamma$			
10 ⁻⁷	Long distance: Vector meson Dominance (SM)					
10 ⁻⁸			Dº+—→γγ/VV′(I+I−)/ hV(I+I−)/ hh′V(I+I−)	Rare decays		
10 ⁻⁹						
10 ⁻¹⁰	Short distance FCNC	; (SM+NP)	D ^{0/+} →γγ/VI+I [_] /hI+I [_] /hh′I+I [_]			
10 ⁻¹¹			$D^0\!\! ightarrow\!\mu^+\mu^-/e^+e^-$			
10 ⁻¹²						
10 ⁻¹³			D→(hh)µ ⁺ µ ⁺ /(hh)e ⁺ e ⁺			
10 ⁻¹⁴	/	(NP)	D→(h)µ+e [_]			
10-15	Forbidden decays: L	.NV, LFV, BNV	D→(h)pe ⁻			

8

Flavor Changing Neutral Currents

- Forbidden at tree level in SM, only allowed in loop and box diagrams
 - Strongly suppressed due to GIM cancellation:
 - BF ~O(10⁻⁹)
- $D \rightarrow X\ell^+\ell^-$ dominated by Long-Distance contributions
 - Vector Meson dominance (VMD)
 - BF ~O(10⁻⁶)
- No VMD in $D \to X \nu \overline{\nu}$

Lepton Flavor Violation

- LFV exists in neutrino oscillation
- Observation of charged LFV (cLFV) decays will be a clear sign for NP
- Lepton flavor non-universality closely related to cLFV
 - LHCb recently reported 3.1 σ tension with SM in $b \rightarrow s \ell^+ \ell^-$

[Nature Phys. 18 (2022) 3, 277]

 BSM models (lepto-quark, Z', etc.) may induce cLFV and enhance BF up to O(10⁻⁵)

Lepton Number Violation

- Lepton Number Violation ($\Delta L \neq 0$) is forbidden in SM
- Neutrino oscillation $\rightarrow m_{\nu} \neq 0 \rightarrow$ New Physics needed to explain mass origin
- Nature of neutrino: Dirac or Majorana (ν_m)?
- Majorana neutrino can lead to $\Delta L = 2 \text{ LNV}$ processes
- LNV is introduced in many NP models:
 - 4th quark generation, SO(10) SUSY GUT, exotic Higgs, etc.
- LNV processes have been widely searched for in τ , K, D, and B decays

Baryon Number Violation

- Excess of baryons over antibaryons in the Universe → BNV processes exist
- BNV is allowed in GUTs and some SM extensions
 - Accompanied by LNV
- BFs of $D \rightarrow B\ell$, $B = \Lambda, \Sigma, p, n$ expected to be no more than $\mathcal{O}(10^{-29})$ [PRD 72, 095001 (2005)]

Results on rare charm decays (D⁰)

https://hflav-eos.web.cern.ch/hflav-eos/charm/rare/Spring2021/rare_charm.html

13

Results on rare charm decays

Major experiments on charm physics

A tale of two experiments: selected topics

- $D^0 \to \pi^0 \nu \overline{\nu}$
- $D^0 \rightarrow pe$
- $D^+ \rightarrow n(n)e^+$

• $D^+_{(s)} \to h\ell\ell^{(\prime)}$ • $D^0 \to (\pi^+\pi^-/K^+K^-)\mu^+\mu^-$

BEPCII & BESIII

Electromagnetic CsI(TI) Calorimeter (EMC) $\sigma_{E}/E < 2.5\%$ @ 1 GeV (barrel) $\sigma_{E}/E < 5\%$ @ 1 GeV (end-caps)

Time-of-Flight (TOF) $\sigma_t = 90 \text{ ps}$ (barrel) $\sigma_t = 120 \text{ ps}$ (end-caps)

Main Drift Chamber (MDC) $\sigma_{r\phi} = 130 \ \mu m$ (single wire) $\sigma_{p/p_{t}} = 0.5\% \ @ 1 \ GeV$

Superconducting solenoid (1 Tesla)

M. Ablikim et al. (BESIII Collaboration), Nucl. Instr. Meth. A614, 345 (2010)

Charm datasets @ BESIII

• Pairs of $D_{(s)}$ produced near threshold w/o additional hadrons

Data samples	\sqrt{s} (GeV)	Int. \mathcal{L} $(\mathbf{fb^{-1}})$
$D\overline{D}$	3.773	2.93
$D_s\overline{D}_s^*$	4.178	3.19
$D_s\overline{D}_s^*$	4.189 - 4.226	3.18
$\Lambda_{c}^{+}\overline{\Lambda}_{c}^{-}$	4.599	0.567
$\Lambda_{\rm c}^+\overline{\Lambda}_c^-$	4.612 - 4.698	3.8
		_

- Advantages:
 - Low background level
 - Full event info, neutrino kinematics can be inferred
 - Absolute branching fraction measurement possible with one $D_{(s)}$ tagged
 - Superb EMC performance on e / γ / π^0

 D_c^-

Double-Tag method

- Fully reconstructed D at tag side (ST)
- Requiring signal decay at the other side (DT)

ST yields: $N_{D_{(s)}}^{ST} = 2 \times N_{D\overline{D}} \times B_{ST} \times \varepsilon_{ST}$ **DT yield:** $N_{DT}^{signal} = 2 \times N_{D\overline{D}} \times B_{ST} \times B_{sig} \times \varepsilon_{ST,sig}$ **The signal branching fraction:**

$$B_{\rm sig} = \frac{N_{\rm DT}^{\rm signal}}{N_{D_{(s)}}^{\rm ST} \times \varepsilon}$$

 $D^0 \rightarrow \pi^0 \nu \overline{\nu}$

- First search on charm hadron decays into $\nu \overline{\nu}$ final states
- Reliable modeling of K_L^0 backgrounds crucial for this analysis
- Data-driven method to model energy deposits from $D^0 \rightarrow \pi^0 K_L^0 X$ decays as dominating residual background

 $D^0 \to \pi^0 \nu \overline{\nu}$

- First search on charm hadron decays into $\nu \overline{\nu}$ final states
- Reliable modeling of K_I^0 backgrounds crucial for this analysis
- Data-driven method to model energy deposits from $D^0 \rightarrow \pi^0 K^0_I X$ decays as dominating residual background

$$B\left(D^0 \rightarrow \pi^0 \nu \bar{\nu}\right) < 2.1 \times 10^{-4} @ 90\% \ CL$$

 $N_{sig} = 14 \pm 30$

$$D^0 \rightarrow pe$$

- Flavor of D determined from tag side
- Background suppression with: Energy difference: $\Delta E = E_{DObar} - E_{beam}$ Beam constrained mass: $M_{BC} = \sqrt{E_{beam}^2/c^4 - |\vec{p}_{\overline{D}^0}|^2/c^2}$
- Almost background free
- No signal found, upper limits @ 90% CL are set: $\mathcal{B}_{D^0 \rightarrow \bar{p}e^+} < 1.2 \times 10^{-6}$

$$\mathcal{B}_{D^0 \to pe^-} < 2.2 \times 10^{-6}$$

$$D^+ \to n(\bar{n})e^+$$

- *D*⁻ tagged to suppress non-*DD* backgrounds
- $n(\overline{n})$ regarded as missing particle
- GBDT based on EMC shower shape trained to suppress background
- Fit to $n(\overline{n})$ mass to extract signals
- Upper limits @ 90% CL are set: $B(D^{+(-)} \to \overline{n}(n)e^{+(-)}) < 1.43 \times 10^{-5} \text{ w/} \Delta |B - L| = 0$ $B(D^{+(-)} \to n(\overline{n})e^{+(-)}) < 2.91 \times 10^{-5} \text{ w/} \Delta |B - L| = 2$

LHCb detector in a nutshell

By design: study CP-violating processes and rare b-hadron decays

- can profit from the large bb and cc cross-sections and from the larger production at high pseudorapidity
- $\sigma(pp \rightarrow b\bar{b}X) = 144 \pm 1 \pm 21 \,\mu b$ at 13 TeV in the LHCb acceptance $\Rightarrow \sim 25\%$ of the total inside LHCb [Phys.Rev.Lett. 118, 052002]
- $\sigma(pp \rightarrow c\bar{c}X) \sim 2.5 \text{ mb} \Rightarrow 1 \text{ MHz}$ $c\bar{c}$ pairs in the LHCb acceptance [JHEP 05 (2017) 074]

LHCb detector in a nutshell

By design: study CP-violating processes and rare b-hadron decays

- Particle detection in the forward region (down to the beam-pipe)
- Excellent resolution for localization of decay vertices (Vertex Locator) \rightarrow Excellent time resolution, enough to resolve $B_s B_s$ oscillation
- Excellent momentum resolution ($\sigma(m_B) \sim 25$ MeV for 2-body decays)
- Excellent particle identification to distinguish p, K[±], π^{\pm} , μ^{\pm}
- Excellent leptonic and hadronic triggers

[Phys.Rev.Lett. 118, 052002]

• $\sigma(pp \rightarrow c\bar{c}X) \sim 2.5 \text{ mb} \Rightarrow 1 \text{ MHz}$ $c\bar{c}$ pairs in the LHCb acceptance [JHEP 05 (2017) 074]

LHCb trigger scheme

LHCb 2012 Trigger Diagram 40 MHz bunch crossing rate LO Hardware Trigger : 1 MHz readout, high E_T/P_T signatures 450 kHz 400 kHz 150 kHz h± e/y μ/μμ Ļ ₋ ا Software High Level Trigger 29000 Logical CPU cores Offline reconstruction tuned to trigger time constraints Mixture of exclusive and inclusive selection algorithms 5 kHz (0.3 GB/s) to storage 2 kHz 2 kHz 1 kHz Inclusive/ Inclusive Muon and Exclusive DiMuon Topological Charm b Hadror $t = \ell / \beta \gamma c$

 $\sigma_t \sim 40 \text{ fs}$

trigger efficiency: \sim 90% on muons, \sim 30% for multi-body hadronic final states

LHCb data samples

- levelled instantaneous luminosity of $\mathcal{L}=4 imes10^{32}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$
- Run 1: $\sim 3 \, {\rm fb}^{-1}$ of pp collisions at $\sqrt{s} = 7-8 \, {\rm TeV}$
- Run 2: $\sim 6 \, \text{fb}^{-1}$ of pp collisions at $\sqrt{s} = 13 \, \text{TeV}$
- $\sigma(pp \rightarrow Q\bar{Q}X) \propto \sqrt{s} \Rightarrow 4x b$ and *c*-hadrons in Run 2

More than 1B of $D^0 \rightarrow K^-\pi^+$ events reconstructed with full LHCb data sample

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

Search for $D^+_{(s)} \rightarrow h^{\pm} \ell^+ \ell^{(\prime)\mp}$ decays

- 25 decays LFV & LNV included
- $D^+ \rightarrow \pi^+ \mu^+ \mu^ D^+ \rightarrow \pi^- \mu^+ \mu^+$ $D^+ \rightarrow \pi^+ \mu^+ e^ D^+ \rightarrow \pi^- \mu^+ e^+$ $D^+ \rightarrow K^+ \mu^+ e^ D^+ \rightarrow \pi^+ e^+ \mu^-$
- $D^+ \rightarrow \pi^+ e^+ e^ D^+ \rightarrow K^+ e^+ e^ D_s^+ \rightarrow \pi^+ \mu^+ \mu^ D^+ \rightarrow \pi^- e^+ e^+$ $D^+ \rightarrow K^+ \mu^+ \mu^ D_s^+ \rightarrow \pi^- \mu^+ \mu^+$ $D_s^+ \rightarrow \pi^+ \mu^+ e^ D^+ \rightarrow K^+ e^+ \mu^ D_s^+ \rightarrow \pi^- \mu^+ e^+$
 - $D_s^+ \rightarrow \pi^+ e^+ \mu^ D_{c}^{+} \rightarrow K^{+}\mu^{+}e^{-}$ $D_s^+ \rightarrow \pi^+ e^+ e^ D_s^+ \rightarrow K^- \mu^+ e^+$ $D_s^+ \rightarrow \pi^- e^+ e^+$ $D_s^+ \rightarrow K^+ e^+ \mu^ D_s^+ \rightarrow K^+ \mu^+ \mu^ D_s^+ \rightarrow K^+ e^+ e^ D_s^+ \rightarrow K^- e^+ e^+$ $D_{\rm s}^+ \rightarrow K^- \mu^+ \mu^+$

• Normalized with $D^+_{(s)} \rightarrow \phi(\ell \ell) \pi^+$

Allowed in the SM, Forbidden in the SM

Analysis based on 2016 dataset (1.7 fb⁻¹)

vetoed

JHEP 06 (2021) 44

Search for $D^+_{(s)} \rightarrow h^{\pm} \ell^+ \ell^{(\prime)\mp}$ decays

- No signal observed, BF limits are set down to $\mathcal{O}(10^{-8})$
- Results improve the prior world's best by up to a factor of 500

PRL 128 (2022) 221801

CPV and angular analysis in $D^0 \rightarrow hh\mu^+\mu^-$

 Rarest charm meson decays observed, dominated by resonant contributions

 $\mathcal{B}(D^0 \to \pi^+ \pi^- \mu^+ \mu^-) \sim 9.6 \times 10^{-7}$ $\mathcal{B}(D^0 \to K^+ K^- \mu^+ \mu^-) \sim 1.5 \times 10^{-7}$

- First full angular analysis with 9 fb⁻¹ data
- D^0 selected from flavor specific $D^{*+} \rightarrow D^0 \pi^+$

$$N(D^{0} \to \pi^{+}\pi^{-}\mu^{+}\mu^{-}) \sim 3500$$
$$N(D^{0} \to K^{+}K^{-}\mu^{+}\mu^{-}) \sim 300$$

Differential decay rate in $D^0 \rightarrow hh\mu^+\mu^-$

 $\begin{array}{c} 3 \\ 600 \\ 9 \\ 500 \\ 400 \end{array} \begin{array}{c} - LHCb \\ 9 \\ fb^{-1} \\ 0 \\ - D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^- \end{array}$ preliminary $d\Gamma$ $= I_1 +$ $d\cos\theta_{\mu}d\cos\theta_{h}d\phi$ \vec{n}_{hh} $I_2 \cdot \cos 2\theta_{\mu} +$ · \$. Weighted candidates / $I_3 \cdot \sin^2 2\theta_\mu \cos 2\phi +$ $\vec{n}_{\mu\mu}$ \vec{e}_{hh} $\rho | \omega$ θ_h $e_{\mu\mu}$ $I_4 \cdot \sin 2\theta_\mu \cos \phi +$ \vec{e}_{h+} $I_5 \cdot \sin \theta_\mu \cos \phi +$ I_5, I_6, I_7 clean $I_6 \cdot \cos \theta_{\mu} +$ null tests! 500 1000 1500 $I_7 \cdot \sin \theta_\mu \sin \phi +$ $m(\mu^{+}\mu^{-})$ [MeV/ c^{2}] $p^2 = m^2(h^+h^-) \\ q^2 = m^2(\mu^+\mu^-)$ $I_8 \cdot \sin 2\theta_{\mu} \sin \phi +$ MeV/c^2 80^E LHCb preliminary $I_9 \cdot \sin^2 \theta_\mu \sin 2\phi$ 70 € 9 fb⁻¹ • Measure p^2 , $\cos \theta_h$ integrated $\langle I_i \rangle$ separately for D^0/\overline{D}^0 in q^2 bins $D^0 \rightarrow K^+ K^- \mu^+ \mu^ \rho | \omega$ 50E candida $\langle S_{5,6,7} \rangle = 0$ $\langle I_{2,3,6,9} \rangle (q^2) = \frac{1}{\Gamma} \int_{A_{m}}^{p_{max}^2} dp^2 \int_{-1}^{1} d\cos\theta_h I_{2,3,6,9}$ $\langle S_i \rangle = \frac{1}{2} \left[\langle I_i \rangle + (-) \langle \overline{I_i} \rangle \right]$ $\langle A_i \rangle = 0$ eighted $\langle A_i \rangle = \frac{1}{2} \left[\langle I_i \rangle - (+) \langle \overline{I_i} \rangle \right]$ $\langle I_{4,5,7,8} \rangle (q^2) = \frac{1}{\Gamma} \int_{-1}^{p_{max}^2} dp^2 \left[\int_{-1}^{0} d\cos\theta_h - \int_{0}^{1} d\cos\theta_h \right] I_{4,5,7,8}$ i=2,..,9 400 600 800 for CP even (CP odd) coefficients $m(\mu^+\mu^-)$ [MeV/ c^2]

Flavor-averaged observables $\langle S_i \rangle$

• Shown examples: SM null tests $\langle S_{5,6,7} \rangle [\langle S_6 \rangle \sim A_{FB}]$

From D. Mitzel's talk @ 11th workshop on "Implications of LHCb measurements and future prospects"

PRL 128 (2022) 221801

CP asymmetries $\langle A_i \rangle$

 $A_{CP} = \frac{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) - \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}{\Gamma(D^0 \to h^+ h^- \mu^+ \mu^-) + \Gamma(\overline{D}{}^0 \to h^+ h^- \mu^+ \mu^-)}$

From D. Mitzel's talk @ 11th workshop on "Implications of LHCb measurements and future prospects"

• Shown: $\langle A_6 \rangle [\langle A_6 \rangle \sim A_{FB}^{CP}]$, $\langle A_{8,9} \rangle$ [triple-product-asym.] & A_{CP} of LHCb measuremen

Semileptonic charm decays

- Challenge: only partially reconstructed final state
- For e+e- machines such as BESIII, use the other side of the event and beam energy to constrain neutrino momentum
- For a hadron collider like LHCb, neutrino momentum can be constrained by the D flight distance: $p_{t'}(\nu_{t})$

- A two-fold ambiguity for total neutrino momentum can be solved by using D*+ mass constraint with D⁰ from D*+ \rightarrow D⁰ π_s^+
 - The cone-closure method [FERMILAB-THESIS-1995-05]

Test of LFU in D decays

$b \rightarrow s\gamma$ photon polarization with $D \rightarrow K_1 \ell \nu$

- Photon Polarization in $b \rightarrow s\gamma$ is sensitive to BSM
- A noval method is provided to combine the $B \to K_1 \gamma$ and $D \to K_1 e^+ \nu_e$ to determine the photon belicity (PPI 125)

determine the photon helicity [PRL 125, 051802 (2020)]

 $\begin{aligned} \mathcal{A}_{\mathrm{UD}}^{\prime} &= \frac{\left[\int_{0}^{1} - \int_{-1}^{0}\right] d\cos\theta_{K} \frac{d\Gamma_{K_{1}ev_{e}}}{d\cos\theta_{K}}}{\left[\int_{0}^{1} - \int_{-1}^{0}\right] d\cos\theta_{I} \frac{d\Gamma_{K_{1}ev_{e}}}{d\cos\theta_{I}}} \qquad D \to K_{1}(\to K\pi\pi)e^{+}\nu \\ \mathcal{A}_{\mathrm{UD}}^{\prime} &= \frac{\mathrm{Im}[\vec{n} \cdot (\vec{J} \times \vec{J}^{*})]}{\left|\vec{J}\right|^{2}} \end{aligned} \qquad D \to K_{1}(\to K\pi\pi)e^{+}\nu \\ \mathcal{A}_{UD}^{\prime} &= \frac{\left[\int_{0}^{1} - \int_{-1}^{0}\right] d\cos\theta_{K} \frac{d\hat{\Gamma}_{K_{1}\gamma}}{d\cos\theta_{K}}}{\left[\int_{0}^{1} + \int_{-1}^{0}\right] d\cos\theta_{K} \frac{d\hat{\Gamma}_{K_{1}\gamma}}{d\cos\theta_{K}}} \qquad B \to K_{1}(\to K\pi\pi)\gamma \\ &= \lambda_{\gamma} \frac{3}{4} \frac{\mathrm{Im}[\vec{n} \cdot (\vec{J} \times \vec{J}^{*})]}{|\vec{J}|^{2}} \qquad \qquad \mathbf{D}^{\prime} \to K_{1}(\to K\pi\pi)\gamma \\ \mathbf{\lambda}_{\gamma} &= \frac{4}{3} \frac{\mathcal{A}_{UD}}{\mathcal{A}_{1}^{\prime}\mathrm{ID}} \qquad \mathbf{In} \mathbf{SM}, \qquad \lambda_{\gamma} \simeq 1 \end{aligned}$

Taken from <u>Up-down asymmetries and angular distributions in D->K_l(->Kpipi)l+v_l</u>, by 边苓竹

3

$D \to K_1 (\to K \pi \pi) e^+ \nu_e$ at BESIII

- Using 2.93 fb^{-1} of e^+e^- collision data at BESIII, first observation of $D^0 \rightarrow K_1(1270)^-e^+\nu_e$ and $D^+ \rightarrow K_1(1270)^0e^+\nu_e$ have been both published with ~100 signals [PRL 127, 131801 (2021)], [PRL 123, 231801 (2019)].
 - $B(D^0 \to K_1(1270)^- e^+ \nu_e) = (1.09 \pm 0.13^{+0.09}_{-0.16} \pm 0.12) \times 10^{-3}$
 - $B(D^+ \to K_1(1270)^0 e^+ \nu_e) = (2.30 \pm 0.26^{+0.18}_{-0.21} \pm 0.25) \times 10^{-3}$

The yield is too small for angular analysis and $A_{UD}^{'}$ measurement

Taken from <u>Up-down asymmetries and angular distributions in D->K_l(->Kpipi)l+v_l</u>, by 边苓竹

Prospect of $D^0 \to K_1 (\to K \pi \pi)^- \mu^+ \nu_\mu$ at LHCb

- About 2000 $D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K^- \pi^+ \mu^+ \mu^-$ candidates at LHCb, 2 f b^{-1} at 8 TeV [PRL 119,181805 (2017)]
- $B(D^0 \to K_1(\to K\pi\pi)^-\mu^+\nu_\mu)$ two orders of magnitude higher than $B(D^0 \to K^-\pi^+\mu^+\mu^-)$
- Conservatively estimation: 10^5 $D^0 \rightarrow K_1 (\rightarrow K \pi \pi)^- \mu^+ \nu_\mu$ candidates based on 9 $f b^{-1}$ at LHCb

- $\sim 10^5 \quad D^0 \rightarrow K_1 (\rightarrow K \pi \pi)^- \mu^+ \nu_{\mu}$ signals generated by RapidSim [Comput.Phys. Commun. 214, 239 (2017).]
- Muon mass can not be neglected
- Statistical sensitivity of H_{K_1} :1.1% [PRD 104, 053003 (2021)]

BESIII prospects

	10-6				10-6
Decay	Upper limit	Experiment	Year	Ref.	BESIII Expected
$D^0 \to \pi^0 e^+ e^-$	0.4	BESIII	2018	[35]	0.1
$D^0 ightarrow \eta e^+ e^-$	0.3	BESIII	2018	[35]	0.1
$D^0 \to \omega e^+ e^-$	0.6	BESIII	2018	[35]	0.2
$D^0 \rightarrow K^0_S e^+ e^-$	1.2	BESIII	2018	[35]	0.5
$D^0 \rightarrow \rho e^+ e^-$	124.0	E791	2001	[36]	0.5
$D^0 ightarrow \phi e^+ e^-$	59.0	E791	2001	[36]	0.5
$D^0 \to \bar{K}^{*0} e^+ e^-$	47.0	E791	2001		0.5
$D^0 \to \pi^+\pi^- e^+ e^-$	0.7	BESIII	2018	20 fb ⁻¹	0.3
$D^0 \to K^+ K^- e^+ e^-$	1.1	BESIII	2018	3.773 GeV	0.4
$D^0 \to K^- \pi^+ e^+ e^-$	4.1	BESIII	2018	[35]	1.6
$D^+ \to \pi^+ e^+ e^-$	1.1	BaBar	2011	[37]	0.12
$D^+ \to K^+ e^+ e^-$	1.0	BaBar	2011	[37]	0.46
$D^+ \rightarrow \pi^+ \pi^0 e^+ e^-$	1.4	BESIII	2018	[35]	0.5
$D^+ \to \pi^+ K^0_S e^+ e^-$	2.6	BESIII	2018	[35]	1.0
$D^+ \to K^0_S K^+ e^+ e^-$	1.1	BESIII	2018	[35]	0.4
$D^+ \to K^+ \pi^0 e^+ e^-$	1.5	BESIII	2018	[35]	0.6
$D_s^+ \rightarrow \pi^+ e^+ e^-$	13.0	BaBar	201 6 f	0-10 4 18 GeV	70.0
$D_s^+ \rightarrow K^+ e^+ e^-$	3.7	BaBar	201		1.7

39

LHCb prospects

Mode	Upgrade (50 ${ m fb}^{-1}$)	Upgrade II (300 ${ m fb}^{-1}$)
$D^0 ightarrow \mu^+ \mu^-$	$4.2 imes10^{-10}$	$1.3 imes10^{-10}$
$D^+ ightarrow \pi^+ \mu^+ \mu^-$	10 ⁻⁸	$3 imes 10^{-9}$
$D_s^+ ightarrow K^+ \mu^+ \mu^-$	10 ⁻⁸	$3 imes 10^{-9}$
$\Lambda ightarrow p \mu \mu$	$1.1 imes10^{-8}$	$4.4 imes10^{-9}$
$D^0 o e \mu$	10 ⁻⁹	$4.1 imes10^{-9}$

Mode	Upgrade (50 ${ m fb}^{-1}$)	Upgrade II (300 ${ m fb}^{-1}$)
$D^+ o \pi^+ \mu^+ \mu^-$	0.2%	0.08%
$D^0 ightarrow \pi^+\pi^-\mu^+\mu^-$	1%	0.4%
$D^0 ightarrow K^- \pi^+ \mu^+ \mu^-$	0.3%	0.13%
$D^0 ightarrow K^+ \pi^- \mu^+ \mu^-$	12%	5%
$D^0 ightarrow K^+ K^- \mu^+ \mu^-$	4%	1.7%

A. Contu, Towards the Ultimate Precision in Flavour Physics, Durham, United Kingdom, 2 - 4 Apr 2019

Summary

- Charm hadron decays offer unique opportunities for Indirect NP searches
- LHCb & BESIII are two major players in the field:
 - LHCb: Dominant role for charm decays to all-track final states due to overwhelming statistics
 - BESIII: Advantages in reconstruction of neutrals $(\pi^0/\eta/K_S^0/\Lambda/...)$ and invisible particles $(\nu/K_I^0/n/DM/...)$
- More results on the way: more decay modes currently under study & more data in a few years
- Uncovered topics today:
 - Charm mixing & CPV: See LHCb上粲强子混合与CP破坏研究 by Shanzhen Chen
 - Radiative charm decays
 - Charm decays into invisible final states