

Institute of High Energy Physics Chinese Academy of Sciences

ML in SUSY DiTau and SS/3L analysis

Jiarong Yuan On behalf of ATLAS SUSY DiTau and SS/3L team 2022/9/13

Overview

The application of machine learning in the search of the following SUSY scenarios:

1. Direct stau production [Dominic Jones]

2. C1N2 via Wh to $2\tau 1\ell$ [Chenzheng Zhu]

3. GG 2-step via sleptons [Xin Wang]

Direct stau production

- The current 2nd wave analysis exclusion limit is improved because of
 - Tau-ID: MVA \rightarrow RNN
 - Signal region optimization: CutCount \rightarrow BDT
- Samples are grouped into 4 groups using distances given by UMAP(based on kinematics).
 - adding more points = trade of between kinematics and statistics
- 4 BDTs are trained across the whole grid, for each signal point use BDT which gives best CLs value.

C1N2 via Wh to $2\tau 1\ell$

• The signal regions optimized by CutCount:

Preselection	
Pass single lepton trigger	1 base lepton, 1 signal lepton
>= 2 medium tau(OS)	B-jet Veto
$\Delta\phi(\tau_1,\tau_2)<3$	$m_{T2} > 30 { m ~GeV}$
40 GeV< $m(\tau_1, \tau_2)$ <160 GeV	

SR-Low	SR-High
>= 2 Tight tau	$m_{T2} > 90 { m ~GeV}$
90 GeV < $m(\tau_1,\tau_2)$ < 130 GeV	$M_{Tlep} > 80 \text{ GeV}$
$P_{T\tau_1} > 60 \text{ GeV}$	$\Delta R(\tau_1,\tau_2) < 2.2$
$P_{T\tau_2} > 30 \text{ GeV}$	70 GeV< $m(\tau_1, \tau_2)$ <140 GeV
<i>m</i> _{T2} >70 GeV	M_{Tsum} > 450 GeV

- Two BDTs are trained, one for SR-HighMass and the other for SR-LowMass.
 - SR-LM: BDT results have slightly larger significance than CutCount results.

• SR-HM: The results are similar as CutCount results due to simple tree.

0.6

0.4

GG 2-step via sleptons

• The discovery signal regions are optimized by **CutCount**:

ATLAS

VS=13 TeV

2000

1800

1600

1400 F

1200

1000

800

600 400 F

• Train 3 **BDT**s are trained for different regions:

Small improvement in the compressed region

Summary

- 1. For the signal with small cross-section(Direct stau production), challenging signal(GG 2-step via slepton compressed region), the results of BDT method are better than the results of CutCount.
- 2. For general processes(C1N2 via Wh, GG 2-step via slepton), the results of BDT method is similar with the results of CutCount. This may be due to the use of simple BDT.
- 3. In the new challenging compressed ditau search, we plan to use machine learning to get better results.

The End