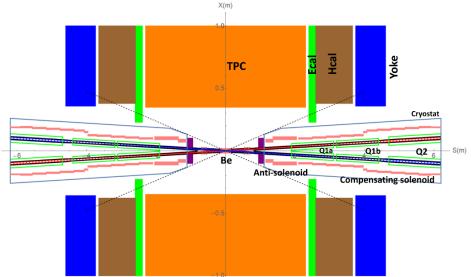


Recent progress in CEPC final focus quadrupole magnet

Yingshun Zhu, Chuang Shen, Xiangchen Yang, Ran Liang


Institute of High Energy Physics, Chinese Academy of Sciences Sep. 21, 2022

Outline

- Introduction
- Progress in final focus quadrupol magnet design in CEPC high luminosity scheme
- Progress of 0.5m single aperture short model quadrupole
- Summary

Introduction

- To squeeze the beam for **high luminosity**, compact high gradient final focus quadrupole magnets (Q1a, Q1b, Q2) are required on both sides of IP points.
- TDR requirements of CEPC Final Focus quadrupoles are based on L* of 1.9 m, beam crossing angle of 33 mrad.
- Preliminary design of quadrupole magnet in TDR stage is finished, considering various design options.
- Study and research on main key technologies of 0.5m single aperture quadrupole model is in progress, in collaboration with HeFei KEYE Company.
- Its manufacture is completed; cryogenic test at 4.2K in vertical Dewar is planned.

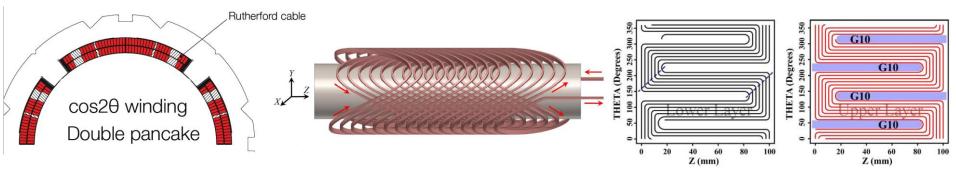
Progress in final focus quadrupol magnet design in CEPC high luminosity scheme

Table 1: TDR requirements	of final focus	quadrupole	magnets for Higgs

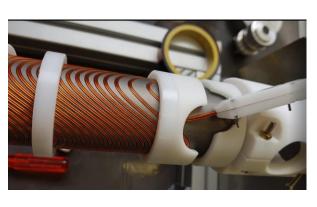
Magnet	Central field gradient (T/m)	Magnetic length (m)	Width of GFR (mm)	Outer diameter of beam pipe (mm)	Dipole field	Minimal distance between two aperture beam lines (mm)
Q1a	142.3	1.21	14.92	26 or 28	<30 Gs	62.71
Q1b	85.4	1.21	18.17	31	<30 Gs	105.28
Q2	96.7	1.5	24.48	40	<30 Gs	155.11

1 Design of Q1a

- ➤ Minimal distance between two aperture beam lines: **62.71 mm**
- Outer radius of beam pipe: 13 or 14 mm
- Leaving space for helium vessel, quadrupole coil inner radius: 20 mm
- It is challenging to meet stringent design requirement
- High field gradient: **142.3 T/m** (FCC-ee 100T/m)
- Magnetic field crosstalk between two apertures:


Dipole field <30 Gs, high order field harmonics <5 ×10⁻⁴

• Limited radial space in the magnet middle:

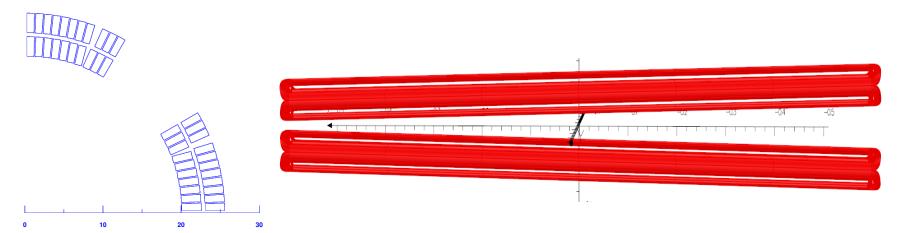

R: [20mm, 31.36mm], only 11.36mm available

Design of Q1a

Magnetic design of Q1a with 3 kinds of quadrupole coil structures, including cos2θ coil, CCT coil, and Serpentine coil.

Cos2θ coil (SuperKEKB)

CCT coil (FCC-ee)

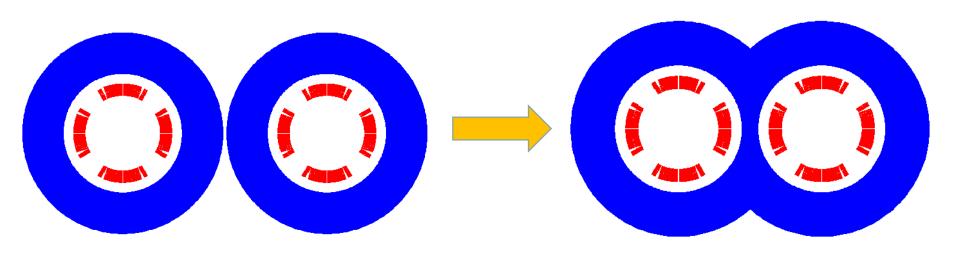

Serpentine coil (BEPCII)

Design of Q1a

1) Cos2θ option of Q1a

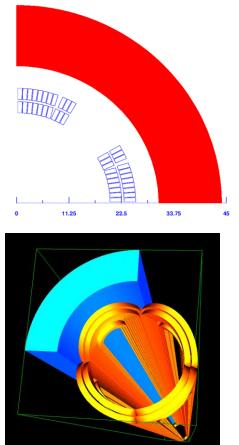
- Round 0.5mm strand, HTS Bi-2212 or LTS NbTi
- Two layers $\cos 2\theta$ quadrupole coil using Rutherford, with 10 NbTi strands.
- The inner diameter of the coil is 40mm.
- Single aperture cross section is optimized with four coil blocks in two layers.
- Width of the cable is 2.5mm, 21 turns in each pole.

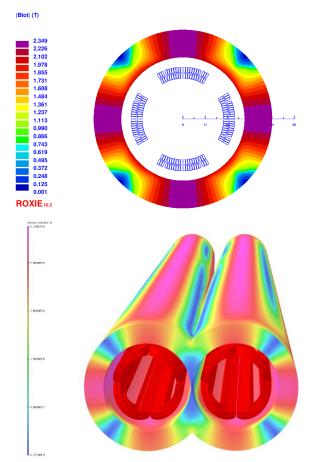
Option 1: Iron free design



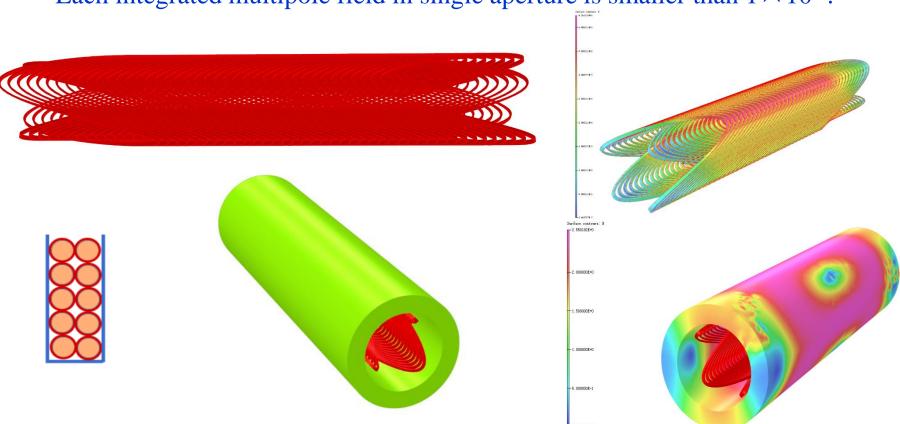
■ Field crosstalk between two apertures introduces a dipole field, >1000 Gs; cannot meet design requirements. (anti-symmetric coil, add corrector coil, etc.)

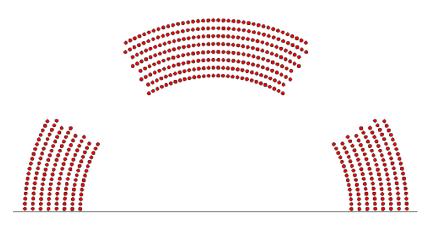
Design of Q1a

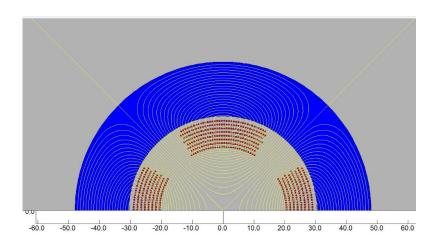

Option 2: With iron design

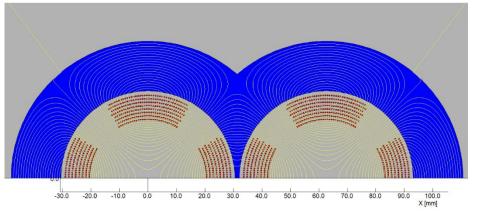

- Iron yoke FeCoV with high saturation field is added outside the coil, to enhance the field gradient, reduce the coil excitation current, and shield the field crosstalk
- Not enough space to place two single apertures side by side
- Compact design: Iron core in the middle part is shared by two apertures

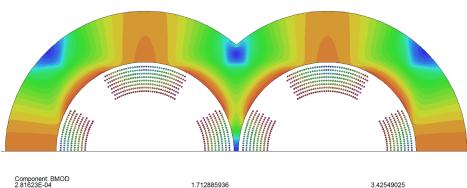
Q1a design with iron


- The field harmonics as a result of field crosstalk is smaller than 1×10^{-4} .
- **Dipole field at aperture center is smaller than 20 Gs.** Compared with iron-free design, the excitation current is reduced to 2020A @4.2K.
- Double aperture cos2θ quadrupole with iron yoke shared by two apertures, with crossing angle 33mrad of two apertures. Meet all requirements.


2) CCT option of Q1a


- 0.5mm round wire, HTS Bi-2212 or LTS NbTi.
- Two layers CCT quadrupole coil. The inner radius of the spar: 20mm.
- Groove on the spar: 1×2.5 mm; 10 wires in a groove.
- Conductor canted angle: 30 deg. Excitation current: 324A.
- Field gradient is calculated using theoretical formula, and OPERA-3D.
- ✓ Each integrated multipole field in single aperture is smaller than 1×10^{-4} .




3) Serpentine option of Q1a

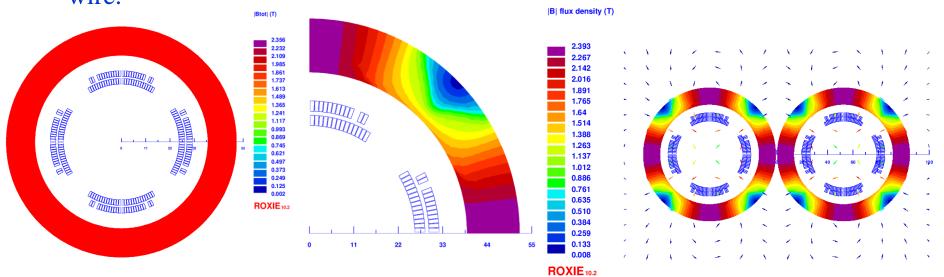
- 0.5mm round wire, HTS Bi-2212 or LTS NbTi.
- 8 layers Serpentine quadrupole coil. The inner radius of the coil: 20mm.
- 2D calculation, each multipole field in single aperture is smaller than 1×10^{-4} .
- Excitation current: 334A (with iron)

Comparison of three design options of Q1a

1) Comparison of three design options of Q1a (142.3T/m, no iron)

Q1a option	Cos2θ coil	CCT coil	Serpentine coil
Excitation current in strand (A)	265	472.5	480
Current density Je on wire (A/mm ²)	1350	2406	2445
Peak field in coil (T)	3.6	4.3	4.2

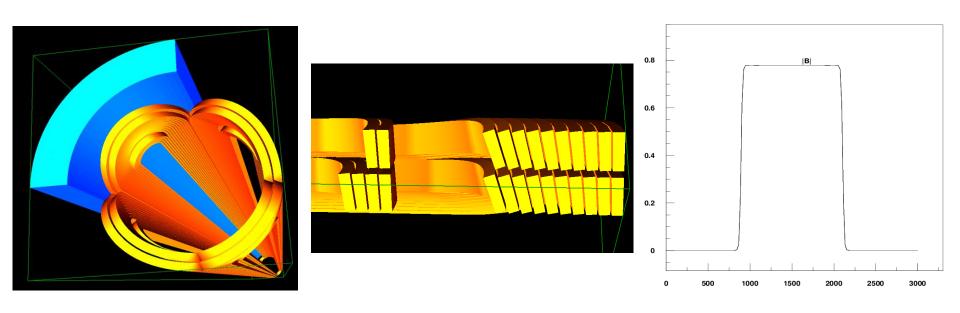
2) Comparison of three design options of Q1a (142.3T/m, with iron)


Q1a option	Cos2θ coil	CCT coil	Serpentine coil
Excitation current in strand (A)	202	324	334
Current density Je on wire (A/mm ²)	1029	1650	1701
Peak field in coil (T)	3.5	3.8	3.8

- From the comparison, $\cos 2\theta$ coil has lower current, lower peak field, and lower current density.
- \triangleright Cos2 θ coil as baseline design, CCT and Serpentine coil as alternative design.

2 Design of Q1b

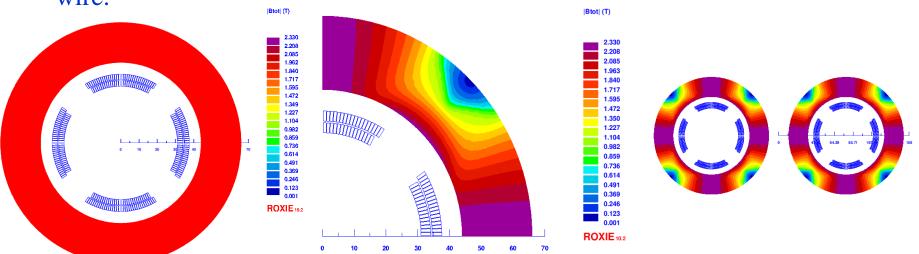
Baseline design: Cos20 coil; CCT and Serpentine coil as alternative design


- Round 0.5mm strand, HTS Bi-2212 or LTS NbTi
- Q1b: two layers $\cos 2\theta$ quadrupole coil using Rutherford cable with iron yoke. The inner radius of the coil is 26 mm.
- Single aperture cross section is optimized with three coil blocks in two layers.
- Width of the cable is 3 mm, 26 turns in each pole.
- The excitation current of Q1a is 1590A.
- Two apertures do not need to share the iron yoke like Q1a.
- * Two layers corrector coils will be added inside quadrupole coil, using 0.33mm wire.

Design of Q1b

3D design of Q1b

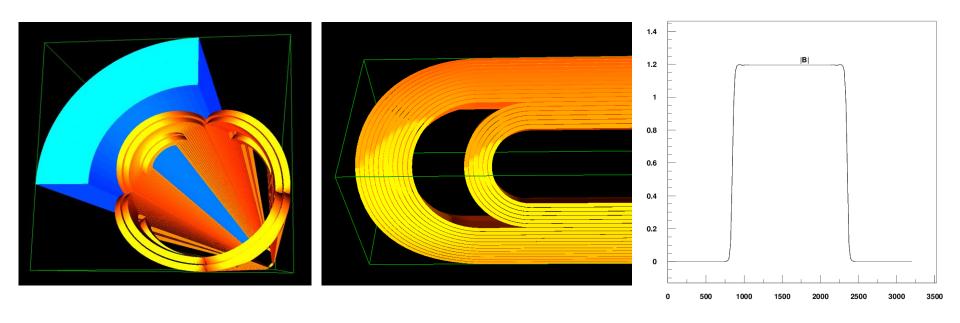
- 3D magnetic field is modeled and analysed using ROXIE.
- Coil end detailed shaped is optimized and determined.
- Field gradient 85.4T/m, each integrated field harmonics is smaller than 1×10^{-4} .
- The 3D magnetic field performance meets requirement.


Single aperture model in 3D

3 Design of Q2

Baseline design: Cos20 coil; CCT and Serpentine coil as alternative design

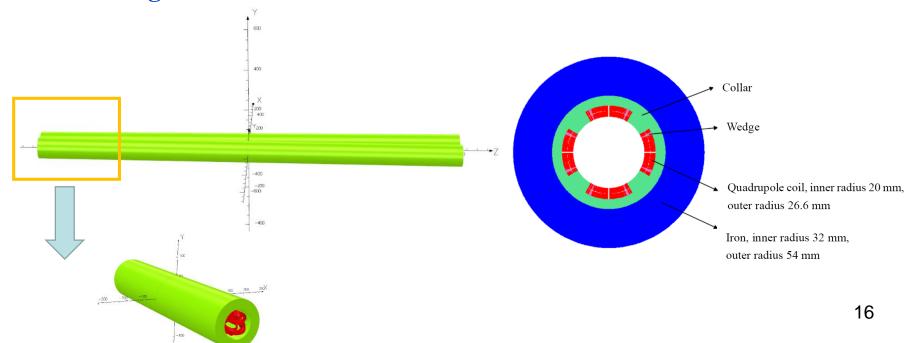
- Round 0.5mm strand, HTS Bi-2212 or LTS NbTi
- Q2: two layers cos2θ quadrupole coil using Rutherford cable with iron yoke. The inner radius of the coil is 31mm.
- Single aperture cross section is optimized with two coil blocks in two layers.
- Width of the cable is 3mm, 33 turns in each pole.
- The excitation current of Q1a is 1925A, and each multipole field in single aperture is smaller than 1×10^{-4} in 2D.
- Two apertures do not need to share the iron yoke like Q1a.


* Two layers corrector coils will be added inside quadrupole coil, using 0.33mm wire.

Design of Q2

3D design of Q2

- 3D magnetic field is modeled and analysed using ROXIE.
- Coil end detailed shaped is optimized and determined.
- Field gradient 85.4T/m, each integrated field harmonics is smaller than 1×10^{-4} .
- The 3D magnetic field performance meets requirement.

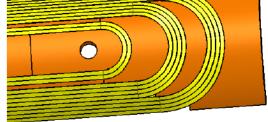

Single aperture model in 3D

Baseline design of quadrupole, there is no such magnet in the world:


Collared cos2θ quadrupole magnet, with shared iron yoke and crossing angle between two apertures.

In practice, can it be fabricated and really meet the requirement?

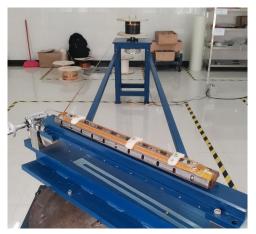
- So far, there is no cos2θ superconducting quadrupole magnet in China.
- The first step is to study and master main key technologies of superconducting quadrupole magnet by developing a short model magnet with 0.5m length.



- Research on main **key technologies** of 0.5m single aperture quadrupole model has started (NbTi, 136T/m), in collaboration with HeFei KEYE Company.
- Including: quadrupole coil winding technology, fabrication of quadrupole coil with small diameter, stress control, quadrupole magnet assembly, cryogenics vertical test and field measurement technology, etc.

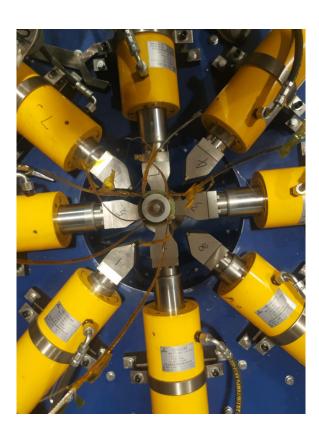
Progress: Manufacture of all hardware is completed.

NbTi Rutherford cable (12 strands)



Coil heating and curing system

Winding machine


Coils assembly system

- Many test on the winding and curing of quadrupole coils were performed.
- Four SC quadrupole coils have been fabricated, then they are assembled with stainless collar and iron yoke.
- Coil resistance and ground insulation voltage test have been performed.
- Manufacture of 0.5m single aperture short model quadrupole was completed in August 2022. Then, the magnet has been transported to IHEP.

- Cryogenic excitation test at 4.2K is planned to be performed in future, to verify whether high magnetic field gradient can be achieved.
- Design current: 2115A
- ✓ Already available: vertical Dewar

- No additional cost required, if the following two hardware available:
 - Refrigerator (production of liquid helium, 1 or 2 days)
 - Power supply (~2500A)(Both in Superconducting magnet group)

Summary

- For CEPC IR superconducting quadrupole magnets, it is challenging to meet stringent design requirements, including limited space, magnetic field crosstalk between two apertures, field gradients up to 142T/m.
- Various design options are considered, including Iron-free option, with iron option, HTS option, LTS option.
- Three kinds of quadrupole coil structures have been studied for Q1a using high luminosity parameters: Cos2θ coil, CCT coil, Serpentine coil.
- Cos 2θ coil has higher magnetic efficiency, lower current and low coil peak field. It is the baseline option.
- > Study and research on key technologies of 0.5m single aperture quadrupole model (136T/m, NbTi) is in progress;
- Its manufacture is completed, and cryogenic test at 4.2K in vertical Dewar is planned; No additional cost required, if two hardware are available.

Thanks for your attention!