Simulation analyses of $H \rightarrow bb/c\bar{c}/gg$ at CEPC & dependency on VTX design; Requirement on PID

Yongfeng Zhu

advisor : Manqi Ruan

CEPC Day, 2022.09.21

Motivation :

- The measurement of $H \rightarrow b\bar{b}/c\bar{c}/gg$ signal strength accuracy is improtant for Higgs coupling studies.
- In the measurement of the relative accuracy of $H \rightarrow b\bar{b}/c\bar{c}/gg$ signal strength, the flavor tagging performance has significant impact on the final results.
- The vertex detector design has impact on flavor tagging performance.

2

· The PID performance is essential to flavor physics.

The relative accuracy of $H \rightarrow bb/c\bar{c}/gg$ signal strength.

CEPC baseline detector,

all SM samples corresponding to 240 GeV, 5.6 ab^{-1} , full simulation,

l+l-Higgs, vvHiggs, qqHiggs,

The analysis procedure can be divided into two steps : first step : select signal with cut flow second step : calculate the signal strength accuracy

arXiv: 2203.01469

$\nu \bar{\nu} Higgs$ selection

		$ u ar{ u} H q ar{q}/g g$	2f	SW	SZ	WW	ZZ	Mixed	ZH	$\frac{\sqrt{S+B}}{S}$ (%)	signal-to-background
	total	178890	8.01E8	1.95E7	9.07E6	5.08E7	6.39E6	2.18E7	961606	16.86	l'ante background
	recoilMass (GeV) $\in (74, 131)$	157822	5.11E7	2.17E6	1.38E6	4.78E6	1.30E6	1.08E6	74991	4.99	ratio
	$visEn (GeV) \\ \in (109, 143)$	142918	2.37E7	1.35E6	8.81E5	3.60E6	1.03E6	6.29E5	50989	3.92	
	$leadLepEn (GeV) \\ \in (0, 42)$	141926	2.08E7	3.65 E5	7.24E5	2.81E6	9.72E5	1.34E5	46963	3.59	
	$\begin{array}{l} multiplicity \\ \in (40, 130) \end{array}$	139545	1.66E7	2.36E5	5.24E5	2.62E6	9.07E5	4977	42751	3.29	
	$leadNeuEn (GeV) \\ \in (0, 41)$	138653	1.46E7	2.24E5	4.72E5	2.49E6	8.69E5	4552	42303	3.12	
	Pt (GeV) $\in (20, 60)$	121212	248715	1.56E5	2.48E5	1.51E6	4.31E5	999	35453	1.37	
	$\frac{Pl}{GeV}$	118109	52784	1.05E5	74936	7.30E5	1.13E5	847	34279	0.94	
	$-\log 10(Y23)$ $\in (3.375, \pm\infty)$	96156	40861	26088	60349	2.25E5	82560	640	10691	0.76	0.22
	InvMass (GeV) $\in (116, 134)$	71758	22200	11059	6308	77912	13680	248	6915	0.64	0.52
	$BDT \in (-0.02, 1)$	60887	9140	266	2521	3761	3916	58	1897	0.47	2 91
1	2 (0.02, 2)										

4

Table 1. The event selection of $\nu \bar{\nu} H(H \rightarrow q\bar{q}/gg)$.

the second step

The identified flavor combinations based on flavor tagging performance matrix.

$$-2 \cdot \log(\ell) = \sum_{i=1}^{i=6} \frac{[S_b \cdot N_{b,i} + S_c \cdot N_{c,i} + S_g \cdot N_{g,i} + N_{bkg,i} - N_i]^2}{N_i},$$

results :

	Z decay mode	$H \to b\bar{b}$	$H \to c \bar{c}$	$H \to gg$
orViv:1005 120	$Z \rightarrow e^+ e^-$	1.57%	14.43%	10.31%
ar xiv. 1905.123	$Z \rightarrow \mu^+ \mu^-$	1.06%	10.16%	5.23%
	$Z \to q \bar{q}$	0.35%	7.74%	3.96%
	$Z \to \nu \bar{\nu}$	0.49%	5.75%	1.82%
	combination	0.27%	4.03%	1.56%

 Table 3. The signal strength accuracies for different channels.

Extrapolate to CEPC Snowmass, FCC-ee and ILC settings.

	\sqrt{s} GeV	$\int_{ab^{-1}}^{L}$	polarization	$H \to b \bar{b}$	$H \to c \bar c$	$H \to gg$
CEPC	240 (CDR)	5.6	\sim	0.27%	4.03%	1.56%
CEPC	240 (Snowmass)	20	\sim	0.14%	2.13%	0.82%
FCC-ee	240	5	\sim	0.29%	4.27%	1.64%
ILC	250	2	$(e^-, e^+) = (-0.8, +0.3)$	0.45%	6.83%	2.67%

Table 4. The signal strength accuracy of $H \rightarrow b\bar{b}/c\bar{c}/gg$ at the CEPC and extrapolated to the ILC 250 GeV (2 ab^{-1}) and FCC-ee 240 GeV (5 ab^{-1}).

the dependency of $H \rightarrow b\bar{b}/c\bar{c}/gg$ accuracy on flavor tagging performance:

 $u \overline{
u} H$

d	entitied	as
	none	

and the second second second				
		b	С	g
	b	1	0	0
true	С	0	1	0
	g	0	0	1
	i	dentifie	ed as	

perfect

Obtain different flavor tagging performance matrices.

$$M_{mig} = \frac{Tr_{mig} - Tr_{opt}}{Tr_{I} - Tr_{opt}} \cdot (M_{I} - M_{opt}) + M_{opt}$$
$$M_{mig} = \frac{Tr_{mig} - Tr_{opt}}{Tr_{1/3} - Tr_{opt}} \cdot (M_{1/3} - M_{opt}) + M_{opt}$$

relative accuracy at different migration matrices

perfect flavor tagging performance can improve $H \rightarrow b\bar{b}/c\bar{c}/gg$ signal strength accuracy by 2%/63%/13%

qqH

perfect flavor tagging performance can improve $H \rightarrow b\bar{b}/c\bar{c}/gg$ signal strength accuracy by 35%/122%/181%.

The dependency of flavor tagging performance on vertex detector parameters

Z. Wu et al 2018 JINST 13 T09002

$Tr_{mig} = 2.118 + 0.054 \cdot \log_2 \frac{R_{material}^0}{R_{material}} + 0.040 \cdot \log_2 \frac{R_{resolution}^0}{R_{resolution}} + 0.098 \cdot \log_2 \frac{R_{radius}^0}{R_{radius}}$

 $R_{material}^{0}$: the default material budget of vertex detector

R_{material} : the changed material budget

Table 2.	Reference	geometries.
----------	-----------	-------------

	Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)
Material per layer/ X_0	0.075	0.15	0.3
Spatial resolution/µm	1.4 - 3	2.8 - 6	5 - 10.7
R _{in} /mm	8	16	23
trace	2.3	2.1	1.9

If the inner radius changes from 16 mm to 10 mm, the trace changes from 2.10 to 2.18.

PID performance based on dE/dx & TOF information

intrinsic dE/dx resolution

The dE/dx resolution could reach 2.5% in the barrel region with particle's energy ranges from 0.1 GeV to 100 GeV.

Separation power

PID performance on Z-pole samples

K^{\pm} identification

the dependency of K^{\pm} identification performance on dE/dx resolution

 $\sigma_{actual} = factor \cdot \sigma_{intrinsic} ,$ $\sigma : dE/dx resolution,$ The factors are selected according to other detectors,

such as PEP-4, TOPAZ, DELPHI, ALEPH, ALICE.

	factor	1.	1.2	1.5
	ε_K (%)	95.97	94.09	91.19
dE/dx	$purity_K (\%)$	81.56	78.17	71.85
	ε_K (%)	98.43	97.41	95.52
dE/dx& TOF	$purity_K (\%)$	97.89	96.31	93.25

 $D^0 \rightarrow \pi^+ K^-$ reconstruction with Z-pole samples

 $\phi \rightarrow K^+ K^-$ reconstruction

$B_s \rightarrow \phi \nu \nu$ measurement

arXiv:2201.07374

Summary :

The relative accuracy of $H \rightarrow b\bar{b}/c\bar{c}/gg$ signal strength has been measured at the CEPC with full simulation of all SM samples corresponding to 240 GeV.

	$H ightarrow b ar{b}$	$H \to c \bar{c}$	$H \rightarrow gg$
$5.6ab^{-1}$	0.27%	4.03%	1.56%
$20ab^{-1}$	0.14%	2.13%	0.82%

- $Tr_{mig} = 2.118 + 0.054 \cdot log_2 \frac{R_{material}^0}{R_{material}} + 0.040 \cdot log_2 \frac{R_{resolution}^0}{R_{resolution}} + 0.098 \cdot log_2 \frac{R_{radius}^0}{R_{radius}}$
 - The charged kaon identification and $D^0 \rightarrow \pi^+ K^- / \phi \rightarrow K^+ K^- / B_s \rightarrow \phi \nu \nu$ reconstruction on hadronic Z-pole samples require the degradation of dE/dx resolution to be less than 20%, corresponding to dE/dx resolution better than 3%.

Backup

The signal strength accuracy of H->bb/cc/gg at CEPC, ILC and FCC-ee.

	bb	CC	99
CEPC	0.27%	4.03%	1.56%
ILC, 250 GeV, $2ab^{-1}$	0.7%	4%	
FCC-ee, 240 GeV, $5ab^{-1}$	0.3%	2.2%	1.9%