Testing Lepton Flavour Universality at Future Z Factories

Presenter: Tsz Hong (Anson) Kwok¹

With Tin Seng (Manfred) Ho¹, Xuhui Jiang¹, Lingfeng Li², Tao Liu¹.

¹Hong Kong University of Science and Technology

²Brown University

CEPC Day; 21 Sep 2022 Disclaimer: Preliminary Results

What is Lepton Flavour Universality (LFU)? and why?

Standard Model HYPOTHESIZES:

"Three generations of leptons are the same: having same couplings to the SM gauge bosons, except having different masses."

Why should this hold? Any secret behind generations? Need to be tested with **high precision**!!!

- Testing and Understanding SM
- Many SM extensions consist of extra interactions that could lead to LFU violation (e.g. leptoquark, Z', ...)
- Flavour physics is good for indirect BSM searches.
 - Sensitive to SM suppressed decays
 - Some BSM models have stronger couplings to 3-rd generation (e.g. b, τ)

How to test LFU?

► Electroweak: e.g.
$$Z \to \ell^- \ell^+$$
, $W^- \to \ell^- \bar{\nu}_\ell$, ...
Measuring: $\frac{\Gamma_{Z \to \tau^+ \tau^-}}{\Gamma_{Z \to e^+ e^-}}$, $\frac{\Gamma_{W^- \to \tau^- \bar{\nu}_\tau}}{\Gamma_{W^- \to \mu^- \bar{\nu}_\mu}}$, ...

► Pseudoscalar meson decays: e.g.
$$K^- \to \ell^- \bar{\nu}_\ell$$
, $\pi^- \to \ell^- \bar{\nu}_\ell$, ...
Measuring: $\frac{\Gamma_{K^- \to e^- \bar{\nu}_e}}{\Gamma_{K^- \to \mu^- \bar{\nu}_\mu}}$, $\frac{\Gamma_{\pi^- \to e^- \bar{\nu}_e}}{\Gamma_{\pi^- \to \mu^- \bar{\nu}_\mu}}$, ...

► Leptonic decays: e.g.
$$\tau^- \to e^- \bar{\nu}_e \nu_\tau$$
, $\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$, ...
Measuring: $\frac{g_\mu}{g_e}$, $\frac{g_\tau}{g_\mu}$, $\frac{g_\tau}{g_e}$

► Quarkonia decays: e.g.
$$J/\psi \rightarrow e^+e^-$$
, $J/\psi \rightarrow \mu^+\mu^-$, ...
Measuring: $\frac{\Gamma_{J/\psi \rightarrow e^+e^-}}{\Gamma_{J/\psi \rightarrow \mu^+\mu^-}}$

NO indications for violation in these sectors

How to test LFU?

b-hadron decays: [Bifani et al. (2019)]

FCNC: e.g. $B^0 \rightarrow K^* \ell^+ \ell^-$ [Li and Liu (2021)]

Experimental deviations from SM predictions (up to $\sim 2-3\sigma$)!!!

Goal: Setting baseline for b
ightarrow c au
u studies at Tera-Z

Advantages of Z-pole (focusing more on our study):

Variety *b*-hadrons accessible:

▶ *b*-factories (e.g. Belle II) can't produce B_c^+ , Λ_b^0 (only few B_s^0)

Having $\nu(s)$ Produced: (crucial to getting H_b info.)

Better handle than LHCb

Studying τ Mode:

• More precise info. about au decay

[Dong et al. (2018); Abada et al. (2019); Fujii et al. (2019); Berger et al. (2017); Aaij et al. (2018); Altmannshofer et al. (2018)]

Signals (FCCC: $b \rightarrow c \tau \nu$)

$$R_{J/\psi} = \frac{\text{Br}(B_c \to J/\psi \tau \nu)}{\text{Br}(B_c \to J/\psi \mu \nu)}$$

$$\blacktriangleright \text{ Identifying } J/\psi \to \mu\mu, \ \tau \to \mu\nu\bar{\nu}$$

$$R_{D_s^{(*)}} = \frac{\text{Br}(B_s \to D_s^{(*)} \tau \nu)}{\text{Br}(B_s \to D_s^{(*)} \mu \nu)}$$

$$\blacktriangleright \text{ Identifying } D_s^* \to D_s\gamma, \ D_s \to \phi(\to KK)\pi, \ \tau \to \mu\nu\bar{\nu}$$

$$R_{\Lambda_c} = \frac{\text{Br}(\Lambda_b \to \Lambda_c \tau \nu)}{\text{Br}(\Lambda_b \to \Lambda_c \mu \nu)}$$

$$\blacktriangleright \text{ Identifying } \Lambda_c \to pK\pi, \ \tau \to \mu \nu \bar{\nu}$$

Tera-Z can produce many such H_b , while *B*-factories can't do! (or just few)

 H_c decays to charged final states: H_c can be fully reconstructed!

Backgrounds

• Wrong μ production

► Wrong H_c production e.g. $\Lambda_b \to \Lambda_c(2625)(\to \Lambda_c \pi \pi) \mu \nu$

+ other types. (See Backups)

Reconstruction Scheme

- 1. Reconstruct H_c , and identify muon
- 2. Deduce *b*-hadron decay vertex

If H_c is prompt:
 H_b decay vertex
 = H_c decay vertex

If H_c is not prompt: H_b decay vertex = point at H_c trajectory closest to µ track

Reconstruction Scheme (Cont'd)

3. Deduce *b*-hadron energy (Detail see [Li et al. (2022)]):

Reconstruction agrees with truth! (error $\sim O(1 \text{GeV})$)

Discriminators for τ , μ Channel Separation

- Momentum transferred to lepton system: $q^2 \equiv (p_{B_c} p_{J/\psi})^2$
- Missing mass: $m_{\rm miss}^2 \equiv (p_{B_c} p_{J/\psi} p_{\mu})^2$
- The closest distance between secondary vertex (SV) and muon track

Not only τ/μ , but also Background separation!

Discriminators for τ , μ Channel Separation

Different distribution in $\mu \& \tau!$ Can also cut backgrounds!!!

11/38

Discriminators for Background Separation

Isolation variable: total energy, except the tagged final states, inside 0.3(0.6) rad of B cone

Stat. only BDT results (Preliminary)

Detector Tracking Resolutions

Robustness: Vary vertex noise level $(0, 5, 10, 20 \ \mu m)$

Detector Tracking Resolutions

Other Variations on the Study

• Effects of Δm in $R(D_s^{(*)})$

- $\Delta m \equiv m(KK\pi\gamma) m(KK\pi)$
- Main discriminator for D_s, D^{*}_s signals separation
- Studied the ECAL effects: threshold and resolution
- Event shape in $R(J/\psi)$
 - Studied FW Moments: $H_{EE;l} = \sum_{i=1}^{k} \frac{E_i E_j}{s} P_l(\cos \Omega_{ij})$
 - Global effect of event shape in multi heavy flavours event
 - Extra event shape info. improved S/B by $\sim \mathcal{O}(10\%)$

More details: see backup slides

Short Summary on Channel Based B decays BR sensitivity at Tera-Z

 $| \leftarrow$ This Study $\rightarrow |$

Theoretical Workflow

[Buras et al. (2015); Angelescu et al. (2018); Feruglio et al. (2018)] [Hu et al. (2019); Alasfar et al. (2020); Fajfer et al. (2021); Cornella et al. (2021)]

LEFT

SMEFT

LEFT

Semileptonic $b \rightarrow c \tau \nu$:

$$\mathcal{L}_{b \to c \tau \nu}^{eff} \supset -\frac{4G_{F}V_{cb}}{\sqrt{2}} [(1 + \delta C_{V_{L}}^{\tau})O_{V_{L}}^{\tau} + C_{V_{R}}^{\tau}O_{V_{R}}^{\tau} + C_{S_{L}}^{\tau}O_{S_{L}}^{\tau} \\ + C_{S_{R}}^{\tau}O_{S_{R}}^{\tau} + C_{T}^{\tau}O_{T}^{\tau}] + h.c.^{1}$$

$$(1)$$

Contains 5 dimension-6 LEFT operators at Tera-Z

Covers 4 types of translation:

- Vector: $R_{J/\psi}$, $R_{D_s^*}$
- Pseudo-scalar: R_{Ds}
- **b** Baryon: R_{Λ_c}
- Annihilation: ${\sf Br}(B_c o au
 u)$ [Zheng et al. (2020)]

 $^{^{1}\}tau$ means those violate LFU explicitly

LEFT

FCNC $b \rightarrow s \tau \tau$:

$$\mathcal{L}_{b\to s\tau^{+}\tau^{-}}^{\text{eff}} = + \frac{4G_{F}V_{tb}V_{ts}^{*}}{\sqrt{2}} [(C_{9}^{\tau}|_{\text{SM}} + \delta C_{9}^{\tau})O_{9}^{\tau} + (C_{10}^{\tau}|_{\text{SM}} + \delta C_{10}^{\tau})O_{10}^{\tau} + C_{9}^{\prime\tau}O_{9}^{\prime\tau} + C_{10}^{\prime\tau}O_{10}^{\prime\tau} + C_{S}^{\tau}O_{S}^{\tau} + C_{S}^{\prime\tau}O_{S}^{\prime\tau} + C_{P}^{\tau}O_{P}^{\tau} + C_{P}^{\tau}O_{P}^{\prime\tau} \\ + C_{T}^{\tau}O_{T}^{\tau} + C_{T5}^{\tau}O_{T5}^{\tau}] + h.c.$$

$$(2)$$

- Contains 10 dimension-6 LEFT operators at Tera-Z
- Related to: $Br(B \to K\tau\tau)$, $Br(B \to K^*\tau\tau)$, $Br(B_s \to \phi\tau\tau)$, $Br(B_s \to \tau\tau)$ [Kamenik et al. (2017); Capdevila et al. (2018); Li and Liu (2021)]

FCNC $b \rightarrow s \nu \nu$:

$$\mathcal{L}_{b\to s\bar{\nu}\nu}^{\text{eff}} = +\frac{4G_F V_{tb} V_{ts}^*}{\sqrt{2}} [C_L^{\nu} O_L^{\nu} + C_R^{\nu} O_R^{\nu}] + h.c.$$
(3)

- Contains 2 dimension-6 LEFT operators at Tera-Z
 - Related to: Br($B \to K\nu\nu$), Br($B \to K^*\nu\nu$), Br($B_s \to \phi\nu\nu$)[Buras et al. (2015); Li et al. (2022)]

SMEFT

$$\begin{split} \mathcal{L}^{\dim 6} \supset \frac{1}{\Lambda^2} \sum_{i,j,k,l} \left([C_{\ell q}^{(1)}]_{ijkl} [O_{\ell q}^{(1)}]_{ijkl} + [C_{\ell q}^{(3)}]_{ijkl} [O_{\ell q}^{(3)}]_{ijkl} + [C_{ed}]_{ijkl} [O_{ed}]_{ijkl} \right. \\ \left. + [C_{\ell d}]_{ijkl} [O_{\ell d}]_{ijkl} + [C_{qe}]_{ijkl} [O_{qe}]_{ijkl} + [C_{\ell edq}]_{ijkl} [O_{\ell edq}]_{ijkl} \right. \\ \left. + [C_{\ell equ}^{(1)}]_{ijkl} [O_{\ell equ}^{(1)}]_{ijkl} + [C_{\ell equ}^{(3)}]_{ijkl} [O_{\ell equ}^{(3)}]_{ijkl} \right) + h.c. \end{split}$$

After matching: 9 LFUV operators in dim6 SMEFT

SMEFT Operator	Expansion in Down Basis
$[O_{lq}^{(1)}]_{3332}$	$(ar{ u}\gamma^{\mu}P_{L} u+ar{ au}\gamma^{\mu}P_{L} au)(ar{b}\gamma_{\mu}P_{L}s)$
$[O_{lq}^{(3)}]_{3332}$	$2V_{cs}^{*}(\bar{\nu}\gamma^{\mu}P_{L}\tau)(\bar{b}\gamma_{\mu}P_{L}c) - (\bar{\nu}\gamma^{\mu}P_{L}\nu - \bar{\tau}\gamma^{\mu}P_{L}\tau)(\bar{b}\gamma_{\mu}P_{L}s)$
[O _{ed}] ₃₃₃₂	$(ar{ au}\gamma^\mu P_R au)(ar{b}\gamma_\mu P_Rs)$
[O _{ld}] ₃₃₃₂	$(ar{ u}\gamma^{\mu}P_{L} u+ar{ au}\gamma^{\mu}P_{L} au)(ar{b}\gamma_{\mu}P_{R}s)$
$[O_{qe}]_{3332}$	$(ar{ au}\gamma^{\mu}P_{R} au)(ar{b}\gamma_{\mu}P_{L}s)$
[O _{ledq}] ₃₃₃₂	$V_{cs}^*(ar{ u} P_R au)(ar{b} P_L c) + (ar{ au} P_R au)(ar{b} P_L s)$
[O _{ledq}] ₃₃₂₃	$(\bar{\tau} P_R \tau)(\bar{s} P_L b)$
$[O_{lequ}^{(1)}]_{3332}$	$V_{cs}^*(ar{ u}P_R au)(ar{b}P_Rc)$
$[O_{lequ}^{(3)}]_{3332}$	$V_{cs}^*(ar{ u}\sigma^{\mu u}P_R au)(ar{b}\sigma_{\mu u}P_Rc)$

Wilson Coefficients Constraints (Preliminary)

Conclusion

Z-pole can test Lepton Flavor Universality, the secret behind generations, in a clean way!!!

- Setting up a baseline of $b \rightarrow c \tau \nu$ for Tera-Z
- ► High precision in $R_{J/\psi}$, $R_{D_c^{(*)}}$, R_{Λ_c} : $\mathcal{O}(0.1\%) \mathcal{O}(1\%)$
 - Abundant and energetic b-hadrons
 - Clean environment
 - Known initial energy
- EFT can prob NP up to 10TeV
 - Constraint of NP up to O(10 TeV) when Wilson Coeff. are about O(1)

Thank you!

Backup: General Background types

Inclusive Bkg.:

- ▶ Feed-down processes, e.g. $B_c \rightarrow \chi_c (\rightarrow J/\psi X) \ell \nu$
- Different kinematics to signals

Combinatoric Bkg.:

- Wrongly reconstructing unrelated $H_c + \mu (H_c = J/\psi, D_s, \Lambda_c)$
- Larger isolation variables than signals

Fake narrow resonance Bkg.:

▶ Wrongly reconstructing the remnants $H_c = J/\psi$, D_s , Λ_c

- Inclusive: $J/\psi(\mu\mu) + \mu$
- Comb.: J/ψ ($\mu\mu$) + μ
- Fake resonance: Wrong, e.g. J/ψ (μ⁻μ⁺)

Cascade Bkg.:

▶ ℓ is NOT from semileptonic decay, e.g. $B^0 = D^0(\rightarrow \ell)J/\psi X$

Larger isolation variables than signals

Muon mis-ID Bkg.:

Misidentifying π^{\pm} as μ , with $\mathcal{O}(1\%)$ [Lippmann (2012); Yu et al. (2021)]

Cascade: J/ψ(μμ) + μ
 Mis-ID: J/ψ (μμ) + π

Backup: Vertex noise level effects

Measurement	0 µm	$5~\mu{ m m}$	10 μ m	$20 \ \mu m$
$R_{J/\psi}$	2.17×10^{-2}	2.69×10^{-2}	2.89×10^{-2}	3.18×10^{-2}
R _{Ds}	3.16×10^{-3}	3.61×10^{-3}	4.10×10^{-3}	4.76×10^{-3}
R _D *	2.47×10^{-3}	2.77×10^{-3}	$3.27 imes 10^{-3}$	$3.31 imes 10^{-3}$
$\rho(R_{D_{S}}, R_{D_{S}^{*}})$	-0.48	-0.45	-0.49	-0.50
RAC	8.32×10^{-4}	9.27×10^{-4}	9.74×10^{-4}	1.07×10^{-3}

Table: Comparison on measurement uncertainties under different vertex noise levels.

Effects of Δm in $R(D_s^{(*)})$

 $\Delta m \equiv m(KK\pi\gamma) - m(KK\pi)$

• Use the γ in signal-hemisphere and gives Δm closest to Δm^{phys}

Two main sources of error affecting Δm resolution:

• ECAL energy threshold (E_{th})

ECAL resolution
 (modeled by scaling parameter α: width of Δm distribution)
 (α = 0: Perfect; 0 < α < 1: Optimistic;</p>
 α = 1: Default; α > 1: Conservative.)

Effects of Δm in $R(D_s^{(*)})$

 Most of the untagged photons are soft (below energy threshold E_{th} = 0.5 GeV)

Backup: Effects of Δm in $R(D_s^{(*)})$

Backup: Event shape in $R_{J/\psi}$

Define the FW Moment [Fox and Wolfram (1978)]:

Backup: Event shape in $R_{J/\psi}$

Different types of Comb. backgrounds:

- ▶ 4*b*: Events of 4*b* quarks created by QCD
- 2b2c: Events of $b\bar{b}$ and $c\bar{c}$ pairs created by QCD
- > 2b: Events of 2b quarks created by QCD

Adding FWM to BDT improves S/B by $\sim O(10\%)$ while keeping uncertainty about unchanged.

Backup: Δm effects

$\alpha \setminus E_{\mathrm{th}}$	0.25 GeV	0.5 GeV	1 GeV
0	53.38% 54.23%	39.80% 40.77%	25.82% 27.83%
0.5	51.49% 52.63%	38.85% 39.95%	25.12% 27.27%
1	50.71% 51.73%	38.07% 39.20%	24.80% 26.89%
2	48.90% 50.02%	36.34% 37.64%	23.86% 25.81%

Table: Tagging efficiency of the D_s^{*-} photons, for the detector profiles characterized by E_{th} and α . The two numbers in each entry are defined for $B_s^0 \rightarrow D_s^{*-} \tau^+ \nu_{\tau}$ and $B_s^0 \rightarrow D_s^{*-} \mu^+ \nu_{\mu}$, respectively.

$\alpha \setminus E_{\mathrm{th}}$	0.25 GeV		0.25 GeV 0.5 GeV		1 GeV	
0	3.48×10^{-3}	(-0.31)	4.02×10^{-3}	(-0.46)	4.53×10^{-3}	(-0.50)
	2.78×10^{-3}		3.24×10^{-3}		3.40×10^{-3}	
0.5	3.55×10^{-3}	(-0.31)	3.90×10^{-3}	(-0.45)	4.56×10^{-3}	(-0.51)
	2.74×10^{-3}		2.90×10^{-3}		3.27×10^{-3}	
1	3.52×10^{-3}	(-0.32)	4.10×10^{-3}	(-0.49)	4.54×10^{-3}	(-0.50)
	2.65×10^{-3}		3.27×10^{-3}		3.38×10^{-3}	
2	3.40×10^{-3}	(0 22)	4.52×10^{-3}	(0.50)	4.16×10^{-3}	(0.52)
	2.83×10^{-3}	(-0.55)	3.40×10^{-3}	(-0.50)	3.40×10^{-3}	(-0.52)

Table: Expected BDT (relative) precisions of measuring R_{D_s} and $R_{D_s^*}$, for the detector profiles characterized by E_{th} and α . The number in the bracket denotes the correlation between the D_s and D_s^* measurements.

Reference I

- Aaij, R. et al. (2018). Physics case for an LHCb Upgrade II -Opportunities in flavour physics, and beyond, in the HL-LHC era.
 Abada, A. et al. (2019). FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2. *Eur. Phys. J. ST*, 228(2):261–623.
- Alasfar, L., Azatov, A., de Blas, J., Paul, A., and Valli, M. (2020). *B* anomalies under the lens of electroweak precision. *JHEP*, 12:016.

Altmannshofer, W. et al. (2018). The Belle II Physics Book.

- Angelescu, A., Bečirević, D., Faroughy, D. A., and Sumensari, O. (2018). Closing the window on single leptoquark solutions to the *B*-physics anomalies. *JHEP*, 10:183.
- Berger, N., Kiehn, M., Kozlinskiy, A., and Schöning, A. (2017). A New Three-Dimensional Track Fit with Multiple Scattering. *Nucl. Instrum. Meth. A*, 844:135.

Reference II

- Bifani, S., Descotes-Genon, S., Romero Vidal, A., and Schune, M.-H. (2019). Review of Lepton Universality tests in *B* decays. *J. Phys.*, G46(2):023001.
- Buras, A. J., Girrbach-Noe, J., Niehoff, C., and Straub, D. M. (2015). $B \rightarrow K^{(*)} \nu \overline{\nu}$ decays in the Standard Model and beyond. *JHEP*, 02:184.
- Capdevila, B., Crivellin, A., Descotes-Genon, S., Hofer, L., and Matias, J. (2018). Searching for New Physics with $b \rightarrow s\tau^+\tau^$ processes. *Phys. Rev. Lett.*, 120(18):181802.
- Cornella, C., Faroughy, D. A., Fuentes-Martín, J., Isidori, G., and Neubert, M. (2021). Reading the footprints of the B-meson flavor anomalies.
- Dong, M. et al. (2018). CEPC Conceptual Design Report: Volume 2 Physics & Detector.

Reference III

- Fajfer, S., Kamenik, J. F., and Tammaro, M. (2021). Interplay of New Physics effects in (g 2) and $h \rightarrow \ell^+ \ell$ lessons from SMEFT. *JHEP*, 06:099.
- Feruglio, F., Paradisi, P., and Sumensari, O. (2018). Implications of scalar and tensor explanations of $R_{D^{(*)}}$. JHEP, 11:191.
- Fox, G. C. and Wolfram, S. (1978). Observables for the Analysis of Event Shapes in e+ e- Annihilation and Other Processes. *Phys. Rev. Lett.*, 41:1581.
- Fujii, K. et al. (2019). Tests of the Standard Model at the International Linear Collider.
- Grzadkowski, B., Iskrzynski, M., Misiak, M., and Rosiek, J. (2010). Dimension-Six Terms in the Standard Model Lagrangian. *JHEP*, 10:085.

Reference IV

- Hu, Q.-Y., Li, X.-Q., and Yang, Y.-D. (2019). $b \rightarrow c\tau\nu$ transitions in the standard model effective field theory. *Eur. Phys. J. C*, 79(3):264.
- Kamenik, J. F., Monteil, S., Semkiv, A., and Silva, L. V. (2017). Lepton polarization asymmetries in rare semi-tauonic $b \rightarrow s$ exclusive decays at FCC-*ee*. *Eur. Phys. J.*, C77(10):701.
- Li, L. and Liu, T. (2021). b \rightarrow s $\tau^+\tau$ physics at future Z factories. JHEP, 06:064.
- Li, L., Ruan, M., Wang, Y., and Wang, Y. (2022). The analysis of $B_s \rightarrow \phi \nu \bar{\nu}$.
- Lippmann, C. (2012). Particle identification. *Nucl. Instrum. Meth. A*, 666:148–172.
- Yu, D., Zheng, T., and Ruan, M. (2021). Lepton identification performance in Jets at a future electron positron Higgs Z factory.
- Zheng, T., Xu, J., Cao, L., Yu, D., Wang, W., Prell, S., Cheung, Y.-K. E., and Ruan, M. (2020). Analysis of $B_c \rightarrow \tau \nu_{\tau}$ at CEPC.