

中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

Progress of the Glass Scintillator Calorimeter

Sen Qian (qians@ihep.ac.cn)

On behalf of the Glass Scintillators R&D Group

2022.09.21

Outline

1. Motivation and target

- 2. Standalone simulation of GS-HCAL
- --by Dejing Du, Yong Liu
- **3. PFA performance with GS-HCAL**
- --by Peng Hu, Yuexin Wang, ManQi Ruan
- 4. Research progress of GS
- --by Zhehao Hua, Sen Qian
- 5. Next Plan

1.1 Motivation

Future electron-position colliders (e.g. CEPC)

- Main physical goals: precision measurements of the Higgs and Z/W bosons
- Challenge: unprecedented jet energy resolution $\sim 30\% / \sqrt{E(GeV)}$

CEPC detector: highly granular calorimeter + tracker

- Boson Mass Resolution (BMR) ~4% has been realized in this baseline design
- Further performance goal: BMR $4\% \rightarrow 3\%$
- Dominant factors in BMR: charged hadron fragments & HCAL resolution

New Option: Glass Scintillator HCAL (GS-HCAL)

- Higher density provides higher energy sampling fraction
- Doping with neutron-sensitive elements: improve hadronic response (Gd)
- More compact HCAL layout (given 4~5 nuclear interaction lengths in depth)

1.2 Target

Key parameters	Value	Remarks		
Tile size	$\sim 30 \times 30 \text{ mm}^2$	Reference CALICE-AHCAL, granularity, number of channels		
Tile thickness	~10 mm	Energy resolution, Uniformity and MIP response		
Density	6-7 g/cm ³	More compact HCAL structure with higher density		
Intrinsic light yield	1000-2000 ph/MeV	Higher intrinsic LY can tolerate lower		
Transmittance	~75%	transmittance		
MIP light yield	~150 p.e./MIP	Needs further optimizations: e.g. SiPM type, SiPM-glass coupling		
Energy threshold	~0.1 MIP	Higher light yield would help to achieve a lower threshold		
Scintillation decay time	~100 ns	Mitigation pile-up effects at CEPC Z-pole (91 GeV)		
Emission spectrum	Typically 350-600 nm	To match SiPM PDE and transmittance spectra		

Outline

- 1. Motivation and target
- 2. Standalone simulation of GS-HCAL
- --by Dejing Du, Yong Liu
- **3. PFA performance with GS-HCAL**
- --by Peng Hu, Yuexin Wang, ManQi Ruan
- 4. Research progress of GS
- --by Zhehao Hua, Sen Qian
- 5. Next Plan

2.1 HCAL setup of standalone simulation

- Geometry: similar to PS AHCAL prototype
 - Transverse plane: 108×108 cm²
 - Tile size: 3×3 cm²
 - 60 longitudinal layers, each with
 - Scintillator (sensitive): 3 mm
 - Steel (absorber): 20 mm
 - PCB: 2 mm
- GS-HCAL
 - Replace plastic scintillator with glass scintillator
 - Component: $B_2O_3 SiO_2 Al_2O_3 Gd_2O_3 Ce_2O_3$
 - Density = 4.94 g/cm^3 (goal: > 6 g/cm³)
 - Glass tile design: ongoing optimization

"SiPM-on-Tile" design

2.2 Plastic Scintillator vs Glass Scintillator

Energy Resolution

- Incident particle: K_L^0
- Preliminary performance comparison
 - Same thickness of sensitive materials: 3mm
 - No energy threshold applied
- Glass scintillator: better hadronic energy resolution in low energy region (<30GeV)
 - Note that majority of hadrons in jets at CEPC are with low energy
- More details in the next pages

2.3 Impact of thickness to hadronic energy resolution

Varying thickness: glass scintillator tiles and steel plates
Extraction of terms in energy resolution

- Energy threshold has a significant impact on the energy resolution, lower threshold would always be desirable for better resolution
- The stochastic term will not be improved when glass gets thicker for a given threshold

HCAL with 60 layers

Stochastic term vs. Glass thickness

2.4 Impact of light yield to hadronic energy resolution

□ Varying light yield from 0.5 to 300 p.e./MIP

□ Extraction of stochastic terms in energy resolution

• A light yield of 10 p.e./MeV seems to be good enough to achieve the optimized energy resolution

2.5 Summary of performance of standalone GS-HCAL

□ Better energy resolution below 30 GeV (cover major jet components), and an optimized thickness of glass can be obtained for a given threshold

□ A lower threshold is always favorable for the energy resolution

Preliminary results show light yield of 10 p.e./MIP is good enough to achieve the optimized energy resolution

Outline

- 1. Motivation and target
- **2. Standalone simulation of GS-HCAL**
- --by Dejing Du, Yong Liu
- **3. PFA performance with GS-HCAL**
- --by Peng Hu, Yuexin Wang, ManQi Ruan
- 4. Research progress of GS
- --by Zhehao Hua, Sen Qian
- 5. Next Plan

3.1 PFA performance simulation for Glass Scintillator

□ Setup

- CEPCSoft Framework: CEPC_v4, glass scintillator/steel HCAL + Si/W ECAL
- Primaries input: 240 GeV e+e- \rightarrow ZH (Z $\rightarrow \upsilon \upsilon$, H \rightarrow gg)
- Glass composition: Simu1-GS1, Simu1-GS2, Simu1-GS4, Simu1-GS6, Simu1-GS9, Simu1-GS10
- Glass cell size: 3x3x1 cm³ (fixed)
- Steel thickness: ~1.5 cm, vary correspondingly with different glass options, here the thickness of glass and nuclear interaction length of each sampling layer are fixed (0.124 λ, 3mm PS+ 2cm steel)
- Total Layers: 40
- Simulated event number: ~16k

		/	
	X	5	
X			

		the of other value					
	Composition	Density (g/cm ³)	MIP Edep (MeV/mm)	NIL (mm)			
Simu1-GS1	Gd-Al-Si-Ce ³⁺	5.10	0.596	274.8			
Simu1-GS2	Gd-B-Si-Ce ³⁺	5.35	0.617	267.8			
Simu1-GS3	Gd-B-Si-Ce ³⁺	5.49		261.9			
Simu1-GS4	Gd-B-Si-Ge-Ce ³⁺	5.51	0.636	259.5			
Simu1-GS5	Gd-Ga-Si-B-Ce ³⁺	5.64		254.1			
Simu1-GS6	Gd-Ge-B-Ce ³⁺	5.68	0.656	251.3			
Simu1-GS7	Gd-Ga-B-Ce ³⁺	5.77		247.3			
Simu1-GS8	Gd-Ga-Ba-B-Ce ³⁺	5.78		249.6			
Simu1-GS9	Gd-Ga-Ba-B-Si-Ce ³⁺	5.81	0.670	250.5			
Simu1-GS10	Gd-Ga-Ge-B-Si-Ce ³⁺	6.03	0.699	241.0			

theoretical value

3.2 BMR Analysis with Marlin

□ Setup

- Edep threshold in glass cell was set to 0.01 MIP, 0.1 MIP and 0.3 MIP
- Edep in each sampling layer of HCAL was based on sampling fraction f and calibration coefficient k (i.e. Edep_{layer}= $k \times Edep_{GS}/f$)
- BMR Cut: Pt_ISR<1 GeV && Pt_neutrino<1 GeV && |Cos(Theta_Jet)|<0.8 (~10k events after selection)

3.3 Calibration coefficient & threshold scanning

• A optimized BMR can be obtained by the parameter scanning for each glass sample

3.3 Calibration coefficient & threshold scanning

• A optimized BMR can be obtained by the parameter scanning for each glass sample

3.4 Optimized BMR

□ In the case of different density and threshold

• The optimized BRM is almost same (~3% variation) for glass density from 5-6 g/cm³, with a deviation of lower than ~4% for the mean value of higgs mass. Though a insignificant optimized density seems to be around 5.5 g/cm³

Preliminary

3.5 Summary of PFA performance with GS-HCAL

- □ Under the CEPC_v4 and Arbor PFA framework, the BMR with GS-HCAL can reach ~3.35% and show ~10% improvement w.r.t. the baseline design (3.8%), which is also the best result we can obtain at present.
- Preliminary results show the optimized BRM is almost same (~3% variation) for glass density from 5-6 g/cm3, with a deviation of lower than ~4% for the mean value of higgs mass. Though a insignificant optimized density seems to be around 5.5 g/cm3

Outline

- 1. Motivation and target
- 2. Standalone simulation of GS-HCAL
- --by Dejing Du, Yong Liu
- **3. PFA performance with GS-HCAL**
- --by Peng Hu, Yuexin Wang, ManQi Ruan
- 4. Research progress of GS
- --by Zhehao Hua, Sen Qian
- 5. Next Plan

4.1 previous status of glass scintillators

Number	Composition	Density (g/cm ³)	Transmitta nce (%)	Light yield (ph/MeV)	Energy Resolution (%)	Decay time (ns)	Emission peak (nm)	Size (mm)	Price/1 cm ³ (RMB)
EU-GS1	HfF ₄ -YbF ₃ -PbF ₂ -ZnF ₂ - BaF ₂ -CeF ₃ (HFG: Ce)	6.0	85	150	/	8, 25	325	150*30*30	150
EU-GS2	SiO ₂ -BaO-Al ₂ O ₃ - Gd ₂ O ₃ -Ce ₂ O ₃ (DSB:Ce)	4.2	86	2500	/	90 (45%), 400	430	17*20*5	5
JPN-GS3	$25BaF_2-20Al_2O_3-50B_2O_3-5Ce^{3+}$ (Ba-B glass)	3.4	90	1800	/	40, 271	360	10*10*1	6
US-GS4	SiO ₂ –LiF–GdBr ₃ – CeBr ₃ (high Gd-glass)	4.4	/	3460	14	522	430	/	65
RUS-GS5	Gd ₂ O ₃ -Al ₂ O ₃ -SiO ₂ - Ce ³⁺ (Gd-Si glass)	4.5	/	2000	/	93 (62%), 317	430	/	6
JGSU	Gd-Al-B-Si-Ce ³⁺	4.5	67	802	26.77	318,1380	393	10*10*5	6
CJLU	Gd-Al-Si-Ce ³⁺	4.2	65	1206	22.98	346,1740	430	10*10*5	4.5
HEU	Gd-K-Y-Si-Ce ³⁺	3.3	80	1601	27.27	210,1622	380	10*10*5	5
CBMA	Gd-Ba-Al-Si-Ce ³⁺	4.2	80	460	/	197, 1235	420	10*10*5	5
	?	~6	>75	~2000	<20	<100	350-500	30*30*10	< 0.1\$/c.c

high density + high light yield

4.2 Unify the test setup of light yield

	Density (g/cm ³)	XEL	Light yield
GS-1	4.67	0.103	0.050
GS-2	4.50	0.105	0.091
GS-3	4.53	0.144	0.077
GS-4	4.20	0.289	0.091
GS-5	4.18	0.203	0.136
GC	3.30	0.949	0.181
BGO	7.13	1	1

GS-2

GS-3

GS-4

GS-5

GC

600

650

700

750

BGO BK

- Photoluminescence is not related to its scintillation properties;
- X-rays and gamma rays interact with scintillation materials in different processes;
- When the composition of glass scintillator is similar, the lower the glass density, the higher the light yield;

4.3 Joint research (2022.7.26-2022.7.28)

- <image>
- Unify the supply channels of raw materials and crucibles for scintillating glass of each unit;
 - Refine and distinguish the different points in the preparation process of each unit, and explore the influence of different processes on the performance of scintillating glass;
 - Establish standardized scintillation performance testing schemes and devices;

4.4 Overview of Research progress

Three glass systems are being investigated simultaneously

4.5 Articles published (submission time order)

1. (2021.12)Opt. Mater. 2022(125): 112012

4. (2022.05)J. Am. Ceram. Soc. 2022: 1-12

2. (2022.02)发光学报 2022(43): 691-701

5. (2022.06)Opt. Mater. Accepted

3. (2022.05)Opt. Mater. 2022(130): 112585

6. (2022.09) Chem. Eng. J. Under review

4.6 Summary of R&D progress of GS

- Ultra-high density tellurite glass—6.6 g/cm³
- High light yield glass ceramic—1600 ph/MeV
- Fast scintillating decay time— 100 ns
- Large size glass—42mm*51mm*10mm

Glass scintillator of high density and light yield

- 5.2 g/cm³ & 800 ph/MeV—Gd-B-Si-Ce³⁺ glass
- 5.9 g/cm³ & 550 ph/MeV—Gd-Ga-B-Ce³⁺ glass

Outline

- 1. Motivation and target
- 2. Standalone simulation of GS-HCAL
- --by Dejing Du, Yong Liu
- **3. PFA performance with GS-HCAL**
- --by Peng Hu, Yuexin Wang, ManQi Ruan
- 4. Research progress of GS
- --by Zhehao Hua, Sen Qian

5. Next Plan

5.1 Next Plan

□ Standalone simulation

- Update the simulation results with the latest glass scintillator samples
- Change the geometry setup to be consistent with the baseline design (i.e. 40 layers)
- Study the Shower Start Algorithm to exclude the shower leakage in the simulation of 40-layer HCAL

□PFA performance simulation

- More simulation needed to confirm the density effect observed in this preliminary result
 - BMR scanning in a fixed glass composition with different densities
 - Some parameters used in Arbor PFA should be tuned for the glass scintillator HCAL
 - Combination with the homogenous crystal ECAL
- Increase the thickness of HCAL to exclude the influence of shower leakage
- Scintillation process and readout digitization will be added to obtain the optimized performance parameters for glass scintillator and SiPM

5.2 Next Plan

□ SiPM

- Study the light collection uniformity with a multi-SiPM coupling scheme (e.g. 4 in the corner and 1 in the center)
- Cooperate with BNU for a customized NDL SiPM, which can improve the specific performance according to our requirements.

□GS R&D

- Gd-Ga-B-Si glass will be the focus of future research.
- This glass can balance the targets of high density and high light yield.
- Next, the properties of the glass will be further improved through raw material purification and vacuum preparation.

Thank you!