

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

High-granularity Crystal Calorimeter: R&D activities and highlights

Yong Liu (Institute of High Energy Physics, CAS), on behalf of the CEPC Calorimetry Working Group

CEPC Day Sep. 21, 2022

Motivations

- Calorimetry for future lepton colliders (e.g. CEPC, etc.)
 - Precision measurements with Higgs and Z/W
 - Jet energy resolution requires better than $30\%/\sqrt{E_{jet}(GeV)}$
 - Particle flow paradigm: high-granularity calorimetry
- Why crystal calorimeter?

- Optimal EM energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$
 - High sensitivity to low energy particles
 - Capability to trigger single photons
 - Precision γ/π^0 reconstruction: flavour and BSM physics
- Fine segmentation: PFA capability for jets (3~4% resolution)

Crystal calorimeter: R&D overview

Collaborations within hardware, software and PFA/physics teams

21.09.22

Physics performance evaluation: Higgs benchmarks (+ flavor physics)

Crystal ECAL hardware: key parameters

Highlights shown in this talk; other aspects in the backup

Specifications	Contributions to performance	Limiting factors
MIP light yield	Energy resolution	 Crystal intrinsic properties Geometry and surface treatment Coupling with photosensor
Dynamic range	Signal saturationSmall signal measurements	SiPM non-linearityFront-end electronics
Energy threshold	Signal to noise ratioSmall signal measurements	Noises of SiPM and FE-electronics
Timing resolution	Positioning precisionPID potentials to improve clustering	 Scintillation time of crystal Time resolution of SiPM + electronics Power consumption
Response uniformity	Energy linearity and resolution	 Crystal intrinsic properties + foil Calibration precision
 Key issues at system level Crystal tolerances and Mechanical structure Temperature control an 	gaps d monitor	uirements of a crystal-SiPM detector un t of small-scale crystal-SiPM modules

Crystal ECAL hardware activities

- Requirements of a single crystal-SiPM detector unit
 - Key parameters: MIP light yield, dynamic range, timing resolution, etc.
- Development of small-scale crystal-SiPM modules
 - Impacts of transverse size, gaps
 - Crystal quality test stand: crystal uniformity
 - Mechanics design and module assembly

EM energy resolution vs. light yield

Light Yield vs Stochastic Term --- 3% Line --- Raw

Simulation: 40×40×28cm tower (BGO long bars) with 1~40 GeV electrons Digitization: including Poisson photon-statistics, SiPM gain uncertainty, ADC precision, but excluding SiPM and electronics non-linearity effects

- Light yield is defined
 - #p.e. detected by SiPM for one MIP per channel
- Electromagnetic shower energy resolution
 - Stochastic term extracted
 - Impacts from energy threshold (per channel)
 - Good resolution requires
 - Moderately high light yield → dynamic range
 - Low energy threshold
 noise level

EM energy resolution vs. light yield

Baohua Qi (IHEP)

Light Yield vs Stochastic Term

Simulation: 40×40×28cm tower (BGO long bars) with 1~40 GeV electrons **Digitization**: including Poisson photon-statistics, SiPM gain uncertainty, ADC precision, but excluding SiPM and electronics non-linearity effects

• Light yield: #p.e. detected by SiPM per MIP per channel

- EM energy resolution
 - Impacts from energy threshold (per channel)
 - Requires moderately high light yield and low threshold
- Conclusions on requirements
 - Light yield of ~200 p.e./MIP per channel (2 SiPMs)
 - $\sigma_E/E < 1.5\%/\sqrt{E(GeV)}$
 - Plateau region: headroom for other limitations
 - Balance between light yield and dynamic range
 - Light yield required for a SiPM: ~100 p.e./MIP
 - Beneficial to achieve a low energy threshold, mostly determined by SiPM and electronics noises

Cosmic-ray test: MIP response of BGO crystal

Baohua Qi (IHEP)

- Cosmic-ray measurements of crystal-SiPM units
 - Two BGO bars: 40cm,16 cm in length; transverse 1×1 cm²
- MIP light yield is higher than the requirements

Proposed solutions

- Smaller SiPMs: $3 \times 3 \text{ mm}^2$, pixel pitch $6\mu m/10\mu m$ (ongoing)
- "Tune" BGO intrinsic light yield by doping (SIC-CAS)

Status of new BGO crystal development at SIC

Dr. Junfeng Chen (SIC)

• Motivation: to reduce BGO intrinsic light yield (optimization for a wide dynamic range)

A fast combinatorial design and screening method to optimize the doping concentration

A in-situ luminescence picture of a BGO:RE library under UV excitation

Integral intensity of BGO powers 0-5% RE doping concentration

21.09.22

Results of first-round unsuccessful growth experiment of BGO crystals with different RE doping concentration

Status of new BGO crystal development at SIC

Dr. Junfeng Chen (SIC)

• Ongoing R&D efforts: to "tune" the BGO light output by RE doping

- > A fast combinatorial design and screening method is taken to fasten R&D progress previous to crystal growth
- > The radioluminescence intensity of BGO:3%RE power is reduced to 34% that of pure BGO powder
- First-round BGO:RE crystal growth experiment was an unsuccessful one
- Next round experiments will follow

Dynamic range requirements

- Physics driving the dynamic range requirement
 - $e^+e^- \rightarrow ZH \rightarrow qqgg$ (4 jets): mean of 40 GeV, majority < 80 GeV
 - $H \rightarrow \gamma \gamma$ (Higgs physics) and Bhabha (energy calibration): 100-120 GeV
- 120 GeV electrons within $40 \times 1 \times 1 \text{ cm}^3$ bars
 - Max. energy deposition in a single crystal bar is ~10 GeV
 - \rightarrow less than 10% shower energy

SiPM dynamic range studies

• SiPM candidates with high pixel density

HPK S13360-6025PE

NDL EQRO6 11-3030D-S D1 D1 D1 D3 $3 \times 3mm^2$, 6 μ m pitch, 244720 pixels Nominal gain 8×10^4

Test stand with pico-second laser

Single Photon Calibration

Zhiyu Zhao (SJTU) Baohua Qi (IHEP)

SiPM dynamic range studies

- Setup-I with pico-second laser (405nm)
 - Integration sphere: uniform distribution of light intensity
 - Reference photosensors: PMT and Si-PIN diode

- Varying PMT bias voltage to cover different regions of lign intensity
 - PMT response linearity is carefully selected
 - Less than 5% non-uniformity for most intensity regions
 - Uniformity degrades with low light intensity: due to the low Si-PD sensitivity

21.09.22

12 14 16 18 20 22

Current [nA]

SiPM response non-linearity measurements

S13360-6025PE

- SiPM pixels can be recovered within ~200ns for this type
 - Pico-second laser ensures no impact of pixel recovery (more effective pixels)
- Saturation plateau region: 5.11×10^4 pixels (slightly less than nominal 5.76×10^4 pixels)

SiPM response non-linearity: simulation vs. data

Zhiyu Zhao (SJTU)

- Saturation region: noticeable discrepancy between simulation and data
- Very interesting results \rightarrow further investigations

- SiPM temperature monitoring and correction (→SiPM breakdown voltage)
- Laser intensity: long-term stability (→ power-meter monitoring)
- Large SiPM current: possible limitation from readout electronics?

SiPM dynamic range studies

- Setup-II with a pico-second laser (405nm)
 - Used a beam splitter to achieve much higher light intensity
 - Required by SiPMs with higher pixel density
 - As integration sphere significantly reduces the laser intensity
 - Reference photosensors: PMT and Si-PIN diode

SiPM response non-linearity measurements

Zhiyu Zhao (SJTU)

- First studies on SiPMs with extremely high pixel density
 - Observed significantly less pixels than expected \rightarrow further investigations
- Ongoing discussions with the BNU-NDL team

21.09.22

• Setup upgrade plans: PMT multi-dynode readout, SiPM readout circuit, high-power LED

BGO-SiPM: timing performance studies

- Cosmic-ray events with 40 cm long crystal bar
- Timing methods
 - Conventional: Constant Fraction Discrimination (CFD)
 - Waveform sampling and leading edge fitting
- Waveform fitting significantly better than CFD (in backup)

Zhiyu Zhao (SJTU) Baohua Qi (IHEP)

Reference: <u>Waveform digitization for high resolution</u> <u>timing detectors with silicon photomultipliers</u>

BGO + SiPM

BGO-SiPM: timing performance studies

- Waveform fitting: timing resolution (~1ns) close to sampling precision (800ps)
- Plans for further improvements
 - SiPM + front-end electronics: steeper rising edge, higher sampling rate, etc.
 - Geant4 simulation: implementation of realistic modeling of SiPM waveforms
 - Possibility of Cherenkov light detection: feasibility studies with Geant4

Crystal ECAL hardware activities

- Requirements of a single crystal-SiPM detector unit
 - Key parameters: MIP light yield, dynamic range, timing resolution, etc.
- Development of small-scale crystal-SiPM modules
 - Impacts of transverse size, gaps
 - Crystal quality test stand: crystal uniformity
 - Mechanics design and module assembly

Crystal-SiPM EM modules

- Motivations
 - To address critical issues at system level
 - Small-scale modules will be sufficient (next page)
 - Evaluate EM performance with beam tests
 - Energy resolution, shower profiles
 - Validation of simulation and digitization tool
 - Application of the new reconstruction software
- Status
 - Working on the 1st EM module (36 bars, 72-ch)

Crystal-SiPM EM module: impacts of transverse size

- Compact EM showers: not necessarily as large as the full size (40×40×28 cm³ tower)
- Geant4 simulation: vary transverse size in steps from 400 mm to 120 mm (crystal length)

- For EM showers, the transverse size of 12 cm is enough to contain most shower energy
 - Degradation of EM energy resolution: absolute values at ~0.1% level
 - · Assuming that particles hit on the module center

BGO crystals for EM module

- Ordered the first batch of 40 BGO bars from SIC-CAS
 - Delivered to IHEP with wrapping
 - ESR film (optimal reflectivity) + Aluminum foil (mechanical reinforcement)

First batch of BGO crystals from SIC-CAS

Crystal-SiPM module design: impact of gaps

- Gaps implemented in the simulation of 40×40×28 cm³ tower
 - Materials: ESR film, Al foil, air (the same as real crystals + wrapping)
 - Density set to 2 g/cm³

21.09.22

- Impact of gaps is more significant, compared with than transverse size
- Gaps around ~0.4 mm (transverse) for 12×2×2 cm³ crystals
- Control of gaps for 40cm long crystals: a key issue

Baohua Qi (IHEP)

Small-scale module: ongoing activities

- Test stand for crystal quality control and uniformity
 - Automated setup BGO bars (40x in the first batch)
- Tests with other NDL/Hamamatsu SiPMs
- PCB design for multi-channel SiPM readout
- Mechanical structure and module assembly

Fixture for holding the source is mounted on the 1D stage

Small-scale module: ongoing activities

- Mechanical structure and module assembly
 - Challenges: crystal weight, stable SiPM coupling
 - Made a first design draft

21.09.22

• Plan to be exercised with dummy crystal bars and real PCBs

Baohua Qi (IHEP)

Crystal calorimeter: specifications

Key Parameters	Value	Notes
MIP light yield	~100 p.e./MIP	9.1 MeV/MIP in 1 cm BGO
Dynamic range	$0.05 \sim 10^3 \text{ MIPs}$	Energy range of 500 keV to 10 GeV
Energy threshold	15 p.e.	Equivalent to 0.5 MeV (~0.05 MIP)
Timing resolution	~400 ps	Limits from G4 simulation \rightarrow validation
Response non-uniformity	<1%	After calibration
Temperature stability	Stable at $\sim 0.05 \ ^\circ C$	Reference of CMS ECAL
Gap tolerance	~100 μm	TBD via module development

- Note: this table needs more validation studies
- Development of EM modules will help
 - To gain experiences of realistic limitations
 - To address system-level issues

Summary and prospects

- Crystal calorimeter: major R&D aspects
 - Hardware development: key questions and specs (focused in the talk)
 - New reconstruction software dedicated to long bar geometry
 - Arbor-PFA optimization for crystal ECAL
 - Physics performance evaluation
- Ongoing hardware R&D activities to address
 - Key parameters: light yield, dynamic range, timing resolution, etc.
 - Key issues at system level: EM module development
- Plans
 - The first small-scale BGO module: system integration
 - Preparations for beam tests in 2023: focusing on EM shower performance

Backup slides

Crystal Calorimeter Status Report at CEPC Day

High-granularity crystal ECAL: 2 major designs

Design 1: short bars

Focus on <u>PFA performance</u> studies

21.09.22

- Crystal cubes (ideal granularity) for physics benchmarks
- Inputs for optimization of the existing PFA for crystals

Design 2: long bars

- Focus on <u>new reconstruction algorithm</u> development
- Key issues
 - Separation capability of multiple incident particles (resolving "ghost hits")
 - Impact to PFA performance

Physics performance evaluation: Higgs benchmark (reminder)

- Physics performance: reconstruction of 2-jet benchmark events
 - Boson mass resolution (BMR): $ZH (Z \rightarrow \nu\nu, H \rightarrow gg)$ at 240 GeV

- Significant improvement after Arbor-PFA algorithm optimization
- On-going PFA studies on impacts of granularity

21.09.22

Preliminary results with 1 cm³ crystal cubes

BGO dimension tolerances

- BGO crystals for the DAMPE experiment
 - Specifications: 25 (+0/-0.1) mm×25 (+0/-0.1) mm×600 (+0/-0.4) mm
 - Measurements: 25 (+0/-0.1) mm×25 (+0/-0.1) mm×600 (+0/-0.3) mm

Values provided by courtesy of Dr. Junfeng Chen (SIC-CAS)

- BGO crystals for CEPC crystal-SiPM module
 - Specifications: 20 (+0/-0.1) mm×20 (+0/-0.1) mm×120 (+0/-0.1) mm
 - Measurements: pending
 - Nominal foil thickness: 100-165 um in total

MIP response with various crystal lengths

- MIP response: number of detected photons
 - Muon shooting the crystal bar center
 - Crystal length varies from 5mm to 400mm
 - Crystal transverse size: 1cm²

- MIP response significantly depends on crystal length
- Sufficiently high MIP response of 40cm long BGO

21.09.22

Light yield: 8200/MeV for BGO, 120/MeV for PWO MIP energy deposition: ~ 9MeV (MPV)

Air gap

6 X 6mm² SiPM

z- end

1GeV mu-

Crystal bar

Baohua Qi (IHEP)

z+ end

ESR wrapping

Geant4 10.7

Energy threshold for low energy particles

• Signal amplitude is roughly linear with integrated charge (QDC)

- 662 keV gamma ~0.07 MIP (ChA + ChB)
 - Signal in ChA ~0.04 MIP

21.09.22

Requirement on dynamic range : 0.05~10³ MIP

- Voltage threshold: 15 p.e. is feasible
 - DCR is low enough at 15 p.e.
- Capable to detect low energy particles
 - Pressure on dynamic range: 2×10^4
 - Benefits for physics?

Characterizations of SiPMs: noise level vs. threshold

• Dark count rate versus voltage threshold (in p.e.)

Cross-check and further studies ongoing

DCR EQR06 3030

DCR_S13360-6025PE

- Dark count rate can be lower than 1 Hz with relatively low voltage threshold
- Potential on low energy particle detection

Long crystal bar: uniformity response

- Relatively low response near one side
 - Coupling, positioning, distance between crystal and radioactive source...
 - Potential factors related to crystal manufacture
- Repeat more measurements to reduce systematic uncertainty

Response uniformity: impacts to crystal ECAL module

- Simulation setup
 - $10 \times 10 \times 400 \text{ mm}^3 \text{ BGO crystal Bar}$
 - Crossed bar, $40 \times 40 \times 60$ module
 - 1 GeV muon, 2D uniformity scan
 - Response has been parameterized (simulated without optical process)

MIP Response Uniformity

- MIP Response of four corners is higher
- 2D non-uniformity lower than 10%
- Responses depend on hit positions
 - Good reconstruction algorithm is required to get precise position resolution
 - Timing information for positioning

Response uniformity: impacts to crystal ECAL module

- Impact on energy resolution
 - 1-100 GeV electron
 - 3×3 modules are used to prevent energy leakage
 - Digitization and energy calibration are implemented
 - Energy resolution = Mean/StdDeV

- Response non-uniformity need to be calibrated
 - Non-uniformity < 1% after calibration

BGO-SiPM timing performance studies

- Time resolution in simulation: ~400 ps
- Large #photons helps to improve time resolution
- Limitations:
 - SiPM rising edge of SiPM pulse
 - Front-end electronics
 - Scintillation properties of BGO crystal
 - Light transmission of long crystal bar

EM energy resolution: requirements on light yield

Baohua Qi (IHEP)

• Energy resolutions vary with energy thresholds and light yields

- Digitization: consider SiPM saturation (NDL SiPM with $\sim 2.4 \times 10^5$ pixels)
- Significant saturation effect observed when light yield is too high
- Requirement on light yield: 100 p.e./MIP \rightarrow 10⁵ photons (10³ MIPs)

21.09.22

SiPM pixel recovery effects have not been included in plots