粒子物理和早期宇宙对称性自发破缺产生的随机引力波

Ligong Bian(边立功) Chongqing University (重庆大学) <u>lgbycl@cqu.edu.cn</u>

2022/11/05@北京大学高能物理研究中心

Contents

- Motivation
- First-order phase transition & EWSB
- Cosmic string & Domain wall
- Future

研究背景与动机

LHC 探测实验

Temperature 希格斯质量与电弱相变

随机引力波探测开启了探索早期宇宙背后新物理的一个新的窗口

The Gravitational Wave Spectrum

暗物质& 正反物质不对称& 强一阶电弱相变

#2

#4

Electroweak baryogenesis and dark matter from a singlet Higgs

James M. Cline (McGill U.), Kimmo Kainulainen (Jyvaskyla U. and Helsinki Inst. of Phys. and Helsinki U.) (Oct, 2012)

Published in: JCAP 01 (2013) 012 • e-Print: 1210.4196 [hep-ph]

Å pdf & DOI ⊡ cite

研究背景

→ 217 citations

标准模型+实标量场

Gravitational wave, collider and dark matter signals from a scalar singlet

electroweak baryogenesis

Ankit Beniwal (Adelaide U. and Adelaide U., Sch. Chem. Phys.), Marek Lewicki (Adelaide U. and Warsaw U. and Adelaide U., Sch. Chem. Phys.), James D. Wells (DESY and Michigan U., MCTP), Martin White (Adelaide U., Sch. Chem. Phys. and Adelaide U.), Anthony G. Williams (Adelaide U., Sch. Chem. Phys. and Adelaide U.) (Feb 20, 2017)

Published in: JHEP 08 (2017) 108 • e-Print: 1702.06124 [hep-ph]

🔓 pdf 🕜 DOI 🖃 cite

Impact of a complex singlet: Electroweak baryogenesis and dark matter #6

<u>Minyuan Jiang</u> (Beijing, Inst. Theor. Phys. and Beijing, KITPC and Nanjing U.), Ligong Bian (Beijing, Inst. Theor. Phys. and Beijing, KITPC), Weicong Huang (Beijing, Inst. Theor. Phys. and Beijing, KITPC), Jing Shu (Beijing, Inst. Theor. Phys. and Beijing, KITPC) (Feb 26, 2015)

Published in: Phys.Rev.D 93 (2016) 6, 065032 • e-Print: 1502.07574 [hep-ph]

B pdf @ DOI E cite标准模型+复标量场 = 102 citations

Unified explanation for dark matter and electroweak baryogenesis with direct #5 detection and gravitational wave signatures

Mikael Chala (DESY), Germano Nardini (U. Bern, AEC), Ivan Sobolev (Lomonosov Moscow State U. and Moscow, INR) (May 27, 2016)

Published in: Phys.Rev.D 94 (2016) 5, 055006 • e-Print: 1605.08663 [hep-ph]

🗗 pdf ି DOI ⊡ cite

复合希格斯 <= 125 citations

研究背景与动机

Action
$$S[\phi] = \int d^4x \mathcal{L}\{\phi(x)\}$$

The generating functional (vacuum-to-vacuum amplitude):

$$Z[j] = \langle 0_{\text{out}} \mid 0_{\text{in}} \rangle_j \equiv \int d\phi \exp\{i(S[\phi] + \phi j)\} \qquad \phi j \equiv \int d^4x \phi(x) j(x)$$

The connected generating functional W[j] defined as:

$$Z[j] \equiv \exp\{iW[j]\}$$

The effective action $\Gamma[\varphi]$ as the Legendre transformation:

Expand Z[j] (W[j]) in a power series of j, to obtain its representation in terms of Green functions $G_{(n)}$ (connected Green functions $G_{(n)}^{c}$)

$$Z[j] = \sum_{n=0}^{\infty} \frac{i^n}{n!} \int d^4x_1 \dots d^4x_n j(x_1) \dots j(x_n) G_{(n)}(x_1, \dots, x_n)$$

$$iW[j] = \sum_{n=0}^{\infty} \frac{i^n}{n!} \int d^4x_1 \dots d^4x_n j(x_1) \dots j(x_n) G_{(n)}^{\ c}(x_1, \dots, x_n)$$

The effective action can be expanded as

$$\Gamma[\overline{\phi}] = \sum_{n=0}^{\infty} \frac{1}{n!} \int d^4 x_1 \dots d^4 x_n \overline{\phi}(x_1) \dots \overline{\phi}(x_n) \Gamma^{(n)}(x_1, \dots, x_n)$$

 $\Gamma^{(n)}$ are the one-particle irreducible (1PI) Green functions

Fourier transformation

$$\Gamma^{(n)}(x) = \int \prod_{i=1}^{n} \left[\frac{d^4 p_i}{(2\pi)^4} \exp\{ip_i x_i\} \right] (2\pi)^4 \delta^{(4)}(p_1 + \dots + p_n) \Gamma^{(n)}(p)$$
$$\tilde{\phi}(p) = \int d^4 x e^{-ipx} \overline{\phi}(x)$$

$$\Gamma[\overline{\phi}] = \sum_{n=0}^{\infty} \int \prod_{i=1}^{n} \left[\frac{d^4 p_i}{(2\pi)^4} \widetilde{\phi}(-p_i) \right] (2\pi)^4 \delta^{(4)}(p_1 + \dots + p_n) \Gamma^{(n)}(p_1, \dots, p_n)$$
(1)

Translationally invariant theory, with ϕc being constant

 $\overline{\phi}(x) = \phi_c$

Define the effective potential $V_{eff}(\phi_c)$ as

$$\Gamma[\phi_c] = -\int d^4x V_{\rm eff}(\phi_c) \tag{2}$$

Using the definition of Dirac δ -function

$$\delta^{(4)}(p) = \int \frac{d^4x}{(2\pi)^4} e^{-ipx}$$

We get
$$ilde{\phi}_c(p) = (2\pi)^4 \phi_c \delta^{(4)}(p).$$

Inserting into EQ.(1), the effective action for constant field configurations recast the form of

Dxpanding in powers of momentum, about the point where all external momenta vanish

$$\Gamma[\overline{\phi}] = \int d^4x \left[-V_{\text{eff}}(\overline{\phi}) + \frac{1}{2} (\partial_\mu \overline{\phi}(x))^2 Z(\overline{\phi}) + \cdots \right]$$

Tree-level potential

In momentum space the scalar field is

 $\phi_c(p) = (2\pi)^4 \phi_c \delta^4(p)$

Recall EQ.(4), we get one-loop potential:

$$V_{1}(\phi_{c}) = i \sum_{n=1}^{\infty} \int \frac{d^{4}p}{(2\pi)^{4}} \frac{1}{2n} \left[\frac{\lambda \phi_{c}^{2}/2}{p^{2} - m^{2} + i\epsilon} \right]^{n}$$
$$= -\frac{i}{2} \int \frac{d^{4}p}{(2\pi)^{4}} \log \left[1 - \frac{\lambda \phi_{c}^{2}/2}{p^{2} - m^{2} + i\epsilon} \right]$$

After Wick rotation:

$$V_1(\phi_c) = \frac{1}{2} \int \frac{d^4 p_E}{(2\pi)^4} \log\left[1 + \frac{\lambda \phi_c^2/2}{p_E^2 + m^2}\right]$$

$$p^0 = i p_E^0, \ p_E = (-i p^0, \vec{p} \), \ p^2 = (p^0)^2 - \vec{p}^{\ 2} = -p_E^2$$

An example

1-loop effective potential is

$$V_1(\phi_c) = \frac{1}{2} \int \frac{d^4 p}{(2\pi)^4} \log\left[p^2 + m^2(\phi_c)\right]$$
(5)

shifted mass :

$$V_{
m eff}(\phi_c) = V_0(\phi_c) + V_1(\phi_c) \qquad m^2(\phi_c) = m^2 + rac{1}{2}\lambda\phi_c^2 = rac{d^2V_0(\phi_c)}{d\phi_c^2}$$

An example

With dimensional regularization

$$V_1(\phi_c) = \frac{1}{2} (\mu^2)^{2 - \frac{n}{2}} \int \frac{\mathrm{d}^n p}{(2\pi)^n} \log \left[p^2 + m^2 \right].$$

We calculate the one-loop correction to the effective potential by first calculating it with respect to the mass and then integrating.

$$\frac{\partial V_1}{\partial m^2} = \frac{1}{2} (\mu^2)^{2-\frac{n}{2}} \int \frac{\mathrm{d}^n p}{(2\pi)^n} \frac{1}{p^2 + m^2} \qquad \text{The derivative is just a single disconnected bubble.}$$
$$V_1 = \frac{m^4}{64\pi} \left(-\left[\frac{1}{\epsilon} - \gamma_E + \log 4\pi\right] + \log \frac{m^2}{\mu^2} - \frac{3}{2}\right)$$

Subtracting the $1/\varepsilon - \gamma - \log 4\pi$ term, we get

$$V_1 = \frac{1}{64\pi^2} m^4 \left(\log \frac{m^2}{\mu^2} - \frac{3}{2} \right) \qquad m^2 = \frac{d^2 V}{d\phi^2}$$

Effective potential at finite temperature-imaginary time

Feynman rules for the different fields in the imaginary time formalism:

Boson propagator :
$$\frac{i}{p^{2} - m^{2}}; p^{\mu} = [2ni\pi\beta^{-1}, \vec{p}]$$
Fermion propagator :
$$\frac{i}{\gamma \cdot p - m}; p^{\mu} = [(2n+1)i\pi\beta^{-1}, \vec{p}]$$
Loop integral :
$$\frac{i}{\beta} \sum_{n=-\infty}^{\infty} \int \frac{d^{3}p}{(2\pi)^{3}}$$
Vertex function :
$$-i\beta(2\pi)^{3}\delta_{\sum\omega_{i}}\delta^{(3)}(\sum_{i}\vec{p}_{i})$$
With above FR EQ.(5) becomes
$$V_{1}^{\beta}(\phi_{c}) = \frac{1}{2\beta} \sum_{n=-\infty}^{\infty} \int \frac{d^{3}p}{(2\pi)^{3}} \log(\omega_{n}^{2} + \omega^{2})$$
(6)
$$\text{With } \omega^{2} = \vec{p}^{-2} + m^{2}(\phi_{c})$$
Define
$$v(\omega) = \sum_{n=-\infty}^{\infty} \log(\omega_{n}^{2} + \omega^{2})$$
We have
$$v(\omega) = 2\beta \left[\frac{w}{2} + \frac{1}{\beta} \log(1 - e^{-\beta\omega})\right] + \omega - \text{independent terms}$$
Substituting into EQ.(6) we get
$$V_{1}^{\beta}(\phi_{c}) = \int \frac{d^{3}p}{(2\pi)^{3}} \left[\frac{\omega}{2} + \frac{1}{\beta} \log(1 - e^{-\beta\omega})\right] - (7)$$

$$\frac{1}{2} \int \frac{d^{3}p}{(2\pi)^{3}} \omega = \frac{1}{2} \int \frac{d^{4}p}{(2\pi)^{4}} \log[p^{2} + m^{2}(\phi_{c})]$$

Effective potential at finite temperature-real time

Propagators for scalar fields can be written as

$$G(p) \equiv \begin{pmatrix} G^{(11)}(p) & G^{(12)}(p) \\ G^{(21)}(p) & G^{(22)}(p) \end{pmatrix}$$

$$G^{(11)}(p) = \Delta(p) + 2\pi n_B(\omega_p)\delta(p^2 - m^2)$$

$$G^{(22)}(p) = G^{(11)*}$$

$$G^{(12)} = 2\pi e^{\beta\omega_p/2} n_B(\omega_p)\delta(p^2 - m^2)$$

$$G^{(21)} = G^{(12)}$$

$$n_B(\omega) = \frac{1}{e^{\beta\omega} - 1}$$

The propagators for fermion fields can be written as

$$S(p)_{\alpha\beta} \equiv \begin{pmatrix} S^{(11)}_{\alpha\beta}(p) & S^{(12)}_{\alpha\beta}(p) \\ S^{(21)}_{\alpha\beta}(p) & S^{(22)}_{\alpha\beta}(p) \end{pmatrix}$$

 $\Delta(p)$ is the boson/fermion propagator at zero temperature

The main feature of the real time formalism is that the propagators come in two terms:

1. one which is the same as in the zero temperature field theory(Δ (p)), and a second one where all the temperature dependence is contained.

2. (12), (21) and (22) components are unphysical since one of their time arguments has an imaginary component.

$$S^{(11)}(p) = (\gamma \cdot p + m) \left(\Delta(p) - 2\pi n_F(\omega_p) \delta(p^2 - m^2) \right)$$

$$S^{(22)}(p) = S^{(11)*}$$

$$S^{(12)} = -2\pi (\gamma \cdot p + m) [\theta(p^0) - \theta(-p^0)] e^{\beta \omega_p / 2} n_F(\omega_p) \delta(p^2 - m^2)$$

$$S^{(21)} = -S^{(12)}$$

$$n_F(\omega) = \frac{1}{e^{\beta \omega} + 1}$$

Effective potential at finite temperature-real time

Disconnected bubble diagrams

$$\frac{dV_1^{\beta}}{dm^2(\phi_c)} = \frac{1}{2} \int \frac{d^4p}{(2\pi)^4} \left[\frac{-i}{-p^2 + m^2(\phi_c) - i\epsilon} + 2\pi n_B(\omega)\delta(p^2 - m^2(\phi_c)) \right]$$
(8)

After integration on $m^2(\phi_c)$, the first part contributes to the effective potential as

$$-\frac{i}{2} \int \frac{d^4 p}{(2\pi)^4} \log(-p^2 + m^2(\phi_c) - i\epsilon)$$

Considering

$$-\frac{i}{2}\int_{-\infty}^{\infty}\frac{dx}{2\pi}\log(-x^2+\omega^2-i\epsilon) = \frac{\omega}{2} + \text{constant}$$

Performing the p⁰ integral, we get

$$\frac{d^3p}{(2\pi)^3}\frac{\omega}{2}$$

Jsing the identity	$\delta(p^2-m^2)=rac{1}{2\omega_p}\left[\delta(p^0+\omega_p)+\delta(p^0-\omega_p) ight]$
--------------------	---

Integration over p^0 in the β -dependent of the EQ 8, we get

$$\int \frac{d^3p}{(2\pi)^3} \frac{1}{2\omega} n_B(\omega) \tag{10}$$

(9)

Upon integration over $m^2(\phi_c)$ leads to the second term of EQ (6)

Thermal effective scalar potential for PT study

$$V_T(\phi,T) = V_0(\phi) + T^4 \left[\sum_B J_B\left(\frac{M_B}{T}\right) + \sum_F J_F\left(\frac{M_F}{T}\right)\right]$$

1

all fermions F and bosons B that are relativistic at temperature T

High-T expansion
$$m/T \ll 1$$

$$\begin{split} V_T(\phi) &= V_0(\phi) + \frac{T^2}{24} \left(\sum_S M_S^2(\phi) + 3 \sum_V M_V^2(\phi) + 2 \sum_F M_F^2(\phi) \right) \\ &- \frac{T}{12\pi} \left(\sum_S \left(M_S^2(\phi) \right)^{\frac{3}{2}} + \sum_V \left(M_V^2(\phi) \right)^{\frac{3}{2}} \right) \\ &+ \text{higher order terms} \,. \end{split}$$

MS, MV, MF are the masses of the scalar fields S, vector fields V and fermonic fields F

First order

FOEWPT&Higgs physics

BNPC, v/T and EW sphaleron

The Standard Model already contains a process that violates B-number. It is known as the electroweak sphaleron ("sphaleros" is Greek for "ready to fall").

Washout avoidance, BNPC

$$\Gamma_{\rm sph} = A_{\rm sph}(T) \exp[-E_{\rm sph}(T)/T] < {\rm H}({\rm T})$$
$$PT_{sph} \equiv \frac{E_{\rm sph}(T)}{T} - 7\ln\frac{v(T)}{T} + \ln\frac{T}{100 \text{ GeV}} \qquad PT_{sph} > (35.9 - 42.8)$$

$$E_{\rm sph}(T) \approx E_{\rm sph,0} \frac{v(T)}{v} \qquad \qquad \frac{v(T)}{T} > (0.973 - 1.16) \left(\frac{E_{\rm sph,0}}{1.916 \times 4\pi v/g}\right)^{-1}$$

Hiren H. Patel and Michael J. Ramsey-Musolf, 15'

Xucheng Gan, Andrew J. Long, Lian-Tao Wang, 17'

Model classes for one-step FOPT

Chung, Long, Wang, Phys.Rev.D 87 (2013) 2, 023509

Thermal driven Class-I

$$V_{\rm eff}(h,T) \approx \frac{1}{2} (-\mu^2 + cT^2) h^2 - \frac{eT}{12\pi} (h^2)^{3/2} + \frac{\lambda}{4} h^4$$

$$e \sim \sum_{\text{light bosonic fields}} (\text{degrees of freedom}) \qquad \qquad \frac{\upsilon(T_c)}{T_c} \approx \frac{e}{6\pi\lambda}$$

 $\times (\text{coupling to Higgs})^{3/2}.$

TABLE I. Examples of models in the Thermally (BEC) Driven class. The expressions for e are calculated in the limit that the field-independent contributions to $m_{\text{eff}}^2(h, T)$ are negligible (e.g., the thermal mass tuning has been performed). Here, the symbol \tilde{A}_t is $\tilde{A}_t = A_t - \mu/\tan\beta$ and g_s is the number of real scalar singlet degrees of freedom coupling to the Higgs.

Model	$-\Delta \mathcal{L}$	С	е
SM [43]		$c_{\rm SM} = \frac{6m_t^2 + 6m_W^2 + 3m_Z^2 + \frac{3}{2}m_H^2}{12u^2}$	$e_{\rm SM} = \frac{6m_W^3 + 3m_Z^3}{v^3}$
MSSM [41]		$c_{\rm SM} + \frac{6m_t^2}{12v^2} \left(1 - \frac{\tilde{A}_t^2}{m_o^2}\right)$	$e_{\rm SM} + \frac{6m_t^3}{v^3} \left(1 - \frac{\tilde{A}_t^2}{m_O^2}\right)^{3/2}$
Colored scalar [20]	$M_X^2 X ^2 + \frac{K}{6} X ^4 + Q H ^2 X ^2$	$c_{\mathrm{SM}}+rac{6}{24}rac{Q}{2}$	$e_{\mathrm{SM}} + 6(\frac{Q}{2})^{3/2}$
Singlet scalar [43,44]	$M^2 S ^2 + \lambda_S S ^4 + 2\zeta^2 H ^2 S ^2$	$c_{ m SM}+rac{g_S}{24}\zeta^2$	$e_{\rm SM} + g_S \zeta^3$
Singlet Majoron [45]	$\mu_s^2 S ^2 + \lambda_s S ^4 + \lambda_{hs} H ^2 S ^2 + \frac{1}{2} y_i S \nu_i \nu_i + \text{H.c.}$	$c_{\mathrm{SM}}+rac{2}{24}rac{\lambda_{hs}}{2}$	$e_{\mathrm{SM}}+2(rac{\lambda_{hs}}{2})^{3/2}$
Two-Higgs doublets [46]	$\mu_D^2 D^{\dagger} D + \lambda_D (D^{\dagger} D)^2 + \lambda_3 H^{\dagger} H D^{\dagger} D + \lambda_4 H^{\dagger} D ^2 + (\lambda_5/2) [(H^{\dagger} D)^2 + \text{H.c.}]$	$c_{\mathrm{SM}} + \frac{2\lambda_3 + \lambda_4}{12}$	$e_{\rm SM} + 2(\frac{\lambda_3}{2})^{3/2} + (\frac{\lambda_3 + \lambda_4 - \lambda_5}{2})^{3/2} + (\frac{\lambda_3 + \lambda_4 + \lambda_5}{2})^{3/2}$

Tree driven-Class IIA

$$V_{\rm eff}(\varphi,T) \approx \frac{1}{2}(m^2 + cT^2)\varphi^2 - \mathcal{E}\varphi^3 + \frac{\lambda}{4}\varphi^4$$

TABLE II. Examples of models that fall into Class IIA. For the non-SUSY models, corrections to the SM Lagrangian are shown, whereas for the SUSY models only the superpotential corrections are given.

Model	$\Delta \mathcal{L}$
xSM [53–56]	$\frac{1}{2}(\partial S)^2 - \left[\frac{b_2}{2}S^2 + \frac{b_3}{3}S^3 + \frac{b_4}{4}S^4 + \frac{a_1}{2}H^{\dagger}HS^2 + \frac{a_2}{2}H^{\dagger}HS^2\right]$
ℤ ₂ xSM [14,57]	$rac{1}{2}(\partial S)^2 - [rac{b_2}{2}S^2 + rac{b_4}{4}S^4 + rac{a_2}{2}H^\dagger HS^2]$
Two-Higgs doublets [58]	$\mu_D^2 D ^2 + \lambda_D D ^4 + \lambda_3 H ^2 D ^2 + \lambda_4 H^{\dagger}D ^2 + (\lambda_5/2)[(H^{\dagger}D)^2 + \text{H.c.}]$
Model	ΔW
NMSSM [59–61]	$\lambda H_1 H_2 N - \frac{\kappa}{3} N^3 + r N$
nMSSM [62]	$\lambda H_1 H_2 S + \frac{m_{12}^2}{\lambda} S$
$\mu \nu MSSM$ [63]	$-\lambda_i H_1 H_2 \nu_i^c + \frac{\kappa_{ijk}}{3} \nu_i^c \nu_j^c \nu_k^c + Y_\nu^{ij} H_2 L_i \nu_j^c$

Class IIA (1) no extra EWSB: xSM

For the "xSM" model, the gauge invariant finite temperature effective potential is found to be:

$$V(h,s,T) = -\frac{1}{2} [\mu^2 - \Pi_h(T)] h^2 - \frac{1}{2} [-b_2 - \Pi_s(T)] s^2 + \frac{1}{4} \lambda h^4 + \frac{1}{4} a_1 h^2 s + \frac{1}{4} a_2 h^2 s^2 + \frac{b_3}{3} s^3 + \frac{b_4}{4} s^4,$$
(C1)

with the thermal masses given by

Ρ

$$\Pi_{h}(T) = \left(\frac{2m_{W}^{2} + m_{Z}^{2} + 2m_{t}^{2}}{4\nu^{2}} + \frac{\lambda}{2} + \frac{a_{2}}{24}\right)T^{2},$$
(C2)
PT strength

$$\Pi_{s}(T) = \left(\frac{a_{2}}{6} + \frac{b_{4}}{4}\right)T^{2},$$

$$\Pi_{s}(T) = \left(\frac{a_{2}}{6} + \frac{b_{4}}{4}\right)T^{2},$$

$$V^{sSM}/T \equiv \frac{\nu_{h}(T)}{T} = \frac{\sqrt{\nu_{h}(T)}}{T} = \frac{\sqrt{\nu_{h}(T)}}{T},$$

$$\cos\theta(T) \equiv \frac{\nu_{h}(T)}{\sqrt{\nu_{h}^{2}(T) + \nu_{s}^{2}(T)}},$$
For small mixing limit between the extra Higgs and the SM Higgs, one have

$$c_{4}^{sSM} = -\frac{a_{1}^{2} - 8b_{2}\lambda}{32b_{2}} + \frac{\theta^{2}(a_{1}^{2}(6b_{2} - \mu^{2}) - 8a_{1}b_{2}b_{3} + 8b_{2}^{2}(a_{2} - 2\lambda))}{32b_{2}^{2}} + O(\theta^{3})$$

$$\frac{\mu}{102b_{2}^{3}} = -\frac{a_{1}^{2}(a_{1}b_{3} - 3a_{2}b_{2})}{192b_{3}^{2}} - \frac{\theta^{2}a_{1}}{256b_{4}^{4}}(a_{1}^{3}b_{2} + 4a_{1}^{2}b_{3}(\mu^{2} - 3b_{2}))$$

$$+4a_{1}b_{2}(a_{2}(11b_{2} - 2\mu^{2}) - 6b_{2}(b_{4} + \lambda) + 4b_{3}^{2}) - 32a_{2}b_{2}^{2}b_{3}) + O(\theta^{3})$$

$$c_{8}^{sSM} = \frac{a_{1}^{4}b_{4}}{1024b_{2}^{4}} + \frac{a_{1}^{3}\theta^{2}}{1024b_{2}^{5}}(a_{1}(a_{2}b_{2} + 4b_{4}(\mu^{2} - 3b_{2})) + 16b_{2}b_{3}b_{4}) + O(\theta^{3})$$

Class IIA (1) with extra EWSB: GM model

The most general scalar potential $V(\Phi, \Delta)$ invariant under $SU(2)_L \times SU(2)_R \times U(1)_Y$ is given by extra EWSB

$$V(\Phi, \Delta) = \frac{1}{2}m_1^2 \operatorname{tr}[\Phi^{\dagger}\Phi] + \frac{1}{2}m_2^2 \operatorname{tr}[\Delta^{\dagger}\Delta] + \lambda_1 \left(\operatorname{tr}[\Phi^{\dagger}\Phi]\right)^2 \qquad \nu_{\Phi}^2 + 8\nu_{\xi}^2 \equiv \nu^2 \approx (246 \,\mathrm{GeV})^2 \\ + \lambda_2 \left(\operatorname{tr}[\Delta^{\dagger}\Delta]\right)^2 + \lambda_3 \operatorname{tr}\left[\left(\Delta^{\dagger}\Delta\right)^2\right] + \lambda_4 \operatorname{tr}[\Phi^{\dagger}\Phi] \operatorname{tr}[\Delta^{\dagger}\Delta] \\ + \lambda_5 \operatorname{tr}\left[\Phi^{\dagger}\frac{\sigma^a}{2}\Phi\frac{\sigma^b}{2}\right] \operatorname{tr}[\Delta^{\dagger}T^a\Delta T^b] \qquad \qquad \mathcal{V}\chi = \sqrt{2}\nu_{\xi} \\ + \mu_1 \operatorname{tr}\left[\Phi^{\dagger}\frac{\sigma^a}{2}\Phi\frac{\sigma^b}{2}\right] (P^{\dagger}\Delta P)_{ab} + \mu_2 \operatorname{tr}[\Delta^{\dagger}T^a\Delta T^b] (P^{\dagger}\Delta P)_{ab} , \qquad (3)$$

$$\Phi \equiv (\varepsilon_{2}\phi^{*},\phi) = \begin{pmatrix} \phi^{0*} & \phi^{+} \\ -\phi^{+*} & \phi^{0} \end{pmatrix}, \quad \Delta \equiv (\varepsilon_{3}\chi^{*},\xi,\chi) = \begin{pmatrix} \chi^{0*} & \xi^{+} & \chi^{++} \\ -\chi^{+*} & \xi^{0} & \chi^{+} \\ \chi^{++*} & -\xi^{+*} & \chi^{0} \end{pmatrix}, \quad (1)$$

with

$$\boldsymbol{\varepsilon}_{2} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \boldsymbol{\varepsilon}_{3} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad (2)$$

where the phase convention for the scalar field components is: $\chi^{--} = \chi^{++*}$, $\chi^{-} = \chi^{+*}$, $\xi^{-} = \xi^{+*}$, $\phi^{-} = \phi^{+*}$. Φ and Δ are transformed under $SU(2)_L \times SU(2)_R$ as $\Phi \to U_{2,L} \Phi U_{2,R}^{\dagger}$ and $\Delta \to U_{3,L} \Delta U_{3,R}^{\dagger}$ with $U_{L,R} = exp(i\theta_{L,R}^a T^a)$ and T^a being the SU(2) generators.

where summations over a, b = 1, 2, 3 are understood, σ 's and T's are the 2 × 2 (Pauli matrices 3 × 3 matrix representations of the SU(2) generators, respectively

$$T_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, T_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}, T_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix},$$

The P matrix, which is the similarity transformation relating the generators in the triplet an adjoint representations, is given by

$$P = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 & i & 0\\ 0 & 0 & \sqrt{2}\\ 1 & i & 0 \end{pmatrix}$$

Collider & GW complementary search

SNR > 10 points for two-step and one-step SFOEWPT

Circles and the dotted points for the GM and xSM scenarios

$$\begin{split} &\delta\kappa_3^{\text{xSM}} = \alpha_H^2 \left[-\frac{3}{2} + \frac{2m_H^2 - 2b_3 v_s - 4b_4 v_s^2}{m_h^2} \right] + \mathcal{O}(\alpha_H^3), \\ &\delta\kappa_4^{\text{xSM}} = \alpha_H^2 \left[-3 + \frac{5m_H^2 - 4b_3 v_s - 8b_4 v_s^2}{m_h^2} \right] + \mathcal{O}(\alpha_H^3). \end{split}$$

$$egin{aligned} \delta \kappa_3^{GM} &= -lpha_H rac{\sqrt{3} \mu_1 v}{2m_h^2} + rac{lpha_H v^2 (4 lpha_H - \sqrt{6} heta_H) (2 \lambda_4 + \lambda_5)}{2m_h^2} \ &- rac{(3 lpha_H^2 + heta_H^2)}{2} + \mathcal{O}(lpha_H^3, heta_H^3), \end{aligned}$$
 $\delta \kappa_4^{GM} &= -2 lpha_H^2 igg(1 - rac{2(2 \lambda_4 + \lambda_5) v^2}{m_h^2} igg) + \mathcal{O}(lpha_H^3). \end{aligned}$

Tree-level driven-Class II B

< 0 causes the potential to turn over

$$V_{\rm eff}(h,T) \approx \frac{1}{2}(\mu^2 + cT^2)h^2 + \frac{\lambda}{4}h^4 + \frac{1}{8\Lambda^2}h^6$$

stabilizes the EW-broken vacuum

$$\lambda = \frac{m_H^2}{2\nu^2} \left(1 - \frac{\Lambda_{\max}^2}{\Lambda^2} \right), \qquad \Lambda_{\max} \equiv \sqrt{3}\nu^2 / m_H \qquad T_c = \sqrt{\frac{\mu^2}{c}} \sqrt{\frac{\lambda^2 \Lambda^2}{4\mu^2} - 1},$$
$$\mu^2 = \frac{m_H^2}{2} \left(\frac{\Lambda_{\max}^2}{2\Lambda^2} - 1 \right), \qquad \Lambda < \Lambda_{\max} \qquad \frac{\nu(T_c)}{T_c} = \sqrt{\frac{c}{-\lambda}} \frac{2}{\sqrt{1 - \frac{4\mu^2}{\lambda^2 \Lambda^2}}}.$$

$$\lambda_{HHH} \equiv \frac{m_H^2}{v} \left(1 + 2 \frac{\Lambda_{\min}^2}{\Lambda^2} \right) \qquad \Lambda_{\min} = v^2 / m_H$$

Model	Couplings	Wilson coefficient of H^6
\mathbb{R} Singlet	$-rac{1}{2}\lambda_{HS} H ^2S^2-g_{HS}H^\dagger HS$	$-rac{\lambda_{HS}}{2}rac{g_{HS}^2}{M^4}$
\mathbbm{C} Singlet	$-g_{HS} H ^2\Phi-rac{\lambda_{H\Phi}}{2} H ^2\Phi^2-rac{\lambda'_{H\Phi}}{2}H^\dagger H \Phi ^2+h.c.$	$-rac{ g_{HS} ^2\lambda'_{H\Phi}}{2M^4}-rac{{ m Re}[g^2_{HS}\lambda_{H\Phi}]}{M^4}$
2HDM	$-Z_6 H_1 ^2H_1^\dagger H_2-Z_6^* H_1 ^2H_2^\dagger H_1$	$\frac{ Z_6 ^2}{M^2}$
$\mathbb R$ triplet	$gH^{\dagger} au^{a}H\Phi^{a}-rac{\lambda_{H\Phi}}{2} H ^{2} \Phi^{a} ^{2}$	$-rac{g^2}{M^4}\left(rac{\lambda_{H\Phi}}{8}-\lambda ight)$
\mathbb{C} triplet	$gH^Ti\sigma_2 au^aH\Phi^a-rac{\lambda_{H\Phi}}{2} H ^2 \Phi^a ^2$	$-rac{g^2}{M^4}\left(rac{\lambda_{H\Phi}}{4}+rac{\lambda'}{8}-2\lambda ight)$
	$-rac{\lambda'}{4}H^{\dagger} au^a au^bH\Phi^a(\Phi^b)^{\dagger}+h.c.$	
\mathbbm{C} 4—plet	$-\lambda_{H3\Phi}H^*_iH^*_jH^*_k\Phi^{ijk}+h.c.$	$rac{ \lambda_{H3\Phi} ^2}{M^2}$
		1705.0255

Class IIB Dim. six operator, SMEFT

Higgs potential
$$V(H) = -m^2(H^{\dagger}H) + \lambda (H^{\dagger}H)^2 + \frac{(H^{\dagger}H)^3}{\Lambda^2}$$

Finite temperature potential
$$V_T(h,T) = V(h) + \frac{1}{2}c_{hT}h^2$$

Thermal correction
$$c_{hT} = (4y_t^2 + 3g_{-}^2 + g'^2 + 8\lambda)T^2/16$$

Electroweak minimum $\Lambda \geq v^2/m_h$ being the global one

Potential barrier requirement

$$\Lambda < \sqrt{3}v^2/m_h$$

$$V_{\rm eff}(h,T) \approx \frac{1}{2}(\mu^2 + cT^2)h^2 + \frac{\lambda}{4}h^4 + \frac{\kappa}{4}h^4 \ln \frac{h^2}{M^2}$$

$$\lambda = \frac{m_H^2}{2\nu^2} - \kappa \left(\ln \frac{\nu^2}{M^2} + \frac{3}{2} \right), \qquad T_c \approx \frac{m_H}{2\sqrt{c}} \sqrt{\epsilon} \left(1 + \frac{1}{8}\epsilon + \frac{37}{384}\epsilon^2 + \cdots \right),$$

$$\mu^2 = -\frac{m_H^2}{2} + \kappa \nu^2. \qquad \frac{\nu(T_c)}{T_c} \approx \frac{2\nu\sqrt{c}}{m_H} \frac{1}{\sqrt{\epsilon}} \left(1 - \frac{3}{8}\epsilon - \frac{103}{384}\epsilon^2 + \cdots \right).$$

	TABLE III.	Examples of models in the Loop Driven class.
Model		$-\Delta \mathcal{L}$
Singlet scalars [12,72]		$\sum_{i}^{N} M^{2} S_{i} ^{2} + \lambda_{S} S_{i} ^{4} + 2\zeta^{2} H ^{2} S_{i} ^{2}$
Singlet Majoron [73,74]		$\mu_s^2 S ^2 + \lambda_s S ^4 + \lambda_{hs} H ^2 S ^2 + \frac{1}{2} y_i S \nu_i \nu_i + \text{H.c.}$
Two-Higgs doublets [75–78]		$\mu_D^2 D^{\dagger} D + \lambda_D (D^{\dagger} D)^2 + \lambda_3 H^{\dagger} H D^{\dagger} D + \lambda_4 H^{\dagger} D ^2 + (\lambda_5/2) [(H^{\dagger} D)^2 + \text{H.c.}]$

Class III 2HDM Finite-T potential in 2HDM

 $V(h_1, h_2, T) = V_0(h_1, h_2) + V_{CW}(h_1, h_2) + V_{CT}(h_1, h_2) + V_{th}(h_1, h_2, T) + V_{daisy}(h_1, h_2, T)$

Free-level
$$V_0(h_1, h_2) = \frac{1}{2}m_{12}^2 t_\beta \left(h_1 - h_2 t_\beta^{-1}\right)^2 - \frac{v^2}{4} \frac{\lambda_1 h_1^2 + \lambda_2 h_2^2 t_\beta^2}{1 + t_\beta^2} - \frac{v^2}{4} \frac{\lambda_{345} (h_1^2 t_\beta^2 + h_2^2)}{1 + t_\beta^2} + \frac{1}{8} \lambda_1 h_1^4 + \frac{1}{8} \lambda_2 h_2^4 + \frac{1}{4} \lambda_{345} h_1^2 h_2^2$$

One-loop at zero temperature:

$$V_{\rm CW}(h_1, h_2) = \sum_i (-1)^{2s_i} n_i \frac{\hat{m}_i^4(h_1, h_2)}{64\pi^2} \left[\ln\left(\frac{\hat{m}_i^2(h_1, h_2)}{Q^2}\right) - C_i \right] \text{[Coleman, Weinberg '73]}$$

One-loop at finite temperature:

$$V_{\rm th}(h_1, h_2, T) = \frac{T^4}{2\pi^2} \sum_i n_i J_{B,F}\left(\frac{m_i^2(h_1, h_2)}{T^2}\right) \qquad \text{[Dolan, Jackiw '74]}$$

$$J_{B,F}(y) = \mp \sum_{l=1}^{\infty} \frac{(\pm 1)^l y}{l^2} K_2(\sqrt{y}l) \qquad \text{[Anderson, Halle '92]}$$

$$V_{\text{daisy}}(h_1, h_2, T) = -\frac{T}{12\pi} \sum_i n_i \left[\left(M_i^2(h_1, h_2, T) \right)^{\frac{3}{2}} - \left(m_i^2(h_1, h_2) \right)^{\frac{3}{2}} \right]$$

[Carrington '92; Arnold, Espinosa '93; Delaunay, Grojean, Wells '07] 29/85

Beyond SM models for FOPT

Higgs&GWs

Sphaleron energy and SFOEWPT condition

Sphaleron Energy & GW

xSM & SMEFT

Zhou, Bian*, Guo*, Phys.Rev.D 101 (2020) 091903(R)

Class III 2HDM 13 TeV cross sections at the LHC

Class III 2HDM Triple Higgs coupling

Class III 2HDM GW parameters

Dashed (solid) line depicts the $v_w = 0.1(1)$ scenarios.
Class III 2HDM Sphaleron energy and SFOEWPT condition

新物理&相变引力波

Event	time t	redshift z	temperature T
Inflation	$10^{-34} { m s}$	_	_
Baryogenesis	?	?	?
EW phase transition	$20 \mathrm{\ ps}$	10^{15}	$100 { m GeV}$
QCD phase transition	$20~\mu{ m s}$	10^{12}	$150 { m ~MeV}$
Dark matter freeze-out	?	?	?
Neutrino decoupling	1 s	6×10^9	$1 { m MeV}$
Electron-positron annihilation	6 s	2×10^9	$500 \ \mathrm{keV}$
Big Bang nucleosynthesis	$3 \min$	4×10^8	100 keV
Matter-radiation equality	60 kyr	3400	$0.75~{\rm eV}$
Recombination	260–380 kyr	1100 - 1400	0.26 – 0.33 eV
Photon decoupling	380 kyr	1000 - 1200	0.23 – 0.28 eV
Reionization	100–400 Myr	11 - 30	$2.67.0~\mathrm{meV}$
Dark energy-matter equality	9 Gyr	0.4	$0.33 \mathrm{~meV}$
Present	13.7 Gyr	0	0.24 meV

$$H = \sqrt{\frac{\rho}{3M_{\rm P}^2}} = 1.66 \times g_*^{1/2} \frac{T^2}{M_{\rm P}} \qquad g_*(T) = \sum_{i=\rm b} g_i \left(\frac{T_i}{T}\right)^4 + \frac{7}{8} \sum_{i=\rm f} g_i \left(\frac{T_i}{T}\right)^4$$

$$\frac{t}{1 \text{ s}} \approx 2.42 g_*^{-1/2} \left(\frac{1 \text{ MeV}}{T}\right)^2$$

Radiation dominate Universe: H = (1/2t)

Bounce solution

$$S_3(T) = \int 4\pi r^2 dr \left[\frac{1}{2} \left(\frac{d\phi_b}{dr}\right)^2 + V(\phi_b, T)\right]$$

$$\lim_{r \to \infty} \phi_b = 0 , \qquad \frac{d\phi_b}{dr}|_{r=0} = 0$$

Bubble nucleation

$$\Gamma \approx A(T)e^{-S_3/T} \sim 1$$

PT strength

$$\alpha \equiv \frac{1}{\rho_r} \left(\Delta V_{\rm eff}(\phi, T) - \frac{T}{4} \Delta \frac{\partial V_{\rm eff}(\phi, T)}{\partial T} \right)$$

Phase transition inverse duration

$$\frac{\beta}{H_n} = T \frac{d(S_3(T)/T)}{dT}|_{T=T_n}$$

GW parameters and **FOPT**

The probability, that a randomly chosen point is still in the false vacuum, given by

$$P(t) = e^{-I(t)} \qquad I(t) = \frac{4\pi}{3} \int_{t_c}^t dt' \Gamma(t') a(t')^3 r(t,t')^3$$

The fraction of the space which has already been converted to the broken phase

$$r(t,t') = \int_{t'}^t \frac{v_w(\tilde{t})d\tilde{t}}{a(\tilde{t})}$$

r(t,t'): the comoving radius of a bubble nucleated at t' propagated until a subsequent time t

a(t): the scale factor, $v_w(t)$: the wall velocity.

Using temperature T instead of time variable t, we have

$$I(T) = \frac{4\pi}{3} \int_{T}^{T_c} \frac{dT'}{H(T')} \Gamma(T') \frac{r(T,T')^3}{T'^4}$$

The transition completes when $P(t) \approx 0.7$, which leads to a percolation temperature T_p when

$$I(T_p) = 0.34$$
.

Bubble collisions 0

$$\Omega_{\rm col}h^2 = 1.67 \times 10^{-5} \left(\frac{H_*}{\beta}\right)^2 \left(\frac{\kappa\alpha}{1+\alpha}\right)^2 \left(\frac{100}{g_*}\right)^{1/3} \left(\frac{0.11v_b^3}{0.42+v_b^2}\right) \frac{3.8(f/f_{\rm env})^{2.8}}{1+2.8(f/f_{\rm env})^{3.8}}$$

$$f_{\rm env} = 16.5 \times 10^{-6} \left(\frac{f_*}{H_*}\right) \left(\frac{T_*}{100 {\rm GeV}}\right) \left(\frac{g_*}{100}\right)^{1/6} {\rm Hz}$$

Sound Wave 0

$$\Omega h_{\rm sw}^2(f) = 2.65 \times 10^{-6} (H_* \tau_{\rm sw}) \left(\frac{\beta}{H}\right)^{-1} v_b \left(\frac{\kappa_\nu \alpha}{1+\alpha}\right)^2 \left(\frac{g_*}{100}\right)^{-\frac{1}{3}} \left(\frac{f}{f_{\rm sw}}\right)^3 \left(\frac{7}{4+3 (f/f_{\rm sw})^2}\right)^{7/2}$$

phase transition duration:

$$\tau_{sw} = min\left[\frac{1}{H_*}, \frac{R_*}{\bar{U}_f}\right], \ H_*R_* = v_b(8\pi)^{1/3}(\beta/H)^{-1}$$

Root-mean-square fourvelocity of the plasma:

peak frequency:

$$\bar{U}_{f}^{2} \approx \frac{3}{4} \frac{\kappa_{\nu} \alpha}{1+\alpha}$$
$$f_{\rm sw} = 1.9 \times 10^{-5} \frac{\beta}{H} \frac{1}{v_{b}} \frac{T_{*}}{100} \left(\frac{g_{*}}{100}\right)^{\frac{1}{6}} \text{Hz}$$

MHD turbulence 0

$$\Omega h_{\rm turb}^2(f) = 3.35 \times 10^{-4} \left(\frac{\beta}{H}\right)^{-1} \left(\frac{\epsilon \kappa_{\nu} \alpha}{1+\alpha}\right)^{\frac{3}{2}} \left(\frac{g_*}{100}\right)^{-\frac{1}{3}} v_b \frac{(f/f_{\rm turb})^3 \left(1+f/f_{\rm turb}\right)^{-\frac{11}{3}}}{[1+8\pi f a_0/(a_*H_*)]}$$
peak frequency: $f_{\rm turb} = 2.7 \times 10^{-5} \frac{\beta}{H} \frac{1}{v_b} \frac{T_*}{100} \left(\frac{g_*}{100}\right)^{\frac{1}{6}} \text{Hz}$

 $\overline{\tau}$

GW sources

$$\Omega_{\rm GW}(f) = \begin{cases} \Omega_{\rm GW*} \left(\frac{f}{f_*}\right)^{n_{\rm GW1}} & \text{for } f < f_*, \\ \\ \Omega_{\rm GW*} \left(\frac{f}{f_*}\right)^{n_{\rm GW2}} & \text{for } f > f_*, \end{cases}$$

Table 1. Cosmological GW sources

source	$n_{ m GW1}$	n _{GW2}	f_* [Hz]	$\Omega_{ m GW}$
Phase transition (bubble collision)	2.8	-2	$\sim 10^{-5} \left(rac{f_{ m PT}}{eta} ight) \left(rac{eta}{H_{ m PT}} ight) \left(rac{T_{ m PT}}{100~{ m GeV}} ight)$	$\sim 10^{-5} \left(\frac{H_{\rm PT}}{\beta}\right)^2 \left(\frac{\kappa_{\phi}\alpha}{1+\alpha}\right)^2 \left(\frac{0.11v_w^3}{0.42+v_w^2}\right)$
Phase transition (turbulence)	3	-5/3	$\sim 3 imes 10^{-5} \left(rac{1}{v_w} ight) \left(rac{eta}{H_{ m PT}} ight) \left(rac{T_{ m PT}}{100~{ m GeV}} ight)$	$\sim 3 imes 10^{-4} \left(rac{H_{ m PT}}{eta} ight) \left(rac{\kappa_{ m turb}lpha}{1+lpha} ight)^{3/2} v_w$
Phase transition (sound waves)	3	-4	$\sim 2 \times 10^{-5} \left(\frac{1}{v_w}\right) \left(\frac{\beta}{H_{\rm PT}}\right) \left(\frac{T_{\rm PT}}{100 { m ~GeV}}\right)$	$\sim 3 \times 10^{-6} \left(\frac{H_{\rm PT}}{\beta}\right) \left(\frac{\kappa_v \alpha}{1+\alpha}\right)^2 v_w$
Preheating $(\lambda \phi^4)$	3	cutoff	$\sim 10^7$	$\sim 10^{-11} \left(\frac{g^2/\lambda}{100}\right)^{-0.5}$
Preheating (hybrid)	2	cutoff	$\sim rac{g}{\sqrt{\lambda}}\lambda^{1/4}10^{10.25}$.	$\sim 10^{-5} \left(rac{\lambda}{g^2} ight)^{1.16} \left(rac{v}{M_{ m pl}} ight)^2$
Cosmic strings (loops 1)	[1, 2]	$\left[-1,-0.1 ight]$	$\sim 3 imes 10^{-8} \left(rac{G \mu}{10^{-11}} ight)^{-1}$	$\sim 10^{-9} \left(\frac{G\mu}{10^{-12}} \right) \left(\frac{\alpha_{\text{loop}}}{10^{-1}} \right)^{-1/2} \text{ (for } \alpha_{\text{loop}} \gg \Gamma G \mu \text{)}$
Cosmic strings (loops 2)	[-1, -0.1]	0	$\sim 3 imes 10^{-8} \left(\frac{G\mu}{10^{-11}} \right)^{-1}$	$\sim 10^{-9.5} \left(\frac{G\mu}{10^{-12}} \right) \left(\frac{\alpha_{\text{loop}}}{10^{-1}} \right)^{-1/2} (\text{for } \alpha_{\text{loop}} \gg \Gamma G\mu)$
Cosmic strings (infinite strings)	[0, 0.2]	[0, 0.2]		$\sim 10^{-[11,13]} \left(\frac{G\mu}{10^{-8}}\right)$
Domain walls	3	-1	$\sim 10^{-9} \left(rac{T_{\mathrm{ann}}}{10^{-2} \mathrm{GeV}} ight)$	$\sim 10^{-17} \left(\frac{\sigma}{1 \mathrm{TeV}^3} \right)^2 \left(\frac{T_{\mathrm{ann}}}{10^{-2} \mathrm{GeV}} \right)^{-4}$
Self-ordering scalar fields	0	0	_	$\sim rac{511}{N} \Omega_{ m rad} \left(rac{v}{M_{ m pl}} ight)^4$
Self-ordering scalar $+$ reheating	0	-2	$\sim 0.4 \left(rac{T_R}{10^7 \ { m GeV}} ight)$	$\sim rac{511}{N} \Omega_{ m rad} \left(rac{v}{M_{ m pl}} ight)^4$
Magnetic fields	3	$lpha_B+1$	$\sim 10^{-6} \left(\frac{T_*}{10^2 \text{GeV}} \right)$	$\sim 10^{-16} \left(rac{B}{10^{-10} { m G}} ight)$
Inflation+reheating	~ 0	-2	$\sim 0.3 \left(\frac{T_R}{10^7 \text{ GeV}} \right)$	$\sim 2 imes 10^{-17} \left(rac{r}{0.01} ight)$
Inflation+kination	~ 0	1	$\sim 0.3 \left(rac{T_R}{10^7~{ m GeV}} ight)$	$\sim 2 imes 10^{-17} \left(rac{r}{0.01} ight)$
Particle prod. during inf.	-2ϵ	$-4\epsilon(4\pi\xi-6)(\epsilon-\eta)$		$\sim 2 \times 10^{-17} \left(\frac{r}{0.01} \right)$
2nd-order (inflation)	1	drop-off	$\sim 7 \times 10^5 \left(\frac{T_{\rm reh}}{10^9 {\rm ~GeV}} \right)^{1/3} \left(\frac{M_{\rm inf}}{10^{16} {\rm ~GeV}} \right)^{2/3}$	$\sim 10^{-12} \left(\frac{T_{\rm reh}}{10^9 {\rm GeV}} \right)^{-4/3} \left(\frac{M_{\rm inf}}{10^{16} {\rm GeV}} \right)^{4/3}$
2nd-order (PBHs)	2	drop-off	$\sim 4 imes 10^{-2} \left(rac{M_{ m PBH}}{10^{20} \ m g} ight)^{-1/2}$	$\sim 7 \times 10^{-9} \left(\frac{\mathcal{A}^2}{10^{-3}}\right)^2$
Pre-Big-Bang	3	$3-2\mu$	—	$\sim 1.4 imes 10^{-6} \left(rac{H_s}{0.15 M_{ m pl}} ight)^4$

One-step FOPT

PHYSICAL REVIEW LETTERS 126, 251102 (2021)

Magnetic Field and Gravitational Waves from the First-Order Phase Transition

Yuefeng Di, Jialong Wang, Ruiyu Zhou, and Ligong Bian[®] Department of Physics, Chongqing University, Chongqing 401331, China

Rong-Gen Cai[†]

CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100190, China, School of Physical Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China, and School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China

Jing Liu[‡]

School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China and School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Finite-T calculation

Lattice Simulation

 $\Phi(t, x)$: Higgs field doublet defined on sites;

Ui (t, x) and Vi (t, x) : SU(2) and U(1) link fields, defined on the link between the neighboring sites x and x + i , $\Phi(t, x)$, Ui (t, x) and Vi (t, x) are defined at time steps t + Δt , t + 2 Δt , . . .;

Conjugate momentum fields: $\Pi(t+\Delta t/2, x)$, F (t+ $\Delta t/2, x$) and E(t+ $\Delta t/2, x$), are defined at time steps t + $\Delta t/2$, t + 3 $\Delta t/2$.

Di, Wang, Zhou, Bian*, Cai*, Liu*, Phys.Rev.Lett. 126 (2021) 251102

PT process simulation

Field basis

Lattice implementation

$$\begin{split} \partial_0^2 \Phi = & D_i D_i \Phi - 2\lambda (|\Phi|^2 - \eta^2) \Phi - 3(\Phi^{\dagger} \Phi)^2 \Phi / \Lambda^2, \\ \partial_0^2 B_i = & -\partial_j B_{ij} + g' \operatorname{Im}[\Phi^{\dagger} D_i \Phi], \\ \partial_0^2 W_i^a = & -\partial_k W_{ik}^a - g \, \epsilon^{abc} W_k^b W_{ik}^c + g \operatorname{Im}[\Phi^{\dagger} \sigma^a D_i \Phi]. \\ \partial_0 \partial_j B_j - g' \operatorname{Im}[\Phi^{\dagger} \partial_0 \Phi] = 0, \\ \partial_0 \partial_j W_j^a + g \, \epsilon^{abc} W_j^b \partial_0 W_j^c - g \operatorname{Im}[\Phi^{\dagger} \sigma^a \partial_0 \Phi] = 0. \end{split}$$

$$\begin{split} \Pi(t+\Delta t/2,x) =& \Pi(t-\Delta t/2,x) + \Delta t \Big\{ \frac{1}{\Delta x^2} \sum_i \left[U_i(t,x) V_i(t,x) \Phi(t,x+i) \right. \\& \left. - 2\Phi(t,x) + U_i^{\dagger}(t,x-i) V_i^{\dagger}(t,x-i) \Phi(t,x-i) \right] - \frac{\partial U}{\partial \Phi^{\dagger}} \Big\} \\ \mathrm{Im}[E_k(t+\Delta t/2,x)] =& \mathrm{Im}[E_k(t-\Delta t/2,x)] + \Delta t \Big\{ \frac{g'}{\Delta x} \mathrm{Im}[\Phi^{\dagger}(t,x+k) U_k^{\dagger}(t,x) V_k^{\dagger}(t,x) \Phi(t,x)] \\& \left. - \frac{2}{g'\Delta x^3} \sum_i \mathrm{Im}[V_k(t,x) V_i(t,x+k) V_k^{\dagger}(t,x+i) V_i^{\dagger}(t,x) + V_i(t,x-i) V_k(t,x) V_i^{\dagger}(t,x+k-i) V_k^{\dagger}(t,x-i)] \Big\} \\ \mathrm{Ir}[i\sigma^m F_k(t+\Delta t/2,x)] =& \mathrm{Ir}[i\sigma^m F_k(t-\Delta t/2,x)] + \Delta t \Big\{ \frac{g}{\Delta x} \mathrm{Re}[\Phi^{\dagger}(t,x+k) U_k^{\dagger}(t,x) V_k^{\dagger}(t,x) i\sigma^m \Phi(t,x)] \\& \left. - \frac{1}{g\Delta x^3} \sum_i \mathrm{Ir}[i\sigma^m U_k(t,x) U_i(t,x+k) U_k^{\dagger}(t,x+i) U_i^{\dagger}(t,x) + i\sigma^m U_k(t,x) U_i^{\dagger}(t,x+k-i) U_k^{\dagger}(t,x-i)] \Big\}, \end{split}$$

Di, Wang, Zhou, Bian*, Cai*, Liu*, Phys.Rev.Lett. 126 (2021) 251102

GW from Bubble collisions

scalar field + fluid system

The full energy-momentum tensor into two components, one for the fluid $T^{\mu\nu}$ and one for the Higgs $T^{\mu\nu}$

$$T_{\rm f}^{\mu\nu} = (e+p_1)u^{\mu}u^{\nu} + p_1g^{\mu\nu},$$

$$T_{\phi}^{\mu\nu} = \partial^{\mu}\phi \partial^{\nu}\phi - g^{\mu\nu} \left(\frac{1}{2}(\partial\phi)^2 + V_0(\phi)\right),$$

Fluid pressure is the total contribution from all particles

$$p_1(\phi, T) = \frac{\pi^2}{90} g_{\text{eff}} T^4 - V_1(\phi, T) = -\sum_B f_B(m(\phi), T) - \sum_F f_F(m(\phi), T)$$

Thermally corrected potential

 $V_T(\phi) = V_0(\phi) + V_1(\phi, T)$

$$\partial_{\mu}T_{\phi}^{\mu\nu} = +\partial^{\nu}\phi \frac{\mathrm{d}m^{2}}{\mathrm{d}\phi} \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \frac{1}{2E_{\vec{p}}} f(p,x) \qquad \Box \phi - V_{T}'(\phi) = -\frac{\mathrm{d}m^{2}}{\mathrm{d}\phi} \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \frac{1}{2E_{\vec{p}}} \delta f(p,x)$$

Boltzmann equation with collisions and external forces
$$f(p,x) = f^{\mathrm{eq}}(p,x) + \delta f(p,x)$$

This leaves us with the equation of motion

$$\Box \phi - V_T'(\phi) = -\tilde{\eta} \frac{\mathrm{d}m^2}{\mathrm{d}\phi} u^{\mu} \partial_{\mu} \phi \qquad \text{where} \qquad \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \frac{1}{2E_{\vec{p}}} \delta f(p, x) = \tilde{\eta} u^{\mu} \partial_{\mu} \phi \,,$$

Local equilibrium and perfect fluid

scalar field + fluid system

With $p(\phi,T)=p_1(\phi,T)-V_0(\phi)$, we have $T_f^{\mu\nu} = (e+p)u^{\mu}u^{\nu} + pg^{\mu\nu}$,

The full energy-momentum tensor is conserved $\partial_{\mu} \left(T_{f}^{\mu\nu} + T_{\phi}^{\mu\nu} \right) = 0$ which yields $\partial_{\mu} T_{f}^{\mu\nu} + V_{T}'(\phi) \partial^{\nu} \phi = -\partial^{\nu} \phi \frac{dm^{2}}{d\phi} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{1}{2E_{\vec{p}}} \delta f(p,x)$

Consider the scalar product of *u* with both sides

$$u_{\nu}\partial_{\mu}(wu^{\mu}u^{\nu} + pg^{\mu\nu}) + V'_{T}(\phi)u \cdot \partial \phi = \tilde{\eta}(u \cdot \partial \phi)^{2}$$

Here, w = e + p = Ts is the enthalpy density, and s = dp/dT is the entropy density

scalar field + fluid system

Hydrodynamic equations for a single bubble

$$(\xi - v)\frac{\partial_{\xi}e}{w} = 2\frac{v}{\xi} + [1 - \gamma^2 v(\xi - v)]\partial_{\xi}v,$$

 $(1 - v\xi)\frac{\partial_{\xi}p}{w} = \gamma^2(\xi - v)\partial_{\xi}v.$

Introducing sound speed $c_s^2 = (dp/dT)/(de/dT)$, we have

$$2\frac{v}{\xi} = \gamma^2 (1 - v\xi) \left[\frac{\mu^2}{c_s^2} - 1\right] \partial_{\xi} v,$$
$$\mu(\xi, v) = \frac{\xi - v}{1 - \xi v}$$

 $\xi = r/t$, r is the distance from the center of the bubble and t is the time since nucleation,

 $v(\xi_w)$ is the fluid velocity at the location of the bubble wall and $\xi_w = v_w$ is the wall velocity.

 μ is the fluid velocity at ξ in a frame that is moving outward at speed ξ

From the conservation of the energy momentum tensor accross the interface, we have the boundary conditions:

$$v_+v_- = \frac{p_+ - p_-}{e_+ - e_-}, \quad \frac{v_+}{v_-} = \frac{e_- + p_+}{e_+ + p_-},$$

+(-) meaning in front (behind) of the bubble wall (in the rest frame of the bubble wall).

Bubble dynamics and fluid *(a)* **FOPT**

symmetric phase
$$p_{+} = \frac{1}{3}a_{+}T_{+}^{4} - \epsilon$$
, $e_{+} = a_{+}T_{+}^{4} + \epsilon$, Bag equation of state
broken phase $p_{-} = \frac{1}{3}a_{-}T_{-}^{4}$, $e_{-} = a_{-}T_{-}^{4}$, the false-vacuum energy resulting from the Higgs potential

Different number of light degrees of freedom across the wall, different values a_+ and a_- (with $a_+ > a_-$) and different temperatures on both sides of the wall

deflagration walls have a shock wave propagating in front of the wall, detonation walls have a rarefaction wave behind it, hybrid walls have both shock and rarefaction waves.

真空泡碰撞、合并、流体演化产生引力波

真空泡碰撞、合并、流体演化产生引力波

$$\begin{aligned} \tau_{ij}^{\phi} &= \partial_i \phi \partial_j \phi, \quad \tau_{ij}^{\mathrm{f}} = W^2 (\epsilon + p) V_i V_j \\ (\bar{\epsilon} + \bar{p}) \overline{U}_{\mathrm{f}}^2 &= \frac{1}{\mathcal{V}} \int_{\mathcal{V}} d^3 x \tau_{ii}^{\mathrm{f}} \\ (\bar{\epsilon} + \bar{p}) \overline{U}_{\phi}^2 &= \frac{1}{\mathcal{V}} \int_{\mathcal{V}} d^3 x \tau_{ii}^{\phi} \end{aligned}$$

$$\ddot{u}_{ij} - \nabla^2 u_{ij} = 16\pi G(\tau^{\phi}_{ij} + \tau^{\mathrm{f}}_{ij})$$

$$h_{ij}(\mathbf{k}) = \lambda_{ij,lm}(\hat{\mathbf{k}})u_{lm}(t,\mathbf{k})$$

Bian, Jia, Zhao, Zhu, arxiv: 2011. XXXXX

正反物质不对称&强一阶电弱相变

电弱重子数产生机制

Bian, Liu, Shu, Phys.Rev.Lett. 115 (2015) 021801

Bubble wall velocity with the EW plasma

Boltzmann equation which dictates the time evolution of the particle distribution

The particle distribution Wall frame
$$\partial_{\vec{p}} f_a = C[f_a],$$
 (a)

$$\frac{df_a}{dt} = \partial_t f_a + \dot{\vec{x}} \cdot \partial_{\vec{x}} f_a + \dot{\vec{p}} \cdot \partial_{\vec{p}} f_a = C[f_a],$$

The *fluid ansatz* for the distribution function is written as

$$f pprox f_v - f'_v \delta \bar{X} + \delta f_u + \mathcal{O}(\delta f^2), \qquad f_v = rac{1}{e^{\beta \gamma (E - v p_z)} \pm 1}, \quad f'_v \equiv rac{df_v}{d\beta \gamma E},$$

 $\delta \bar{X} = \mu + \beta \gamma \delta \tau (E - v p_z)$ perturbations from equilibrium

 μ : chemical potential, $\delta \tau$: temperature perturbation, δf_{u} : the velocity perturbation The force and group velocity

$$\dot{z} \equiv \frac{\partial \omega}{\partial p_z} = \frac{p_z}{E} + s \frac{m^2 \theta'}{2E^2 E_z}, \qquad \dot{p_z} \equiv -\frac{\partial \omega}{\partial z} = -\frac{(m^2)'}{2E} + s \frac{(m^2 \theta')'}{2EE_z}, \qquad (b)$$

ω is the energy of the WKB wave packet and $E_z^2 = p_z^2 + m^2$

Inserting the force and group velocity of eq. (b) into the Boltzmann equation (a), we have

$$\left[\frac{p_z}{E}\partial_z - \frac{(m^2)'}{2E}\partial_{p_z}\right] \left(f_v - f'_v\delta\bar{X} + \delta f_u\right) = C[f]$$

PHYSICAL REVIEW D 102, 063516 (2020)

Bubble wall velocity with the EW plasma

With $q = (\mu, \delta \tau, u)^T$, the transport equations take the form

$$A_v \vec{q}' + \Gamma \vec{q} = S,$$

 Γ : the collision term C in the above equation

$$A_{v} = \begin{pmatrix} C_{v}^{1,1} & \gamma v C_{0}^{-1,0} & D_{v}^{0,0} \\ C_{v}^{0,1} & \gamma (C_{v}^{-1,1} - v C_{v}^{0,2}) & D_{v}^{-1,0} \\ C_{v}^{2,2} & \gamma (C_{v}^{1,2} - v C_{v}^{2,3}) & D_{v}^{1,1} \end{pmatrix},$$

$$S = \gamma v \frac{(m^{2})'}{2T^{2}} \begin{pmatrix} C_{v}^{1,0} \\ C_{v}^{0,0} \\ C_{v}^{2,1} \end{pmatrix},$$

Integrals of the particle distribution functions.

Source term

The Higgs EOM in the presence of out of equilibrium particle populations

$$E_{h} \equiv \Box \phi + \frac{dV_{\text{eff}}(\phi, T)}{d\phi} + \sum_{i} \frac{dm_{i}^{2}}{d\phi} \int \frac{d^{3}p}{(2\pi)^{3}} \frac{\delta f_{i}(p, x)}{2E} = 0,$$

$$M_{1} \equiv \int dz E_{h} h' dz = 0,$$

$$M_{2} \equiv \int dz E_{h} h' [2h(z) - h_{0}] dz = 0.$$

$$h(z) = \frac{h_{0}}{2} \left[\tanh\left(\frac{z}{L_{h}}\right) + 1 \right]$$
The total pressure on the wall should be zero
$$Bubble \text{ profile}$$

EWBG with the EW plasma

Boltzmann equation

CP-violating complex mass term

 $(v_g \partial_z + F \partial_{p_z})f = \mathcal{C}[f]$ $\hat{m}(z) = m(z)e^{i\gamma^5\theta(z)}$

 $\mu \equiv \mu_e + s_{k_0} \mu_o,$ $\delta f \equiv \delta f_e + s_{k_0} \delta f_o.$

Transport equations

$$Aw' + (m^2)'Bw = S + \delta C,$$

collision te
w=(μ , u)^T

$$A = \begin{pmatrix} -D_1 & 1 \\ -D_2 & R \end{pmatrix}, \quad B = \begin{pmatrix} -v_w \gamma_w Q_1 & 0 \\ -v_w \gamma_w Q_2 & \bar{R} \end{pmatrix},$$

 $v_g = \frac{p_z}{E_w},$ $F = -\frac{(m^2)'}{2E_w} + ss_{k_0}\frac{(m^2\theta')'}{2E_wE_{wz}},$

Source term $S = (S_1, S_2)^T$ $S_{h\ell}^o = v_w \gamma_w s [(m^2 \theta')' Q_\ell^{8o} - (m^2)' m^2 \theta' Q_\ell^{9o}],$

chemical potential for left handed baryon number

$$\mu_{B_L} = \frac{1}{2}(1+4D_0^t)\mu_{t_L} + \frac{1}{2}(1+4D_0^b)\mu_{b_L} + 2D_0^t\mu_{t_R}$$

$$\eta_B = \frac{405\,\Gamma_{\rm sph}}{4\pi^2 v_w \gamma_w g_* T} \int dz\,\mu_{B_{\rm L}} f_{\rm sph}\,e^{-45\Gamma_{\rm sph}|z|/4v_w},$$

VEV- insertion source tends to predict a larger baryon asymmetry than the WKB source by a factor of ~10.

Phys. Rev. D **101** (2020) 063525

Freeze-in and Freeze-out

2-step FOPT

DM & EWBG

Jiang, Bian*, Huang, Shu 16

SM+2 real scalars Chao, Guo, Shu 17,...

FIMP DM and Two-step FOPT

60/85

Collider search for 2step FOPT

Sh@ILC/CEPC

$$V_0 = -\mu^2 |H|^2 + \lambda |H|^4 + \frac{1}{2}\mu_S^2 S^2 + \lambda_{HS} |H|^2 S^2 + \frac{1}{4}\lambda_S S^4$$
$$V_{\text{eff}}(h,T) = V_0(h) + V_0^{CW}(h) + V_T(h,T) + V_r(h,T)$$

Curtin, Meade, Yu, 1409.0005

Craig, Englert, and McCullough, 1305.5251

Huang, Long, and Wang, 1608.06619

Collider search for 2 step FOPT

Goncalves, Han, and Mukhopadhyay, 1710.02149

See also: Lee, Park, and Qian, 1812.02679

LIGO-Virgo search for FOPT

High-scale PT

Romero, Martinovic, Callister, Guo, et al., Phys.Rev.Lett. 126 (2021) 15, 151301

LIGO-Virgo O3

PPTA search for FOPT

PPTA DR2 dataset constrain low-scale phase transition, dark sector and QCD scale FOPT

PHYSICAL REVIEW LETTERS 127, 251303 (2021)

Editors' Suggestion

Featured in Physics

Constraining Cosmological Phase Transitions with the Parkes Pulsar Timing Array

Xiao Xue[®],^{1,2,3} Ligong Bian[®],^{4,5,*} Jing Shu,^{1,2,6,7,8,†} Qiang Yuan[®],^{9,10,7,‡} Xingjiang Zhu[®],^{11,12,13,§} N. D. Ramesh Bhat,¹⁴ Shi Dai[®],¹⁵ Yi Feng[®],¹⁶ Boris Goncharov[®],^{11,12} George Hobbs,¹⁷ Eric Howard[®],^{17,18} Richard N. Manchester[®],¹⁷ Christopher J. Russell[®],¹⁹ Daniel J. Reardon[®],^{12,20} Ryan M. Shannon[®],^{12,20} Renée Spiewak[®],^{21,20} Nithyanandan Thyagarajan[®],²² and Jingbo Wang[®],²³

Hypothesis Pulsar Co		Common	HD process FOPT spectrum	Bayes Factors	Parameter Estimation (median and 1- σ interval)	
noise	red process	$T_*/MeV, \alpha \times 10^3, \beta/H_*$			$A_{\text{comred}}, \gamma_{\text{comred}}$	
H0:Pulsar Noise	yes	no	no			
H1:Common Red	yes	yes	no	103.5 (against H0)		$-14.45^{+0.62}_{-0.64}, 3.31^{+1.36}_{-1.53}$
H2:FOPT	yes	no	yes (full HD)	101.8 (against H0)	$7.4^{+11.9}_{-4.7}, 271^{+165}_{-92}, 9.9^{+11.4}_{-5.4}$	
H3:FOPT1	yes	yes	yes (full HD)	1.04 (against H1)	$9.6^{+232.2}_{-9.2}, 3.8^{+27.9}_{-3.4}, 854^{+9622}_{-782}$	$-14.51_{-0.68}^{+0.64}, 3.36_{-1.54}^{+1.39}$
H4:FOPT2	yes	yes	yes (no-auto HD)	0.96 (against H1)	$10.9^{+290.5}_{-10.6}, 3.2^{+19.9}_{-2.8}, 1053^{+11256}_{-962}$	$-14.45^{+0.62}_{-0.64}, 3.27^{+1.37}_{-1.54}$

TABLE I: Description of hypotheses tested in this work and the Bayes factors between them.

64/85

Two-step FOPT potential

Туре-а

Motivated for DM&EWBG, see:1804.06813,1702.06124,1609.07143, 1605.08663, 1605.08663,etc

65/85

Two-step PT with the second-step being FOPT

Zhao, Di, Bian, Cai,2204.04427

Two-step PT with the second-step being FOPT

Type-a

Two-step PT with first-step being FOPT

Classical conformal + Dimensional transmutation

Zhao, Di, Bian, Cai, 2204.04427

Two-step PT with first-step being FOPT

Two-step PT with first-step being FOPT

Type-b

Without Global U(1)

Zhao, Di, Bian, Cai, 2204.04427

Cosmic string

通常形成于GUTs

SO(10)	SO(10)	SO(10)	SO(10)
unwa topolo defe		proton decays	strings topolc
nted gical cts	inflation	$G_{422} \times Z_2^C$	in SUS
G_{51}	G_{51}^{flip}	G_{422} $G_x \times Z_2^C$	▼ SUSY G ₅₁
proton decays	proton decays	inflation	↓ ↓ °
		G_x G_x	SU(5)
inflation	string	inflation st.	proton decays
G'_{3211}	<i>°</i>	G ₃₂₁₁	inflation
gravitation	al waves gen	erated via cosmic string	
$G_{\rm SM}$	$G_{\rm SM}$	G_{SM}	G_{SM}

宇宙弦成圈

相变后U(1) 对称性自发破缺

宇宙弦

T. W. B. Kibble

引力波辐射

Yann Gouttenoire et al JCAP07(2020)032

NANOGrav 12.5-yr dataset & cosmic string

The NANOGrav 12.5 yr Data Set: Search for an Isotropic Stochastic				#1
Gravitational-wave Background				
NANOGrav Collaboration • Zaven Arzoumanian (CRESST, Greenbelt and NASA, Goddard) et al. (Sep 9, 2020) Published in: <i>Astrophys.J.Lett.</i> 905 (2020) 2, L34 • e-Print: 2009.04496 [astro-ph.HE]				
🖟 pdf	🖉 links	ି DOI	[→ cite	

On the Evidence for a Common-spectrum Process in the Search for the	‡2
Nanohertz Gravitational-wave Background with the Parkes Pulsar Timing Array	
Boris Goncharov (Swinburne U., Ctr. Astrophys. Supercomput. and Monash U. and GSSI, Aquila and Gran	ı
Sasso), R.M. Shannon (Swinburne U., Ctr. Astrophys. Supercomput. and Monash U.), D.J.	
Reardon (Swinburne U., Ctr. Astrophys. Supercomput. and Monash U.), G. Hobbs (Australia, CSIRO,	
Epping), A. Zic (Australia, CSIRO, Epping and Macquarie U.) et al. (Jul 26, 2021)	
Published in: Astrophys.J.Lett. 917 (2021) 2, L19 • e-Print: 2107.12112 [astro-ph.HE]	

🖾 pdf 🕜 DOI 🖃 cite

→ 94 citations
NANOGrav 12.5-yr dataset & cosmic string

John Ellis etal, Phys.Rev.Lett.126.041304(2021)

Bian, Cai, Liu, Zhou, Phys. Rev. D 103 (2021) 8, L081301

Hypothesis	Pulsar	CPL	HD process	Bayes Factors –	Parameter Estimation (1 σ interval)		Hypothesis	Pulsar	CPL	HD process	Bayes Eastors	Parameter Estimation (1 σ interval)	
	Noise	Process	CS spectrum		$\log_{10} G\mu$	$\log_{10} A_{\mathrm{CPL}}, \gamma_{\mathrm{CPL}}$	Hypothesis	Noise	process	CS spectrum	Bayes Factors	$\log_{10} G\mu$	$\log_{10} A_{\mathrm{CPL}}, \gamma_{\mathrm{CPL}}$
H0:Pulsar Noise	\checkmark						H0:Pulsar Noise	\checkmark					
H1:CPL	\checkmark	\checkmark		10 ^{3.2} (/H0)		$-14.48^{+0.62}_{-0.64}, 3.34^{+1.37}_{-1.53}$	H1:CPL	\checkmark	\checkmark		10 ^{3.2} (/H0)		$-14.48^{+0.62}_{-0.64}, 3.34^{+1.37}_{-1.53}$
H2:CS	\checkmark		√(full HD)	10 ^{3.1} (/H0)	$-10.38^{+0.21}_{-0.21}$		H2:CS	\checkmark		√(full HD)	10 ^{3.3} (/H0)	$-10.89^{+0.14}_{-0.17}$	
H3:CS1	\checkmark	\checkmark	√(full HD)	1.96 (/H1)	< -10.02 (95% C.L.)	$-15.58^{+1.21}_{-1.64}, 3.11^{+1.95}_{-2.02}$	H3:CS1	\checkmark	\checkmark	√(full HD)	1.62 (/H1)	< -10.64 (95% C.L.)	$-15.44^{+1.18}_{-1.74}, 3.08^{+1.94}_{-1.99}$
H4:CS2	\checkmark	\checkmark	√(no-auto HD)	0.60 (/H1)	< -10.54 (95% C.L.)	$-14.61^{+0.58}_{-0.59}$, $3.63^{+1.24}_{-1.40}$	H4:CS2	\checkmark	\checkmark	√(no-auto HD)	0.55 (/H1)	< -11.04 (95% C.L.)	$-14.57^{+0.58}_{-0.59}$, $3.54^{+1.24}_{-1.41}$

TABLE I: Hypotheses, Bayes factors, and estimated model parameters for the BOS model.

TABLE II: Hypotheses, Bayes factors, and estimated model parameters for the LRS model.

Bian*, Shu*, Wang, Yuan*, Zong, 2205.07293

Cosmic string simulation

FOPT

CS: SSB of U(1) symmetry

The one-dimension topological defects: cosmic string

FIG. 1. Three bubbles of the broken symmetry phase $(\rho = \eta)$ colliding. If the phase change of the scalar field around the loop γ is $\pm 2\pi$, a string (or antistring) is formed. If the phases α_i are ordered, then the requirement for a string is $\alpha_1 + \pi < \alpha_3 < \alpha_2 + \pi$.

ξstr of the string network is essentially the typical bubble diameter for SFOPT???

Aust. J. Phys., 1997, 50, 697–722

Phys.Rev.D 49 (1994) 1944-1950

Motivated for strong CP and axion DM

Zhao, Di, Bian*, Cai*, 2204.04427

Bubbles and vortex&anti-vortex

Arrows: phase distribution

Zombie DM and CS GW

$$\mathcal{L}_{B-L} = \sum_{i} \bar{\nu}_{R}^{i} i \vec{D} \nu_{R}^{i} - \frac{1}{2} \sum_{i,j} \left(\lambda_{R}^{ij} \bar{\nu}_{R}^{i,c} \Phi \nu_{R}^{j} + \text{h.c.} \right) - \sum_{i,j} \left(\lambda_{D}^{ij} \bar{\ell}_{L}^{i} \vec{H} \nu_{R}^{j} + \text{h.c.} \right)$$

$$+ D_{\mu} \Phi^{\dagger} D^{\mu} \Phi - \lambda_{\phi} \left(|\Phi|^{2} - \frac{v_{\phi}^{2}}{2} \right)^{2} - \frac{1}{4} Z_{\mu\nu}^{\prime} Z^{\prime\mu\nu} ,$$

$$\mathcal{L}_{DM} = \bar{\psi} \left(i \vec{D} - M_{\psi} \right) \psi + \frac{1}{2} \partial_{\mu} S \partial^{\mu} S - \frac{1}{2} M_{S}^{2} S^{2} + \left(\lambda_{1} S \bar{\psi} \nu_{R} + \text{h.c.} \right) + \lambda_{2} S \bar{\psi} \psi ,$$

$$\int_{0}^{10^{-6}} \frac{10^{0}}{0^{-5}} \int_{0}^{10^{-16}} \frac{10^{0}}{0^{-6}} \int_{\frac{1}{4} Z_{\mu\nu}^{\prime} Z^{\prime\mu\nu}} \frac{10^{0}}{0^{-5}} \int_{0}^{10^{-16}} \frac{10^{0}}{0^{-5}} \int_{0}^{10^{-16}} \frac{10^{0}}{0^{-5}} \int_{0}^{10^{-16}} \frac{10^{0}}{0^{-5}} \int_{0}^{10^{-16}} \frac{10^{0}}{0^{-25}} \int_{0}^{10^{-26}} \frac{10^{0}}{0^{-25}} \int_{0}^{10^{-26}} \frac{10^{0}}{0^{-2}} \int_{0}^{10^{-2}} \frac{10^{0}}{0^{-2}} \int_{0}^{10^$$

	$ u_R^{1,2}$	$ u_R^3 $	Φ	ψ	S
B-L	-1	-1	2	-1	0
\mathbb{Z}_2	1	-1	1	-1	1

zombie collision

$$\nu_R + \psi \to \psi + \psi, \quad \nu_R + \psi \to \psi + \bar{\psi},$$

Entropy dilution

$$\mathcal{L}_6 = \frac{1}{\Lambda^2} \sum_{i,j,j'} (\bar{\psi}^c u_R^i) (\bar{d}_R^{j,c} d_R^{j'}) + \text{h.c.}$$

Bian,Liu,Xie,21

Zombie DM and CS GW

$$\begin{split} \Omega_{\rm GW}(f)h^2 &= \frac{8\pi h^2}{3M_{\rm Pl}^2 H_0^2} G\mu^2 f \sum_{n=1}^{\infty} C_n(f) P_n \\ G\mu &\sim \frac{v_\phi^2}{M_{\rm Pl}^2} \sim 10^{-10} \times \left(\frac{M_{\nu_R}/\lambda_R}{10^{14}\,{\rm GeV}}\right)^2 \\ C_n &= \frac{2n}{f^2} \int_0^\infty \frac{dz}{H(z)(1+z)^6} n_{\rm CS} \left(\frac{2n}{(1+z)f}, t(z)\right) \\ n_{\rm CS}^r(\ell, t) &= \frac{0.18}{t^{3/2} (\ell + \Gamma G \mu t)^{5/2}}, \quad (\ell \leqslant 0.1\,t); \\ n_{\rm CS}^{r,m}(\ell, t) &= \frac{0.27 - 0.45(\ell/t)^{0.31}}{t^2 (\ell + \Gamma G \mu t)^2}, \quad (\ell \leqslant 0.18\,t) \end{split}$$

Bian,Liu,Xie, JHEP 11 (2021) 175

FIMP DM and CS GW

DW & Discrete symmetry

Kibble mechanism

DW & GW

Domain wall decay before they overclose Universe

$$\sigma_{wall} < 2.93 \times 10^4 \text{TeV}^3 \mathcal{A}^{-1}(\frac{0.1 \text{sec}}{t_{dec}})$$

Domain wall decay before the BBN

$$t_{dec} \approx \mathcal{A}\sigma_{wall}/(\Delta V)$$

$$\Delta V \gtrsim 6.6 \times 10^{-2} \mathrm{MeV}^4 \mathcal{A} \left(\frac{\sigma_{wall}}{1 \mathrm{TeV}^3} \right)$$

2

1309.5001

82/85

DW GW & DM

 $\mathcal{L} \supset m_{\psi_1} \bar{\psi}_1 \psi_1 + m_{\psi_2} \bar{\psi}_2 \psi_2 + y_s S \psi_1 \bar{\psi}_2 + y_s S^{\dagger} \bar{\psi}_1 \psi_2$

$$V = \mu_S^2 |S|^2 + \lambda_S |S|^4 + \frac{\mu_3}{2} (S^3 + S^{\dagger 3})$$

Deng, Liu, Yang, Zhou, Bian, Phys. Rev. D 103 (2021) 5, 055013

$$\times \left(\frac{1 \text{ TeV}^3}{\sigma_{\text{wall}}}\right)^{1/2} \left(\frac{\Delta V}{1 \text{ MeV}^4}\right)^{1/2}$$

Lattice simulation

- PT GW simulation with holography models
- Topological defects: Magnetic monopoles, cosmic strings, domain walls

Pheno

- 1. EWSB and GW from FOPT
- Probing the Higgs Potential shape and EWPT patterns with GW production and Colliders complementarily
 - 2. BAU and GW from FOPT
- Sphaleron process, bubble velocity
- 3. DM and GW from FOPT
- DM and high/low-scale PT, DM out-of-equilibrium & FOPT, PBH DM&FOPT

