格点QCD与粲物理

刘朝峰 liuzf@ihep.ac.cn

高能物理研究所 2022.11.19

1. 研究动机

2. 格点量子色动力学简介

3. 粲物理中的格点QCD研究

粒子物理标准模型(Standard Model)

- ・ 2012年发现希格斯玻色子("上帝粒子")
- ・ BEH玻色子 (Brout-Englert-Higgs)
- ・ 汤川耦合使费米子获得质量
- ・ 希格斯粒子有自相互作用

- 电磁相互作用、弱相互作用、强相互作用
- ・ 不包括引力相互作用
- ・ 中微子无质量
- 相互作用由规范玻色子传递
- ・ 规范对称性: SU(2)_L × U(1)_Y 电弱统一理论, SU(3)_C 量子
 色动力学

2013物理诺贝尔奖: 恩格勒, 希格斯

http://www.testandmeasurementtips.com/wpcontent/uploads/2015/04/standard-model.jpg

超出标准模型的物理规律(新物理)

- 太阳中微子振荡(1998, 2001年),中微子通量与标准太阳模型预言不一致
- 大气层中微子振荡,从大气层中放射出的µ中微子与电子中微子比例的偏差
- 核反应堆中微子振荡(2002年)
- 2012年3月,中国大亚湾中微子实验发现第三种中微子振荡模式
- 21世纪初的两朵"乌云"
 - 暗物质: 星系的旋转速度比引力理论的预言快, 需要额外的引力来源
 - 暗能量: 宇宙膨胀速度越来越快, 需要某种反引力的东西
- 标准模型只能解释宇宙中不到5%的物质
- 正-反物质的不对称性
- 引力没有被包括
- LHC上的希格斯粒子不一定是标准模型里的希格斯粒子
- 强相互作用和电弱相互作用没有统一
- 大统一理论: 质子会衰变

- 2002年诺贝尔物理学奖,小柴昌俊,"在天体物 理学领域做出的先驱性贡献,其中包括在探测宇 宙中微子和发现宇宙X射线源方面的成就"
 2015年诺贝尔物理学奖,麦克唐纳,梶田隆章,
 - "发现中微子振荡,并且因此证明中微子具有质量"

新物理寻找

高能量前沿

- · 直接搜寻超出标准模型的新粒子
- ・比如在大型强子对撞机 (LHC) 上搜寻超对称粒子
- ・ 建造更高能量的机器: ILC, SPPC...

高亮度/精度前沿

- ・ 在低能区做精确测量,寻找与标准模型的细微偏差,比如B介子工厂,北京正负电子对撞机 上的北京谱仪 (BES),超级陶-粲工厂 ……
- ・ 高亮度(大统计量):LHCb, 超级B工厂, CEPC
- ・ 寻找暗物质 (CDEX, PandaX, 悟空……)
- ・ B物理中看到的偏离标准模型的迹象: B anomaly
 - · 轻子普适性(三代轻子除质量不同,其它性质一样)
- · 缪子反常磁矩,实验测量与标准模型偏离迹象
- ・ W玻色子质量反常(CDF II 2022)

2022/11/19 刘朝峰

5

高能对撞机物理

・ LHC及下一代对撞机精确测量 (微扰QCD高阶精确计算)

高精度前沿(各种强子矩阵元的精确计算)

- ・ 在低能区做精确测量,寻找与标准模型的细微偏差,比如B介子工厂,北京正负电子对撞机上 的北京谱仪 (BES),LHCb,超级B工厂,超级陶-粲工厂......(衰变常数,形状因子等)
- ・ 寻找暗物质 (可由QCD计算核子标量荷、张量荷等)

标准模型留下的作业

- ・强子谱和奇特强子(X, Y, Z态, 胶球、混杂态)
- ・理解质子的内部结构:质量来源,自旋来源,三维图像
- ・ QCD相结构,

◆ QCD在低能区不能微扰求解

量子色动力学 (QCD)

●作用量:

$$S_{QCD} = \int d^4x \left\{ -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu a} + \sum_{f=1}^{n_f} \bar{\psi}_f (i\gamma^\mu D_\mu - m_f) \psi_f \right\}$$

这里f是夸克的味道,夸克场的自旋和色指标没有显式写出来。 $D_{\mu} = \partial_{\mu} - igA_{\mu}$ 。

- 单独考虑QCD, n_f个夸克质量是自由参数。另外还有一个参数是耦合常数g。
- 要和物理世界做比较,我们需要先确定nf+1个自由参数。
- 夸克被禁闭在强子里,因此夸克质量是通过强子的物理质量来确定的。
- 高能实验和微扰计算告诉我们,QCD是描写夸克、胶子间强相互作用的正确理论 (比如SLAC的深度非弹实验和理论计算的对比)

量子色动力学(LQCD)

- ・ 耦合系数随能标的跑动(最低阶计算): α_s(Q) =
 Λ_{ocp} ≈ 0.3 GeV
- 低能标下, $\alpha_s(Q) \ge 1$
- ・ 低能标下QCD不能微扰求解
- ・ 强子(介子和重子)都是色荷中性的,目前实验没直接观测到
 带色荷的自由粒子

 $b_0 \ln \theta$

- ・ 如何将强子与QCD的基本自由度夸克、胶子联系起来?
- ・ 格点QCD用数值模拟的办法,非微扰地研究低能QCD性质
- ・ 自由参数和QCD一样
- ・确定自由参数_{α。} (和格距对应) 和夸克(流)质量后, 即可给 出其他物理量

Confinement of quarks* Kenneth G. Wilson Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14850 (Received 12 June 1974) A mechanism for total confinement of quarks, similar to that of Schwinger, is defined which requires the existence of Abelian or non-Abelian gauge fields. It is shown how to quantize a gauge field theory on a discrete lattice in Euclidean space-time, preserving exact gauge invariance and treating the gauge

fields as angular variables (which makes a gauge-fixing term unnecessary). The lattice gauge theory has a computable strong-coupling limit; in this limit the binding mechanism applies and there are no free quarks. There is unfortunately no Lorentz (or Euclidean) invariance in the strong-coupling limit. The strong-coupling expansion involves sums over all quark paths and sums over all surfaces (on the lattice)

joining quark paths. This structure is reminiscent of relativistic string models of hadrons.

格点量子色动力学(LQCD, 1974)

•
$$\langle \mathbf{0} | T(\boldsymbol{\psi}(x) \overline{\boldsymbol{\psi}}(y)) | \mathbf{0} \rangle = \frac{\int DA_{\mu} D\overline{\boldsymbol{\psi}} D\psi \boldsymbol{\psi}(x) \overline{\boldsymbol{\psi}}(y) e^{i \int \mathcal{L}_{QCD} d^{4}x}}{\int DA_{\mu} D\overline{\boldsymbol{\psi}} D\psi e^{i \int \mathcal{L}_{QCD} d^{4}x}}$$

・ 4维闵可夫斯基时空 \rightarrow 4维欧几里德空间 ($\tau = it$)

•
$$\langle \boldsymbol{O} \rangle = \frac{\int DA_{\mu} D\overline{\psi} D\psi \boldsymbol{O}[A, \overline{\psi}, \psi] e^{-\int \mathcal{L}_{QCD} d^{4}x}}{\int DA_{\mu} D\overline{\psi} D\psi e^{-\int \mathcal{L}_{QCD} d^{4}x}}, \quad \mathcal{L}_{QCD} = \overline{\psi} \boldsymbol{M}[A] \psi + \mathcal{L}_{G},$$

$$M = \boldsymbol{\gamma} \cdot \boldsymbol{D} + \boldsymbol{m}_{\boldsymbol{\alpha}}$$

•
$$\langle \boldsymbol{O} \rangle = \frac{\int DA_{\mu} \boldsymbol{O}[A, M^{-1}[A]] \operatorname{Det}[M[A]] e^{-S_G}}{\int DA_{\mu} \operatorname{Det}[M[A]] e^{-S_G}}$$

PHYSICAL REVIEW D

- ・ 上式为一个带权重的平均, 类似Boltzmann系综平均
- ・ 在有限体积的4维超立方格子上,自由度个数是可数的,路径积分
 具有良好定义

$$\langle f \rangle_{\rho} = \frac{\int dx \rho(x) f(x)}{\int dx \rho(x)} \longrightarrow \sim \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

离散的 x_n 按 $\rho(x)$ 分布

Kenneth G. Wilson(1936-2013) Nobel Prize in Physics 1982

格点量子色动力学

- 将QCD放在一个格距为a的四维立方格子上,大小 $L^3 \times T$
- **自然的紫外截断:** *p*_{max} = π/a (格点正规化)
- 夸克场ψ(x)放在格点上
- $\mathcal{D}\psi(x) \rightarrow \prod_{x} d\psi(x), \ x_{\mu} = n_{\mu}a, \ n_{\mu}$ 为整数
- 局域规范变换: $\psi(x) \rightarrow V(x)\psi(x), V(x) \in SU(3)$

 $\partial_{\mu}\psi(x) = \frac{1}{a}[\psi(x+a\hat{\mu}) - \psi(x)], \ \bar{\psi}(x)\psi(x+a\hat{\mu}) \text{ is gauge variant:}$ $\bar{\psi}(x)\psi(x+a\hat{\mu}) \rightarrow \bar{\psi}(x)V^{\dagger}(x)V(x+a\hat{\mu})\psi(x+a\hat{\mu}).$

• 胶子场A_µ(x)放在链接上保持理论的规范对称性(平行移动)

$$U(x,\mu) = \mathcal{P}e^{ig\int_x^{x+a\hat{\mu}}dz_{\mu}A_{\mu}(z)} = e^{igaA_{\mu}(x)}$$

 $U(x, \mu)$ 链接x和 $x + a\hat{\mu}$,也 叫链接变量 (link variable)

 $ar{\psi}(x)U(x,\mu)\psi(x+a\hat{\mu})$ is gauge invariant with $U(x,\mu)=e^{igaA_{\mu}(x)}$

格点量子色动力学

 $U(x,\mu)=e^{igaA_{\mu}(x)}$

• 局域规范变换下 $U(x,\mu)$ 的变换性质与胶子场 $A_{\mu}(x)$ 的变化性质对应:

 $U(x,\mu) \longrightarrow V(x)U(x,\mu)V^{\dagger}(x+a\hat{\mu})$

$$\iff A_{\mu}(x) \longrightarrow V(x)A_{\mu}(x)V^{-1}(x) - \frac{i}{g}V(x)\partial_{\mu}V^{-1}(x) \quad \textbf{(iegward)}$$

因此: $\bar{\psi}(x)U(x,\mu)\psi(x+a\hat{\mu})$ is gauge invariant with $U(x,\mu) = e^{igaA_{\mu}(x)}$

- ・ 定义协变微商: $D_\mu\psi(x)=rac{1}{a}[U(x,\mu)\psi(x+a\hat{\mu})-\psi(x)]$
- 两类基本的规范不变量:
 - Strings of gluon fields sandwiched between $\bar{\psi}$ and ψ , e.g., $\bar{\psi}(x)U(x,\mu)\psi(x+a\hat{\mu})$.
 - Trace of loops of gluon fields, which can be used for the lattice version of ∫ d⁴xF^a_{µν}F^a_{µν}.

X1

X2

规范场格点作用量

• 小方格 (plaquette) ,
$$1 \times 1$$
 Wilson loop: $P_{\mu\nu}(x) = \operatorname{Tr} U_{\Box}$
 $U_{\Box} = U(x,\mu)U(x+a\hat{\mu},\nu)U^{\dagger}(x+a\hat{\nu},\mu)U^{\dagger}(x,\nu)$
 $U(x,\mu) = e^{igaA_{\mu}(x)} \Longrightarrow U_{\Box} = \exp(iga^2F_{\mu\nu}(x))$

• Wilson plaquette action ($O(a^2)$ 离散误差):

$$S_{G} = \frac{1}{4} \int d^{4}x F^{a}_{\mu\nu} F^{a}_{\mu\nu} \longrightarrow \frac{6}{g^{2}} \sum_{\Box} \left[1 - \frac{\mathrm{Tr}}{6} (U_{\Box} + U_{\Box}^{\dagger}) \right]$$

- 2 × 1 Wilson loop $W^{2\times 1}_{\mu\nu}(x)$ 的连续极限与小方格的一样(差一常数因子)
- 可以组合 $P_{\mu\nu}(x)$ 给出离散误差改进到 $O(a^4)$ 的规范场作用量

$$S_G = \beta \sum_{x,\mu > \nu} \left(1 - \frac{1}{6} \left(\frac{5}{3} P_{\mu\nu}(x) - \frac{1}{12} W_{\mu\nu}^{2 \times 1}(x) \right) + h.c. \right)$$

 $\beta = 6/g^2$

Tree-level Luescher-Weisz action

规范场格点作用量

• 考虑辐射修正后,系数会有所不同,可用微扰计算或者非微扰办法确定

Luescher & Weisz, PLB158, 250 (1985) Takaishi, PRD54, 1050 (1996) de Forcrand et al., NPB577, 263 (2000)

看一个简单例子, 将
$$\frac{d}{dx}f(x) = f'(x)$$
放在格子上

• $\frac{d}{dx}f(x) \rightarrow \frac{f(x+a)-f(x)}{a}$, 离散误差为 $\mathcal{O}(a)$: $\frac{f''(x)}{2}a$

•
$$\frac{d}{dx}f(x) \rightarrow \frac{f(x+a)-f(x-a)}{2a} \equiv \Delta_1 f(x)$$
, 离散误差为 $\mathcal{O}(a^2)$: $\frac{f'''(x)}{6}a^2$

- $\frac{d}{dx}f(x) \rightarrow \frac{f(x+na)-f(x-na)}{2na} \equiv \Delta_n f(x)$, 离散误差为 $\mathcal{O}(a^2)$: $\frac{f'''(x)}{6}(na)^2$
- 组合 $\Delta_1 f(x)$ 和 $\Delta_2 f(x)$

$$\frac{d}{dx}f(x) \rightarrow \left(\frac{4}{3}\Delta_1 - \frac{1}{3}\Delta_2\right)f(x)$$
, 离散误差为 $\mathcal{O}(a^4)$

费米子格点作用量

•

Naive fermions (天真/简单/朴素费米子)

- 考虑自由的夸克场 $S = \int d^4 x \bar{\psi} (\gamma_\mu \partial_\mu + m) \psi$ 费米子作用量中含一次求导际量场作用量中含二次求导
- 简单(naive)地格点离散化给出:

$$S^{naive} = a^4 \sum_{x} \left[\bar{\psi}_x \sum_{\mu} \gamma_\mu \frac{\psi_{x+a\hat{\mu}} - \psi_{x-a\hat{\mu}}}{2a} + m\bar{\psi}_x \psi_x \right]$$

• 变换到动量空间,得到的狄拉克算符(夸克传播子 G_{naive} 的逆)为

$$G_{naive}^{-1} = i\gamma_{\mu} \frac{\sin(p_{\mu}a)}{a} + m$$

• $a \rightarrow 0$ 时, $\sin(p_{\mu}a) \rightarrow p_{\mu}a$, 因此有

$$G_{naive}^{-1} = i\gamma_{\mu} \frac{\sin(p_{\mu}a)}{a} + m = i\gamma_{\mu}p_{\mu} + m + \mathcal{O}(a^2) = G_{cont}^{-1} + \mathcal{O}(a^2)$$

2022/11/19 刘朝峰

费米子格点作用量

• 动量有一个分量趋于 π/a 时,比如 $p_{\mu}a \rightarrow (p_1, p_2, p_3, (\pi/a - \tilde{p}_4))a$,(\tilde{p}_4a 是一个小量),连续极限下有 $\sin(p_i a) \rightarrow p_i a$,以及 $\sin(\pi - \tilde{p}_4 a) \rightarrow \tilde{p}_4 a$,因此有

$$G_{naive}^{-1}(p) = i\gamma_i \frac{\sin(p_i a)}{a} + i\gamma_4 \frac{\sin(\pi - \tilde{p}_4 a)}{a} + m = i\gamma_\mu \tilde{p}_\mu + m + \mathcal{O}(a^2)$$
$$\tilde{p}_\mu = (p_1, p_2, p_3, \pi/a - p_4)$$

- $\mu = 1, 2, 3, 4$,因此有 $2^4 1 = 15$ 个加倍子(doubler)
- 费米子加倍问题和手征对称性及手征反常有关 $U_A(1) \text{ anomaly}$ Karsten & Smit, NPB183.103(1981) $U_V(n_f) \otimes U_A(n_f)$ $\psi(x) \to \exp(-i\theta\gamma_5)\psi(x), \quad \bar{\psi}(x) \to \bar{\psi}(x) \exp(-i\theta\gamma_5)$
- No-go定理(Nielsen and Ninomiya(1981)): 没有格点狄拉克算符M能同时满足以下条件

- 在连续极限下回到 $i\gamma_{\mu}p_{\mu}$;
- 无费米子加倍问题(在p≠0时可求逆);
- 有手征对称性: {γ₅, M} = 0。

Nielsen & Ninomiya, NPB185.20(1981)

Wilson费米子

• 在简单费米子上加上Wilson项, $\frac{ra^5}{2}\overline{\psi}\nabla^2\psi$ (通常r=1):

$$S_W = S_{naive} + \frac{r}{2}a^5 \sum_{x,\mu} \bar{\psi}_x \frac{\psi_{x+a\hat{\mu}} - 2\psi_x + \psi_{x-a\hat{\mu}}}{a^2}$$

格点狄拉克算符为:

$$G_W^{-1} = i\gamma_\mu \frac{\sin(p_\mu a)}{a} + m + \frac{2r}{a} \sum_\mu \sin^2(\frac{p_\mu a}{2})$$

• 在a趋于0时,

$$G_W^{-1} = i\gamma_\mu p_\mu + m + rac{ra}{2}\sum_\mu p_\mu^2 + \dots = G_{cont}^{-1} + O(a)$$

- 若不牺牲局域性和连续极限,就得接受加倍子或牺牲手征对称性
- ・ 连续极限下,Wilson项消 失
- Wilson项破坏手征对称性, 通过抬高加倍子质量,使 其和低能区物理脱耦
- *m* = 0时, pion的质量不
 等于零

Wilson费米子

• 离散误差从O(a²)增大到O(a)。

$$G_{naive}^{-1} = G_{cont}^{-1} + \mathcal{O}(a^2)$$

$$G_{W}^{-1} = G_{cont}^{-1} + \mathcal{O}(a)$$

$$G_{W}^{-1} = i\gamma_{\mu}p_{\mu} + m + \frac{ra}{2}\sum_{\mu}p_{\mu}^2 + \dots = G_{cont}^{-1} + \mathcal{O}(a)$$

- -

 $sin(p_{\mu}a)$

- 通过改进Wilson作用量(加入额外的项来抵消O(a)的离散误差), 人们可以减少离散误差。(加入clover项得到clover作用量)
- 引入规范场,定义协变微商 $\Delta_{\mu}f(x) := \frac{U_{\mu}(x)f(x+e_{\mu}) U_{\mu}^{\dagger}(x-e_{\mu})f(x-e_{\mu})}{2a}$ $\Box_{\mu}f(x) := \frac{U_{\mu}(x)f(x+e_{\mu}) 2f(x) + U_{\mu}^{\dagger}(x-e_{\mu})f(x-e_{\mu})}{2a^{2}}$
- Wilson费米子狄拉克算符:

$$D_{\mathbf{W}}(m) = \gamma_{\mu} \Delta_{\mu} + ra\Box + m$$

Staggered费米子 (Kogut和Susskind, 1975):

- 通过一个变换将费米子作用量在自旋空间对角化,只留下一个自旋分量;
- 将16个加倍子分成4个taste,每个有4个自旋;
- 每个加倍子分布在4 维的小hypercubic格点上(布里渊区缩小一半)。
- 一种物理的味道对应四种taste。有taste symmetry breaking。
- 保留部分手征对称性U(1)。模拟计算快。

考虑变换:
$$\psi(x) = \Omega(x)\chi(x), \quad \bar{\psi}(x) = \bar{\chi}(x)\Omega^{\dagger}(x)$$

• 这里: $\Omega(x) \equiv \prod_{\mu=1}^{4} (\gamma_{\mu})^{x_{\mu}}$ 由于 $\gamma_{\mu}^{2} = 1, \quad \Omega(x)$ 只有16个不同取值

 $\alpha_{1}(x) = 1$

• 可以验证:
$$1 = \Omega^{\dagger}(x)\Omega(x)$$

$$\alpha_{\mu}(x) \equiv \Omega^{\dagger}(x)\gamma_{\mu}\Omega(x\pm 1_{\mu}) = (-1)^{x_1+x_2+\dots+x_{\mu-1}} = (-1)^{\sum_{\nu<\mu}x_{\nu}}$$

Ω(x)可以对角化狄拉克γ矩阵

Staggered(交错)费米子

• 做完变换后,简单费米子作用量可写为

$$S_{\text{naive}} \longrightarrow S_{\text{KS}} = a^4 \sum_x \left[\bar{\chi}(x) \sum_{\mu} \alpha_{\mu}(x) \frac{\chi(x + a\hat{\mu}) - \chi(x - a\hat{\mu})}{2a} + m\bar{\chi}(x)\chi(x) \right]$$

- 此费米子作用量在自旋空间对角,4个分量等价,可以去掉3个
- 加上15个加倍子,共有16个 $\chi(x)$,放在一个有2⁴ = 16位置的超立方小晶胞里
- 从16个 $\chi(x)$ 组合出4个"taste(风味)" $\psi_{\alpha}^{f}(f = 1, 2, 3, 4), \alpha = 1, 2, 3, 4$ 为自旋指标

$$\boldsymbol{\psi}_{\boldsymbol{\alpha}}^{\boldsymbol{f}}(\boldsymbol{N}) = \mathcal{N}_{0} \sum_{n} \frac{1}{2} (\gamma_{n})_{\alpha f} \chi(2N+n) \qquad \qquad \boldsymbol{\gamma}_{n} = \gamma_{1}^{n_{1}} \gamma_{2}^{n_{2}} \gamma_{3}^{n_{3}} \gamma_{4}^{n_{4}}$$

 \mathcal{N}_0 为归一常数,最后作用量可写成:

$$S_{stag.} = \sum_{f} \sum_{N} \bar{\psi}^{f}(N) (\gamma_{\mu} \bigtriangleup_{\mu} + M) \psi^{f}(N) + \cdots$$
 (离散效应项)

$$\Delta_{\mu} \text{Eblocked lattice} 上的协变差分$$

二维示意图

- 一味的staggered费米子天然对应有4个taste
- 每个taste分布在小晶胞的不同位置,感受不同的规范场,taste breaking effects
 2022/11/19 刘朝峰

$$S^{(\text{stag.})} = \sum_{x,\rho,\mu} b^4 \bar{\psi}(x) [(\gamma_\mu \otimes \mathbb{1}) \partial_\mu \qquad \qquad \mathbf{b} = 2a, \ t_5 = \gamma_5, \ t_\mu = \gamma_\mu^* \qquad \qquad \mathbf{Staggered}(\mathbf{\hat{\Sigma}}\mathbf{\hat{H}}) \mathbf{\mathcal{B}} \mathbf{\mathcal{H}} \mathbf{\mathcal{H}}$$

• 在自旋和taste空间, staggered费米子的二次导数项具有结构 $\gamma_5 \otimes \gamma_{\mu}^* \gamma_5$, 有下列变换下的对称性:

 $\psi(x) \longrightarrow e^{i\alpha(\gamma_5 \otimes \gamma_5)} \psi(x), \qquad \overline{\psi}(x) \longrightarrow \overline{\psi}(x) e^{i\alpha(\gamma_5 \otimes \gamma_5)}$

• 做为对比,在自旋和味道空间,Wilson费米子的二次导数项具有结构 I 🛛 I, 完全破坏手征对称性

$$S_F^{(W)} = \sum_n a^4 \bar{\psi}(n) \left\{ \sum_\mu \left[(\gamma_\mu \otimes \mathbb{1}) \partial_\mu - \frac{ar}{2} (\mathbb{1} \otimes \mathbb{1}) \Box_\mu \right] + M \mathbb{1} \otimes \mathbb{1} \right\} \psi(n)$$

- taste空间的 $\gamma_{\mu}^{*}\gamma_{5}$ 结构导致taste symmetry breaking
- 规范场的涂摩(小范围内规范链接做平均)可以降低tates symmetry breaking effects
- 用staggered费米子模拟一味夸克,需要对费米子行列式开四次方根;模拟两味开平方根
- 夸克质量为零时, pion质量为零
- 用staggered费米子做动力学夸克,模拟速度快

overlap费米子

- overlap费米子的Dirac算符M满足Ginsparg-Wilson关系: $\gamma_5 M + M \gamma_5 = \frac{a}{r_0} M \gamma_5 M$ Ginsparg & Wilson, 1982
- 以一种温和的方式破坏手征对称性: $\gamma_5 M + M \gamma_5 = 0$
- Ginsparg-Wilson关系可以改写为

$$\left(1-\frac{a}{2r_0}M\right)\gamma_5M+M\gamma_5\left(1-\frac{a}{2r_0}M\right)=0$$

因此overlap费米子作用量满足如下 $U_V(n_f) \otimes U_A(n_f)$ 手征对称性

$$\psi \to \exp(-i\theta\gamma_5(1-\frac{a}{2r_0}M))\psi, \quad \bar{\psi} \to \bar{\psi}\exp(-i\theta(1-\frac{a}{2r_0}M)\gamma_5)$$

• Ginsparg-Wilson关系也可写为 $M^{-1}\gamma_5 + \gamma_5 M^{-1} = \frac{a}{r_0}\gamma_5$,或: $\left(M^{-1} - \frac{a}{2r_0}\right)\gamma_5 + \gamma_5\left(M^{-1} - \frac{a}{2r_0}\right) = 0$

定义
$$D_c^{-1} = \left(M^{-1} - \frac{a}{2r_0}\right)$$
,则有 $\gamma_5 D_c + D_c \gamma_5 = 0$
夸克质量为 m_q 的手征费米子狄拉克算符为
 $D_c + m_q = \frac{M}{1 - \frac{a}{2r_0}M} + m_q$

$$M = \frac{r_0}{a} (1 + \varepsilon(M_w))$$

$$\varepsilon(M_w) = \frac{M_w}{\sqrt{M_w^{\dagger} M_w}}$$

 M_w 为Wilson费米子算符

Neuberger, 1998

a为格距, r_0 是一个常实数

.....

- Domain wall fermion,近似满足Ginsparg-Wilson关系
- Wilson twisted mass fermion,加入twisted mass项,避免数值模拟时出现exceptional configuration
- Highly improved staggered fermion (HISQ)
- Many fermion lattice actions:
 - All go back to the continuum action as $a \rightarrow 0$.
 - Preserve local gauge symmetry.
 - Each has advantages and disadvantages.
- staggered fermion模拟速度快,但有4种taste和taste symmetry breaking,且不方便用于研究重子
- Wilson clover fermion耗时中等,但破坏手征对称性
- Wilson twisted mass fermion破坏同位旋对称性
- Domain wall fermion和overlap fermion有良好的手征对称性,但数值模拟非常昂贵

除了四维立方格子,其它形状的格子也是可以的,时空对称性不一样

格点QCD数值模拟

$$\langle \boldsymbol{O} \rangle = \frac{\int \mathcal{D}A_{\mu} \mathcal{O}[A, M^{-1}] \det[M[A]] e^{-S_{G}}}{\int \mathcal{D}A_{\mu} \det[M[A]] e^{-S_{G}}} \rightarrow \frac{\int \mathcal{D}U \mathcal{O}[U, M^{-1}] \det[M[U]] e^{-S_{G}}}{\int \mathcal{D}U \det[M[U]] e^{-S_{G}}}$$
$$= \frac{\int \mathcal{D}U \mathcal{O}[U, M^{-1}] e^{-S_{eff}}}{\int \mathcal{D}U e^{-S_{eff}}}, \quad S_{eff} = S_{G} - \ln(\det[M[U]]).$$

- 很大的多重积分,以10⁴格子为例: DU = Π_{μ,x} dU(x,μ), 4×10⁴ 个 链接变量。U(x,μ) = e^{igaA^a_μ(x)t^a}, 320000重积分。用数值办法计 算,若每一重积分取10个点,有10³²⁰⁰⁰⁰项求和。Mission Impossible
- 只有那些使 S_{eff} 在最小值附近取值的 $U(x, \mu)$ 才对结果有重要贡献
- 可用蒙特卡罗重点抽样的办法,找出那些重要的U(x, µ)
- 一个组态: $U(x, \mu)$, x取遍所有格点, μ 取遍4个方向
- N个组态构成一个ensemble(一套组态)

按几率分布产生 $U(x, \mu)$ $P[U] \propto \text{Det}[M[U]]e^{-S_G}$ 可观测宇宙中

的原子个数约

为10⁸⁰个

格点QCD数值模拟

- 有了一套组态后,即可得到 $\langle 0 \rangle = \frac{1}{N} \sum_{i=1}^{N} O_i$ $O_i = O_i[\{U\}_i, M^{-1}[\{U\}_i]]$
- 对规范场的路径积分变为对组态的统计平均
- N有限:统计误差 $\propto 1/\sqrt{N}$ (如果组态之间统计独立的话)
- 用蒙特卡罗方法(Markov链)产生规范场组态。从任意一个给定组态出发,经过一段"时间"后,蒙特卡罗算法应当给出按正确的概率分布的组态。

达到热平衡

- 后一组态是从前一组态通过某种算法得到的,它们之间有自关 联(autocorrelation)。误差分析时需要考虑进来。
- 不同的算法对组态的更新效率不一样,或者说在组态空间中的移动 速度不一样。改进算法是格点QCD研究的一个内容。

格点QCD

 $\langle \boldsymbol{O} \rangle = \frac{\int \boldsymbol{D} \boldsymbol{U}_{\mu} \boldsymbol{O}[\boldsymbol{U}, \boldsymbol{M}^{-1}[\boldsymbol{U}]] \operatorname{Det}[\boldsymbol{M}[\boldsymbol{U}]] \boldsymbol{e}^{-S_{G}}}{\int \boldsymbol{D} \boldsymbol{U}_{\mu} \operatorname{Det}[\boldsymbol{M}[\boldsymbol{U}]] \boldsymbol{e}^{-S_{G}}} \sim \frac{\int dx \, \boldsymbol{f}(\boldsymbol{x}) \, \boldsymbol{\rho}(\boldsymbol{x})}{\int dx \, \boldsymbol{\rho}(\boldsymbol{x})}$

- · 综合考虑计算资源和感兴趣的物理问题
- ・选择规范场和费米子作用量,以及合适的算法
- ・ 用重点抽样产生组态: gluon fields $U(x, \mu)$ (最耗费机时的部分)
- ・ 选择价夸克作用量 (可以和组态产生时用的(海)夸克作用量不一样: mixed action setup; m_{val} ≠ m_{sea}: 部分淬火(partially quenched))
- ・ 计算价夸克传播子和强子关联函数 (很耗费机时, <mark>需要大量硬盘空间)</mark>
- ・ 数据分析和拟合: 给出强子质量及各种矩阵元
- ・ 输入若干实验测量值,确定理论自由参数:格距 a 和夸克质量 m_q ,预 言其他物理结果
- ・ 误差分析 (统计和各种系统误差)

• 按几率分布产生 $U(x, \mu)$ $P[U] \propto \text{Det}[M[U]]e^{-S_G}$

忽略Det[*M*[*U*]]可节约 时间,被称为淬火近似

M的维度~ $\mathcal{O}(10^7)$: $L^3 \times T \times N_{color} \times N_{spin}$

双精度保存一个完整的^{M⁻¹} 需要磁盘空间 ≳ 1 PB (**32³ × 64**大小的格子)

2022/11/19 刘朝峰

格点QCD: 超级计算机上的实验

LQCD和高性能计算

- ・ APE(Array Processor Exp.), 建造主用于高能理论计算的超算 (1984-2006)
- ・ 哥伦比亚大学、RIKEN BNL研究中心、爱丁堡大学以及IBM联合制造了超级计算机QCDOC (QCD on Chips, 2002-2003, 10Tflops)
- ・ QCDOC发展成IBM的BlueGene/L (非常成功 的商用机器)
- 利用图形处理器 (GPU) 或从核等加速的异构系
 统:格点QCD是典型高性能计算应用之一
- ・ 国产E级(百亿亿次)超算:神威系列,天河三号, 曙光三种异构架构
- ・ 格点QCD代码移植和新代码开发
 - ・ SWLQCD,太湖之光全机测试,国产众核新 一代计算机系统百万核测试

LQCD和高性能计算

- 格点QCD相关应用多次获(或入围)高性能计算领域的戈登贝尔奖: 1987, 1995, 1998, 2006, 2018
- 衡量高性能计算硬件性能提升的典型应用

NVIDIA公司: https://developer.nvidia.com/blog/nvidia-hopper-architecture-in-depth/

与格点计算相关的合作组

- MILC (MIMD Lattice Collaboration), improved/highly improved staggered fermions (HISQ), MILC code, generated many configurations, 2, 2+1 and 2+1+1 flavors
- UKQCD, a loose organization, domain wall fermions
- RBC: Riken-BNL RC, Brookhaven NL, Columbia. Domain wall fermions
- χQCD, overlap fermions on domain wall fermion/HISQ sea
- HPQCD, High Precision calculations, (highly) improved staggered valence on MILC configurations
- ETMC, Europe, Wilson Twisted Mass fermions, 2 and 2+1+1 flavors
- **PACS-CS**=Tsukuba-centered collaboration, improved Wilson fermions
- BMW=Budapest, Marseille, Wuppertal, improved Wilson fermions, HISQ
- Fermilab/MILC collaborations, asqtad staggered fermion, HISQ
- CLQCD, China Lattice QCD, Wilson clover action
- ・ FLAG, Flavour Lattice Averaging Group, 对部分格点结果做世界平均, 类似于PDG
- LPC, Lattice Parton Collaboration
- JLQCD, Japan LQCD.

・系统误差

- ・ 非零格距a引入离散误差,改进作用量,取连续极限 $a \rightarrow 0$
- ・ 多数情况下 $m_{\pi} > 135$ MeV,手征外推到物理质量点
- 有限体积效应 $\propto \exp(-m_{\pi}L)$ (pion是质量最轻的色单态),格子边长L需远大于 π 介子康普顿波长 $1/m_{\pi}$ ($m_{\pi}L > 5$ 时, $\exp(-m_{\pi}L) < 1\%$)
- ・ 多个不同的a、L、 m_{π} 下作计算,量化和控制系统误差
- ・ 其他误差来源: 重正化常数的误差, 激发态污染,
- ・ 已有不多的 $m_{\pi}^{(sea)} = 135$ MeV 组态样本
- ・ 目前 a ≥ 0.04 fm (a 越小,同样体积需要格子数越多,计算量越大)
- 海夸克味道数N_f = 2 + 1 + 1 (*l*, *s*, *c*), 2 + 1 (*l*, *s*), 2 (简并的u和d), 0 (淬火近似)

LQCD精度可系统提高

- ・ 超级计算机+算法改进, 增加统计量
- 多个体积模拟,分析格点数据时,加入有限体积项, 外推到无穷大体积
- ・ 改进作用量; 3个以上格距, 外推到连续极限
- ・ 手征微扰论外推:结果对π介子质量的依赖关系
- 2+1味, 2+1+1味, 2+1+1+1味 (消除淬火近似)
- 使用不同作用量模拟计算同一物理量
- 在连续极限下,给出一致结果

 $\langle O \rangle_{lat} = \langle O \rangle_{cont} + a \langle O' \rangle_{cont} + a^2 \langle O'' \rangle_{cont}$

• 连续外推越平缓,离散误差越小

不同的计算应给出一致的结果

- 更多格距下的计算可检查O(a⁴)项离散误差的大小
- ・ 格距差别不大而精度又不高时,不容易区分直线和二次曲线

LQCD和手征微扰论

- ・ 多数情况下 $m_{\pi} > 135$ MeV, 计算结果需要外推到物理质量点
- ・ 有些物理量的外推形式有来自手征微扰论 (Chiral perturbation theory) 的依据
- ・ 反过来,对格点结果的拟合可确定手征微扰论中的低能常数 (Low energy constants)
- In the quark massless limit, QCD has chiral symmetry. The small quark mass is treated as a perturbation.
- The effective degrees of freedom are the pseudoscalars. To first order $(U = \exp(i\phi/f), \phi)$: pseudoscalar fields, $M = diag(m_u, m_d, m_s))$,

$$\mathcal{L}_2 = rac{f}{4} \mathrm{Tr}(\partial_\mu U \partial^\mu U^\dagger) + B rac{f^2}{2} \mathrm{Tr}[M(U+U^\dagger)].$$

f and B are low energy constants. $\langle \bar{q}q \rangle = f^2 B$.

• SU(2)夸克凝聚

$$\Sigma \equiv -\lim_{m_u, m_d \to 0} \langle \bar{u}u \rangle$$
 (MS) $(\overline{MS}$) $(\overline{S}$) (W)

2022/11/19 刘朝峰

FLAG Review 2021, EPJC82 (2022) 10, 869 [arXiv:2111.09849]

格点QCD数值模拟

- 1974年提出, Kenneth G. Wilson, Phys. Rev. D 10, 2445 (1974)
- 1979年第一个数值模拟(纯规范场), Michael Crutz, Phys. Rev. Lett. 42, 1390 (1979)
- ~2003年之前,淬火近似(quenched approximation)格点QCD模拟
 - 行列式Det[M[U]]的计算非常耗时,不得已取成常数

$$\langle \boldsymbol{O} \rangle = \frac{\int \boldsymbol{D} \boldsymbol{U}_{\mu} \boldsymbol{O}[\boldsymbol{U}, \boldsymbol{M}^{-1}[\boldsymbol{U}]] \boldsymbol{D} \boldsymbol{e} \boldsymbol{I}[\boldsymbol{M}[\boldsymbol{U}]] \boldsymbol{e}^{-S_{G}}}{\int \boldsymbol{D} \boldsymbol{U}_{\mu} \boldsymbol{D} \boldsymbol{e} \boldsymbol{I}[\boldsymbol{M}[\boldsymbol{U}]] \boldsymbol{e}^{-S_{G}}} \to \frac{\int \boldsymbol{D} \boldsymbol{U}_{\mu} \boldsymbol{O}[\boldsymbol{U}, \boldsymbol{M}^{-1}[\boldsymbol{U}]] \boldsymbol{e}^{-S_{G}}}{\int \boldsymbol{D} \boldsymbol{U}_{\mu} \boldsymbol{e}^{-S_{G}}}$$

- 八十年代费米子相关算法的进展:杂化蒙特卡罗算法(Hybrid Monte Carlo, HMC)
- 轻强子谱的淬火计算 F. Butler, H. Chen, J. Sexton, A. Vaccarino and D. Weingarten, Phys.Rev.Lett. 70 (1993) 2849-2852; Nucl.Phys. B430 (1994) 179-228
- ~1991-1992年开始: hep-lat (arXiv was founded by Paul Ginsparg in 1991)
 - High Energy Physics Experiment (hep-ex new, recent, search)
 - High Energy Physics Lattice (hep-lat new, recent, search)
 - High Energy Physics Phenomenology (hep-ph new, recent, search)
 - High Energy Physics Theory (hep-th new, recent, search)

格点QCD数值模拟

- ~2003年开始,全QCD模拟(不做淬火近似)
 - 2-味(简并u, d夸克), 2+1味(u/d, s), 2+1+1味(u/d, s, c)QCD模拟
 - 组态生成耗费大量机时,组态共享ILDG (International Lattice Data Grid)
- 目前格点QCD的一些计算结果已经达到或者超过实验的精度
- •强子谱:不同计算给出一致结果;预言了 B_c 和 B_c^* 的质量(HPQCD);中子质子质量差(1+1+1+1味QED+QCD)

格点QCD

• 缪子反常磁矩中强真空极化效应(Hadronic Vacuum Polarization)

- XYZ相关研究
- 有限温度有限密度QCD
- 味物理

- 强子结构: PDF, 质子自旋
- J/psi的辐射衰变,胶球和混杂态

•

格点场论会议

- International Symposium on Lattice Field Theory
 - 算法和机器
 - 手征对称性
 - 强子谱
 - 强子结构
 - 有限温度和有限密度QCD
 - •标准模型参数和重整化
 - 理论上的进展
 - 真空结构和禁闭
 - 弱衰变和矩阵元
 - 超出标准模型的应用

•••••

2009.7.26-31

北京大学"格点量子色动力学前沿"暑期学校 2019年6月24-7月12日

为期三周的"格点量子色动力学前沿"暑期学校将于 2019 年 6 月 24 - 7 月 12 日在北京大学举办。我们延请了包括美国科学院院士、欧洲科学院院士、 英国皇家学会院士、国际顶尖研究所的所长和著名高校的讲席教授在内的相关 专业的国际知名学者担任授课老师。
格点场论会议

2015.03华中师范大学春季格点QCD学校

我们将在今年3月9日至20日在华师举办一个春季格点QCD学校。 这也是第4届华大QCD学校。学校主页在

http://conf.ccnu.edu.cn/~qcd2015/

• 国内格点QCD会议

2021年10月30日 到 2021年11月2日 线上

华南师范大学

8-10 October 2022 Tsung-Dao Lee Institute

两点关联函数的计算和拟合

• Meson (flavor non-singlet) 2-point correlators:

 $C_{FF}(x_t, \vec{p}') = \sum_{\vec{x}} \langle \Omega | \Phi_F(x) \Phi_F^{\dagger}(0) | \Omega \rangle e^{-i \vec{p}' \cdot \vec{x}}, \quad F = \pi, K, K^*, \cdots.$

连通图

$$\Phi_{F} = \bar{q}\Gamma q', \Gamma = \gamma_{5}, I, \gamma_{i}, \gamma_{i}\gamma_{5}, \cdots$$
• Using the completeness relation $\sum_{n,\vec{k}} \frac{1}{2E_{\vec{k}}V_{3}} |n, \vec{k}\rangle \langle n, \vec{k}| = 1,$
 $(V_{3} = L^{3}), \text{ we find } (k_{i} = 2\pi n_{i}/(La), \quad i = 1, 2, 3, \quad n_{i}$ 为整数)
 $C_{FF}(x_{t}, \vec{p}') = \frac{1}{2\Gamma V_{t}} |\langle \Omega | \Phi_{F} | \vec{p}' \rangle|^{2} e^{-E_{\vec{p}'}x_{t}}$

$$2E_{\vec{p}'}V_3$$
 + the r + (excited state contributions).

When $\vec{p}' = 0$, we get the meson mass $E_{\vec{p}'=0} = m_F$.

对于粲偶素、φ介子等, 原则上还有非连通图的 贡献(见后页)

通过指数形式(<i>Ae^{-Mt}</i>)
的拟合,可以抽取出强
子质量以及强子矩阵元

定义有效质量 $M_{eff} = \ln \frac{C(t)}{C(t+1)} \stackrel{t \to \infty}{\longrightarrow} M$

0

关联函数计算

• Take $\Phi_F = \overline{d}\Gamma u$ as an example,

$$\begin{split} \langle \Omega | \Phi_F(x) \Phi_F^{\dagger}(0) | \Omega \rangle &= \langle \Omega | \bar{d}_i^a(x) \Gamma_{ij} u_j^a(x) \bar{u}_k^b(0) \Gamma_{kl}^{\dagger} d_l^b(0) | \Omega \rangle \\ &= - \langle \Omega | \Gamma_{ij} u_j^a(x) \bar{u}_k^b(0) \Gamma_{kl}^{\dagger} d_l^b(0) \bar{d}_i^a(x) | \Omega \rangle \\ &= - \langle \Gamma_{ij} G^u(x,0)_{jk}^{ab} \Gamma_{kl}^{\dagger} G^d(0,x)_{li}^{ba} \rangle_{conf} \end{split}$$

 $= -\langle \operatorname{Tr}[\Gamma G^{u}(x,0)\Gamma^{\dagger} G^{d}(0,x)]\rangle_{conf},$

where $\langle \cdots \rangle_{conf}$ means averaging over all configurations.

G^u(x,0) on each configuration can be obtained from inverting an equation

$$M_{ij}^{ab}(U; x, y)G^{u}(y, 0)_{jk}^{bc} = \delta_{ik}\delta_{ac}\delta_{x,0}, \text{ or } MG = I$$

on that configuration.

2022/11/19 刘朝峰

非连通图示例

OZI压低

利用 γ_5 -厄密性: $\gamma_5 M \gamma_5 = M^{\dagger}$, 有: $G(0, x) = \gamma_5 G^{\dagger}(x, 0) \gamma_5$

两点关联函数

• 例如对于pion,我们可以使用 $\Phi_F = \overline{d}\gamma_5 u$

格子大小
$$L^3 \times T$$

- 考虑到周期性边界条件,数据的拟合形式应为: $C(t) = \overline{C_i(t)} = A [e^{-Mt} + e^{-M(T-t)}]$
- 可定义 $M_{eff}(t) = \cosh^{-1} \frac{C(t+1)+C(t-1)}{2C(t)}$, 在 t 接近 T/2 时,好于 $M_{eff}(t) = \ln [C(t)/C(t+1)]$

两点关联函数

• 对于重子,例如质子,可以使用 $O = \epsilon_{abc} [u^{Ta} (C\gamma_5) d^b] u^c$ 投影到零动量和确定的宇称: $C(t) = \frac{1}{2} (1 \pm \gamma_4)_{ji} \sum_{\vec{x}} \langle \Omega | O_i(\vec{x}, t) O_j^{\dagger}(0, 0) | \Omega \rangle$

有效质量 $M_{\text{eff}}(t) = \ln \left[C(t) / C(t+1) \right]$

核子质量手征外推

 $O(p^3)$ HB χ PT:

0(**p**⁴)

 $m_{N} = m_{N}^{0} - 4c_{1}m_{\pi}^{2} - \frac{3g_{A}^{2}}{32\pi f_{\pi}^{2}}m_{\pi}^{3} - 4E_{1}(\lambda)m_{\pi}^{4}$ $+ \frac{3m_{\pi}^{4}}{32\pi^{2}f_{\pi}^{2}} \left[\frac{1}{4}\left(c_{2} - \frac{2g_{A}^{2}}{m_{N}^{0}}\right)\right]$ $- \left(c_{2} - 8c_{1} + 4c_{3} + \frac{g_{A}^{2}}{m_{N}^{0}}\right)\log\left(\frac{m_{\pi}}{\lambda}\right).$

不同颜色的数据点 对应不同格距或体 积下的结果

ETMC, PRD78.014509(2008)

• 3-point correlators for $B/B_s \rightarrow F$:

- 完成缩并,可将关联函数用夸
 克传播子表示出来
- 为了避免all-to-all夸克传播子
 的计算,可使用sequential
 propagator等办法

$$C_{FJB}(\vec{p},\vec{p}',T,t) = \sum_{\vec{x}}\sum_{\vec{y}} \langle \Omega | \Phi_B(\vec{x},T) J(\vec{y},t) \Phi_F^{\dagger}(0) | \Omega \rangle e^{-i\vec{p}\cdot\vec{x}} e^{i\vec{q}\cdot\vec{y}},$$

q = p - p', z can be set to 0 due to translation invariance.

• By using the completeness relation twice, one sees that C_{FJB} can give us $\langle B(p)|J(q)|F(p')\rangle$ at $0 \ll t \ll T$ once we know $\langle \Omega|\Phi_{B(F)}|B(F)\rangle$ and $E_{B(F)}$ from the 2-point correlators.

 $\xrightarrow{t \to \infty}_{T \to \infty} \frac{(T-t) \to \infty}{\langle \Omega | \phi_B | B \rangle \langle B | J | F \rangle} \langle F | \phi_F^{\dagger} | \Omega \rangle e^{-E_F t} e^{-E_B (T-t)}$

构造合适的三点与两点函数
 比值,当0 <
 43一个平台,给出强子矩
 (B|J|F)

参考文献

- 刘川, 《格点量子色动力学导论》, 北京大学出版社, 2017
- 陈莹,《量子色动力学专题》第2章:格点QCD,科学出版社,2018
- Christof Gattringer and Christian B. Lang, Quantum Chromodynamics on the Lattice, Springer, 2010
- Thomas DeGrand and Carleton DeTar, Lattice methods for quantum chromodynamics, World Scientific, 2006
- Press, Flannery, Teukolsky, Vetterling, Numerical recipes, modeling of data 章节, Cambridge University Press
- FLAG Review 2021, EPJC82 (2022) 10, 869 [arXiv:2111.09849]

•

- Flavor physics had helped us discover "new physics"
 - Introduction of charm quark to suppress FCNC
 - A third generation of quarks was needed to accommodate CP violation
 - Large $B^0 \overline{B}^0$ mixing suggested large top quark mass
- Precise measurements of processes at low energy scales are sensitive to new physics at high scales (>TeV).
- Experiments: BES, BaBar, Belle, LHC ...

粲物理与LQCD

- LQCD can calculate form factors and meson decay constants appearing in weak decays of hadrons
- Combined with experiments, they can give us CKM matrix elements
- Test the SM (is the CKM matrix unitary?)
- Or use V_{ab} from elsewhere to compare QCD/SM results with experiments

Flavor Lattice Averaging Group (FLAG) 味物理格点计算世界平均

约三年综述一次格点结果

- 2010 Eur. Phys. J. C (2011) 71, 1695 (arXiv: 1011.4408)
- 2013 Eur. Phys. J. C (2014) 74, 2890 (arXiv: 1310.8555)
- 2016 Eur. Phys. J. C (2017) 77, 112 (arXiv: 1607.00299)
- 2019 Eur. Phys. J. C (2020) 80, 113 (arXiv: 1902.08191)
- 2021 Eur. Phys. J. C (2022) 82, 869 (arXiv: 2111.09849)

对正式发表的格点QCD结果的系统误差做评估

- LECs
- α_s

http://flag.unibe.ch/

- quark masses
- decay constants
- form factors
- nucleon matrix elements

•••••

O reasonable, could be improved.

no estimation, or unsatisfactory.

获得绿色评分的 结果做世界平均

・ 重夸克作用量

重正化常数

连续极限

手征外推

有限体积

۲

٠

•

粲物理相关格点QCD研究

- ・粲夸克质量
- ・介子衰变常数
- · 粲强子半轻衰变形状因子
- ・ 中性D介子混合
- ・ 夸克双线性算符重整化常数

粲、底夸克质量

夸克(流)质量是标准模型的基本参数之一

- 粲夸克质量的精度影响Higgs相关衰变道的精度 LQCD计算含粲/底夸克的强子质量, 如D, D_s , Υ , ……
- 输入强子质量的实验值定出*m_c*, *m_b*
- 需要质量重整化常数 Z_m

LQCD计算moments of pseudoscalar-pseudoscalar correlators G_n , 微扰贡献主导,可算(四圈), 解出 $m_{c/b}(\mu)$ (以及强耦合系数)

• 可不用计算 Z_m (对于手征格点费米子有 $Z_m Z_P = 1$)

$$G(t) = a^6 \sum_{\mathbf{x}} (am_{0h})^2 \langle 0 | j_5(\mathbf{x}, t) j_5(0, 0) | 0 \rangle$$
$$G_n \equiv \sum_t (t/a)^n G(t)$$

在两个格距共6套组态,几十个不同夸 克质量点上计算粲介子和粲偶素质量

Inputs:

 $M_{D_s} = 1.9685 \text{ GeV}$ $M_{D_s^*} - M_{D_s} = 0.1438 \text{ GeV}$ $M_{J/\psi} = 3.0969 \text{ GeV}$

Outputs: $r_0 = 0.465(4)(9) \text{ fm}$ $m_s^{\overline{\text{MS}}}(2 \text{ GeV}) = 0.101(3)(6) \text{ GeV}$ $m_c^{\overline{\text{MS}}}(2 \text{ GeV}) = 1.118(6)(24) \text{ GeV}$

 $f_{D_s} = 254(2)(4) \text{ MeV}$

 χ QCD Collaboration: Y.-B. Yang et al., PRD92, 2015 ZL et al., PRD90, 2014 (Z_m , Z_A ...)

粲夸克质	量			U.	olation,			FLAG Revi	ew 2021, EPJC82 (2
Collaboration	Refs	Ne	Publication status	Chial chiapolati	Continuum extrap	Finite Volume	Penonnali enion	$\overline{m}_{a}(\overline{m}_{a})$	$\overline{m}_{e}(3 \text{ GeV})$
	10041	2.1.1	D					1.220(22)(+19)(10)†	1.02((17)(+15)
ETM ZTA	[204]	2+1+1	P	7	7	.	7	$1.339(22)(-10)(10)^{+}$	$1.036(17)(-8^{-7})$
HPQCD 20A	[23]	2+1+1	A	*	*	*	*	1.2/19(78)	0.9841(51)
HPQCD 18	[13]	2+1+1	A	*	*	*	*	1.2757(84)	0.9896(61)
FNAL/MILC/ TUMQCD 18	[6]	2+1+1	A	*	*	*		1.273(4)(1)(10)	0.9837(43)(14)(33)(5)
HPQCD 14A	[14]	2+1+1	A	*	*	*	_	1.2715(95)	0.9851(63)
ETM 14A	[22]	2+1+1	A	0	*	0	*	1.3478(27)(195)	1.0557(22)(153)*
ETM 14	[7]	2+1+1	А	0	*	0	*	1.348(46)	1.058(35)*
ALPHA 21	[227]	2+1	A ⁺	*	*	*	*	1.296(19)	1.007(16)
Petreczky 19	[26]	2+1	А	*	*	*	*	1.265(10)	1.001(16)
Maezawa 16	[189]	2+1	A		*	*	*	1.267(12)	
JLQCD 16	[25]	2+1	A	0	*	*		1.2871(123)	1.0033(96)
χQCD 14	[24]	2+1	A	0	0	0	*	1.304(5)(20)	1.006(5)(22)
HPQCD 10	[11]	2+1	A	0	*	0		1.273(6)	0.986(6)
HPQCD 08B	[202]	2+1	А	0	*	0		1.268(9)	0.986(10)
PDG	[165]							1.27(2)	<u>.</u>

FLAG Review 2021, EPJC82 (2022) 10, 869 [arXiv:2111.09849]

[†]We applied the running factor 0.7739(60) for $\mu = 3$ GeV to \overline{m}_c . The errors are statistical, systematic, and the uncertainty in the running factor

*A running factor equal to 0.900 between the scales $\mu = 2$ GeV and $\mu = 3$ GeV was applied by us

⁺Published after the FLAG deadline

FLAG Review 2021, EPJC82 (2022) 10, 869 [arXiv:2111.09849]

绿色实心方块进入世界平均

- HPQCD 20A首次考虑了电磁 修正(quenched QED)
- 粲夸克质量格点计算世界平均

 $N_f = 2 + 1 + 1$:

 $\bar{m}_c(3 \text{ GeV}) = 0.988(11) \text{ GeV}$

 $\bar{m}_{c}(\bar{m}_{c}) = 1.278(13) \text{ GeV}$

 $N_f = 2 + 1$:

 $\bar{m}_c(3 \text{ GeV}) = 0.992(5) \text{ GeV}$

 $\overline{m}_c(\overline{m}_c) = 1.275(5) \text{ GeV}$

- 误差:~1%
- 精度高于PDG

11.5

FLAG2021

 $N_f = 2 + 1 + 1$

 $N_f = 2 + 1$

11.0

粲、奇异夸克质量比值

H

12.0

 m_c/m_s

FLAG average for $N_f = 2 + 1 + 1$

FNAL/MILC/TUMQCD 18

FLAG average for $N_f = 2 + 1$

ETM 21A

HPQCD 14A

Maezawa 16

HPQCD 09A

xQCD 14

12.5

ETM 14

- 比值*m_c/m_s*各合作组的结果更
 为接近
- 可能有某些系统误差被低估了
 (格距的确定、重正化常数等)

 $N_f = 2 + 1 + 1$: $m_c/m_s = 11.768(34)$

 $N_f = 2 + 1$: $m_c/m_s = 11.82(16)$

介子衰变常数

- 衰变常数与纯轻衰变的实验测量结合起来可确定CKM矩阵元,如 $|V_{cd}|$ 、 $|V_{cs}|$ 和 $|V_{ub}|$
- 或反过来比较理论和实验给出的衰变常数

Kronfeld, 1203.1204

- 例如f_{Ds}
- 2013年之前的情况
- 灰颜色: 2+1味格点平均(FNAL/MILC, HPQCD, PACS-CS)
- 黄颜色: 实验平均(BaBar, Belle, CLEO-c)
- 青色点: ETMC 2味格点计算, 未计入平均

・ 定义 f_{D(s)}

 $(m_q + m_c) \langle 0 | \overline{q}(0) \gamma_5 c(0) | P(p) \rangle = f_P m_{PS}^2$

使用手征格点费米子可避免重正化常数的计算: $Z_P Z_m = 1$

・ 利用部分守恒轴矢量流关系 (PCAC) $\partial_{\mu}A^{\mu} = (m_q + m_c)P$, 可得:

 $\langle 0|\overline{q}(0)\gamma_{\mu}\gamma_{5}c(0)|P(p)\rangle = if_{P}p_{\mu}, \quad q = d, s$

• The local current $\overline{q}\gamma_{\mu}\gamma_{5}c$ on the lattice needs renormalization Z_{A}

图片来自 arXiv:2103.00908

$f_D \, , \, f_{D_s}$ 格点QCD结果

・赝标粲介子衰变常数的LQCD计算精度已达到1%或更高,例如 f_{D_s}

• $N_f = 2 + 1$:

 $f_{D_s} = 248.0(1.6) \text{ MeV}$ $f_D = 209.0(2.4) \text{ MeV}$

$$N_f = 2 + 1 + 1$$
:

$$f_{D_s} = 249.9(0.5) \text{ MeV}$$

- $f_D = 212.0(0.7) \text{ MeV}$
- PDG2016 (CPC40):

 $f_{D_s^+}^{exp} = 257.8(4.1) \text{ MeV}$

 格点结果与实验在2σ之内一致 PDG2020 [PTEP2020.083C01]: f_D|V_{cd}| = 46.2(1.2) MeV f_{Ds}|V_{cs}| = 245.7(4.6) MeV

• $f_{D_{(s)}^{(*)}}$ and their ratios

 $\langle \mathbf{0} | \overline{q}(\mathbf{0}) \boldsymbol{\gamma}_{\mu} \boldsymbol{\gamma}_{5} \boldsymbol{c}(\mathbf{0}) | \boldsymbol{P}(\boldsymbol{p}) \rangle = i \boldsymbol{f}_{P} \boldsymbol{p}_{\mu}, \quad \boldsymbol{q} = \boldsymbol{d}, \boldsymbol{s}$ $\langle \mathbf{0} | \overline{q}(\mathbf{0}) \boldsymbol{\gamma}^{\mu} \boldsymbol{q}'(\mathbf{0}) | \boldsymbol{V}(\boldsymbol{p}, \boldsymbol{\lambda}) \rangle = \boldsymbol{f}_{V} \boldsymbol{m}_{V} \boldsymbol{e}_{\boldsymbol{\lambda}}^{\mu}$ $\cdot \boldsymbol{f}_{V}^{T} / \boldsymbol{f}_{V} (\overline{\mathbf{MS}}, \mathbf{2 \ GeV}) \quad \langle \mathbf{0} | \left(\overline{q}(\mathbf{0}) \sigma^{\mu\nu} \boldsymbol{q}'(\mathbf{0}) \right) (\mu) | \boldsymbol{V}(\boldsymbol{p}, \boldsymbol{\lambda}) \rangle = i \boldsymbol{f}_{V}^{T} (\mu) \left(\boldsymbol{e}_{\boldsymbol{\lambda}}^{\mu} \boldsymbol{p}^{\nu} - \boldsymbol{e}_{\boldsymbol{\lambda}}^{\nu} \boldsymbol{p}^{\mu} \right)$

Determine CKM elements

$$\Gamma_{(D_s^* \to \ell\nu)} = \frac{G_F^2}{12\pi} |V_{cs}|^2 f_{D_s^*}^2 M_{D_s^*}^3 \left(1 - \frac{m_\ell^2}{M_{D_s^*}^2}\right)^2 \left(1 + \frac{m_\ell^2}{2M_{D_s^*}^2}\right)$$

- f_V not easy to be measured
 - Leptonic decay BRs are small; $D_s^* \rightarrow l\nu$ expected soon (BESIII, Belle)
- Test the accuracy of HQET: $f_V/f_P = 1 + O(1/m_Q)$
- f_V^T/f_V for D^* and D_s^* are inputs for LCSR in calculations of $B \to V$ form factors at low q^2
- Input parameters for QCD factorization in studies of nonleptonic B decays, e.g., $B \rightarrow D^{(*)}M$

Lattice setup

- 2+1-flavor ensemble [RBC/UKQCD Collab., PRD93.074505, 2016]
- Physical sea quark mass:

 $m_{\pi}^{\text{sea}} = 139.2(4) \text{ MeV}$

• 45 configurations

$L^3 \times T$	$48^3 \times 96$
$a^{-1}(\text{GeV})$	1.730(4)
$N_{ m conf}$	45
$am_l^{(\mathrm{val})}$	0.0017, 0.0024, 0.0030, 0.0060
$m_{\pi}/{ m MeV}$	114(2), 135(2), 149(2), 208(2)
$am_s^{(\mathrm{val})}$	0.0580, 0.0650
$am_c^{(\mathrm{val})}$	0.6800, 0.7000, 0.7200, 0.7400

- Overlap valence and domain wall fermion sea
- Partial quenching effects are small: $\Delta_{mix} = 0.030(6)(5) \text{ GeV}^4$ [chiQCD, PRD86.014501, 2012]
- 4 light val. quark masses: $m_{\pi} \sim 114 208$ MeV
- $Lm_{\pi} = 3.2/3.7/4.1/5.8$
- 2 strange val. quark masses, slightly $< m_s^{
 m phy.}$

 m_{π} , f_{π} , m_K

- m_{π} & m_{K} are extracted from pseudoscalar density 2-point functions
- To fix the physical light and strange valence quark masses

$am_l^{ m val}$	0.0017	0.0024	0.0030	0.0060
m_{π} /MeV	114(2)	135(2)	149(2)	208(2)
f_{π} /MeV	130.3(9)	131.0(9)	131.6(8)	

- A linear interp. in m_{π}^2 gives $f_{\pi} = 131.3(6)$ MeV
- Consistent with the RBC/UKQCD result on the same ensemble [arXiv:1411.7017(hep-lat)]

D-meson 2-point functions

- Coulomb gauge wall source propagators are used to improve overlapping with the ground state
- Sink operators are with spacial displacement

$$O_{\Gamma}(\vec{x}, t; \vec{r}) = \overline{\psi}_1(\vec{x}, t)\Gamma\psi_2(\vec{x} + \vec{r}, t)$$

 $\Gamma = \gamma_5 \text{ or } \gamma_i$
 $\vec{r} = 0: \text{ local operator}$

• Same $r = |\vec{r}|$ averaged to get the correct J^P

$$C_P(r,t) = \frac{1}{N_r} \sum_{\vec{x}, |\vec{r}|=r} \langle 0|O_{\gamma_5}(\vec{x},t;\vec{r})O_{\gamma_5}^{(W)\dagger}(0)|0\rangle,$$

$$C_{V}(r,t) = \frac{1}{3N_{r}} \sum_{\vec{x},i,|\vec{r}|=r} \langle 0|O_{\gamma_{i}}(\vec{x},t;\vec{r})O_{\gamma_{i}}^{(W)\dagger}(0)|0\rangle$$
$$C^{W}(t) = \langle 0|O^{(W)}(t)O^{(W)\dagger}(0)|0\rangle$$

Data analysis

1. Simultaneous correlated fittings to several correlators

Common parameter: *m_H*

2. Fit combined correlators

 $C(\omega, t) = C(r = 1, t) + \omega C(r, t)$

Adjust r and ω to get the best mass plateau

 \checkmark The two methods give consistent m_H

 \checkmark The result of m_H is insensitive to ω

Combine the spectral weights from C(r = 0, t) and $C^{W}(t)$ to get the decay constants

Mass plateau, $M_{eff}(t) = \ln [C(t)/C(t+1)]$

• Black circles: $C(\omega, t) = C(r = 1, t) + \omega C(r, t)$

- $t_{\max}: \frac{\delta C(t)}{C(t)} < 10\% (5\%)$ for V(PS) mesons
- t_{\min} : varied to get stable results, $\chi^2/dof \lesssim 1.0$

Interp./extrap. to physical point

- m_{π}^2 , $m_{ss}^2 \equiv 2m_K^2 m_{\pi}^2$ and m_{D_s} are used to set the physical quark masses (l, s, c)
- Our quark masses are close to their physical values
- Linear Interp./extrap. in m_{π}^2 , m_{ss}^2 and m_{D_s}
- For a meson mass or decay constant:

$$A(m_{u/d}, m_s, m_c) = A^{(phy)} + b_1 \Delta m_\pi^2(m_{u/d}) + b_2 \Delta m_{ss}^2(m_s) + b_3 \Delta m_{D_s}(m_c)$$

$$\Delta m_{\pi}^2 = m_{\pi}^2 - m_{\pi}^2$$
(phy), $\Delta m_{ss}^2 = m_{ss}^2 - m_{ss}^2$ (phy), $\Delta m_{D_s} = m_{D_s} - m_{D_s}^{\text{phy}}$

• Supported by the data with good χ^2 /dof

Interp./extrap. to physical point

chiQCD, Chin. Phys. C45, no.4 (2021) 023109, arXiv:2008.05208

	D	D *	D _s	D [*] _s	ϕ
f_M /MeV	213(2)(4)	234(3)(5)	249(5)(5)	274(5)(5)	241(9)(2)
f_V^T/f_V		0.91(3)(2)		0.92(3)(2)	

- $f_{D^+}|V_{cd}| = 45.91(1.05) \text{ MeV (PDG2018)} \Rightarrow |V_{cd}| = 0.2155(51))_{\text{lat}}(49)_{\text{exp}}$
- First lattice QCD results for $f_{D_{(s)}^*}^T / f_{D_{(s)}^*}$
- 1st error from stat. and interp./extrap. (& Z-factors)
- Dominant errors from Z-factors (~3%) and finite a (~2%)
- > 提高重正化常数的计算精度
- Heavy quark symmetry breaking (~10%)
 - $f_V/f_{PS} = 1 + O(1/m_Q)$
 - $f_{D^*}/f_D = 1.10(2)(2), f_{D_s^*}/f_{D_s} = 1.10(3)(2)$
- SU(3) flavor symmetry breaking (~17%)
 - $f_{D_s}/f_D = 1.163(14)(23), f_{D_s^*}/f_{D^*} = 1.17(2)(2)$

Γ	I	1			1 1	L.		1 1		1
	E1 2-	IMC -flav	'12 'or				-0-			
							Bloss 2-fla	ier e vor	t al.	'18
					-0-		HPQC 2+1-	D '14 flavc	l or	
		-			-0-		this 2+1-	work flavc	or	
		-\$	_		-0-		ETMC 2+1+	′17 1—fla	avor	
		Ĩ	1 1		1.1	Ĺ	l i	I I		Ĩ
20	0		Ŕ	250		G	00		350)
	<	>: f _D	•/Me	V	0:	1 _{Ds} */	/MeV			

矢量粲介子衰变常数

- Becirevic et al., JHEP02 (2012) 042
- Gambino et al., J. Phys. Conf. Ser. 1137, 012005 (2019)
- Blossier, Heitger, Post PRD98.054506 (2018)
- HPQCD, PRL112.212002 (2014)
- ETMC, PRD96.034524 (2017)
- this work: chiQCD, Chin. Phys. C45, no.4 (2021) 023109

Large sea quark effects from the Strange quark? More checks are needed

HPQCD, PRL 112, 212002 (2014)

$$Z\langle D_s^*(p',\varepsilon)|\mathcal{V}^{\mu}|D_s(p)\rangle = \frac{2\epsilon^{\mu\alpha\beta t}}{m_{D_s}+m_{D_s^*}}\varepsilon_{\alpha}^*p_{\beta}p_t'V(q^2)$$

$$\Gamma_{(D_s^* \to D_s \gamma)} = \alpha_{\text{QED}} \frac{4|\vec{q}|^3}{3(M_{D_s} + M_{D_s^*})^2} \frac{|V_s(0) - 2V_c(0)|^2}{9}$$

= 0.066(26) keV

由 D_s^* → $D_s\gamma$ 分支比的实验值94.2(7)% BABAR, PRD72.091101(2005) 给出 D_s^* 总宽度: 0.070(28) keV

$$\Gamma_{(D_s^* \to \ell \nu)} = \frac{G_F^2}{12\pi} |V_{cs}|^2 f_{D_s^*}^2 M_{D_s^*}^3 \left(1 - \frac{m_\ell^2}{M_{D_s^*}^2}\right)^2 \left(1 + \frac{m_\ell^2}{2M_{D_s^*}^2}\right)$$

$$f_{D_s^*} = \mathbf{274(6)} \text{ MeV} \longrightarrow \Gamma_{D_s^* \to l\nu} = 2.4(1) \times 10^{-6} \text{ keV} \longrightarrow \text{Br} = 3.4(1.4) \times 10^{-5}$$

・ BESIII可能给出首个矢量介子纯轻衰变的测量 $D_s^* \rightarrow l\nu (l = e, \mu)$

粲介子半轻衰变 (树图过程)

• $D \rightarrow \pi l \nu$, $D \rightarrow K l \nu$ 可用于确定 $|V_{cd}|$ 和 $|V_{cs}|$

$$\frac{d\Gamma(D \to K\ell\nu)}{dq^2} = (\text{known}) \left|\mathbf{p}_K\right|^3 \left|V_{cs}\right|^2 \left|f_+^{D \to K}(q^2)\right|^2$$

需要形状因子f₊(q²)

$$\langle K|V^{\mu}|D\rangle = f_{+}(q^{2})\left(p_{D}^{\mu} + p_{K}^{\mu} - \frac{m_{D}^{2} - m_{K}^{2}}{q^{2}}q^{\mu}\right) + f_{0}(q^{2})\frac{m_{D}^{2} - m_{K}^{2}}{q^{2}}q^{\mu}$$

对于 $l = e, \mu$, 形状因子 f_0 的贡献可忽略 (对衰变宽度的贡献正比于 m_l^2)

- ・ 其它衰变道: $D_s \rightarrow \phi l \nu$, $D_s \rightarrow \eta^{(\prime)} l \nu$
- 初末态强子四动量: p、p'
- q² = (p p')², 格点计算中3-动量取分立值 (周期性边界 条件)

形状因子的格点计算

- 直接算 f_+ 需要 V^{μ} 的重整化常数,会引入额外误差
- 可利用f₊(0) = f₀(0) [HPQCD]
- 利用PCVC: $\partial_{\mu}V^{\mu} = (m_c m_s)S$, 可得

$$\langle K|S|D\rangle = f_0^{D \to K}(q^2) \frac{M_D^2 - M_K^2}{m_c - m_s}$$

手征格点费米子有 $Z_S Z_m = 1$, 无需计算重整化常数

•但不能考察 f_+ 随 q^2 的变化行为

$$C_{3}(\vec{p},\vec{p}',T,t) = \sum_{\vec{x}} \sum_{\vec{y}} \langle 0 | O_{D}(\vec{x},T) J(\vec{y},t) O_{P}^{\dagger}(\vec{z},0) | 0 \rangle e^{-i\vec{p}\cdot\vec{x}} e^{i\vec{q}\cdot\vec{y}}$$

$$\stackrel{t \to \infty}{\xrightarrow{T \to \infty}} \underbrace{(T-t) \to \infty} \langle 0 | O_{D} | D \rangle \langle D | J | P \rangle \langle P | O_{P}^{\dagger} | 0 \rangle e^{-m_{P}t} e^{-m_{D}(T-t)}$$

• The local current $\overline{q}\gamma_{\mu}c$ on the lattice needs renormalization Z_V

FLAG Review 2021, [arXiv:2111.09849]

 $f_+(q^2=0)$ for $D \to \pi/K$

2+1+1味结果

- $f_{+}^{D\pi}(0) = 0.612(35)$ [ETM 17D: PRD96 (2017) 054514, 1706.03017]
- $f_{+}^{DK}(0) = 0.7385(44)$ [ETM 17D:

PRD96 (2017) 054514, 1706.03017.

HPQCD 21A: PRD104 (2021)

034505, 2104.09883]

*m*_π大于500 MeV

2+1味结果

٠

70

• $f_{+}^{D\pi}(0) = 0.666(29)$ [HPQCD 11, PRD84,114505, 1109.1501]

JLQCD 17: LAT2017 [1711.11235]

FNAL/MILC/HPQCD 04: 一个格距,

• $f_{+}^{DK}(0) = 0.747(19)$ [HPQCD 10B, PRD82,114506, 1008.4562]

D_s的半轻衰变

- ・ D_s 的半轻衰变主要是到 ϕ 、 $\eta^{(\prime)}$
- ・ 但格点计算牵涉到(费米子线)非连通图, 更困难
- $D_s \rightarrow \phi l \nu$ [HPQCD, PRD90, 1311.6669]
 - 除了在 q^2 -bin中比较截面,还有更多观测量, $\phi \to K\overline{K}$
 - 忽略了非连通图贡献(0ZI压低)
 - 数据中φ不衰变; φ宽度较窄, 预期阈效应小
 - 形状因子V, A₂, A₁, A₀; z-expansion
 - 2+1味;两个格距;HISQ价夸克作用量
 - 和 BABAR, CLEO D → K*的结果做比较(假设spectator quark 的影响很小)
- $D_s \rightarrow \eta^{(\prime)} l \nu$ [Bali, Collins, Durr, Kanamori, PRD91,014503 (2015) 1406.5449]
 - 2+1味; 一个格距:~0.075 fm
 - 两个轻夸克质量点: m_π = 370和470 MeV
 - 计算了非连通图
 - 用标量算符计算f₀
 - 单极点ansatz参数化 q^2 依赖

粲重子半轻衰变

- $\Lambda_c \rightarrow \Lambda l \nu$ [S. Meinel, PRL (2017), 1611.09696]
 - ・ 2+1味; 两个格距; m_π = ~139 -- 352 MeV(4个取值);
 - (轴)矢量流:6个形状因子
 - z-expansion
- $\Lambda_c \rightarrow n l \nu / p \mu^+ \mu^-$ [S. Meinel, PRD97 (2018) 034511, 1712.05783]
 - ・ 2+1味, domain-wall fermions; 两个格距;
 - m_π = ~230 -- 350 MeV (3个取值/格距);
 - ・ (轴)矢量流 + 张量流 形状因子
 - modified BCL z-expansion
- $\Lambda_c \rightarrow \Lambda^*(1520) l\nu$ [Meinel & Rendon, PRD105 (2022) 054511, 2107.13140]
 - ・ 2+1味; 两个格距; m_π = ~303, 340, 431 MeV;
 - ・ (轴)矢量流 + 张量流 形状因子
- $\Xi_c \rightarrow \Xi l \nu$ [Q.-A. Zhang et al., Chin. Phys. C46, 011002 (2022), 2103.07064]
 - ・ 2+1味clover fermions; 两个格距; m_{π} = ~290, 300 MeV; 无手征外推
 - ・ (轴)矢量流 形状因子
 - z-expansion
$\Lambda_c \to \Lambda l \nu$

$$\mathcal{B}(\Lambda_c \to \Lambda \ell^+ \nu_\ell) = \begin{cases} 0.0380(19)_{\text{LQCD}}(11)_{\tau_{\Lambda_c}}, \ \ell = e, \\ 0.0369(19)_{\text{LQCD}}(11)_{\tau_{\Lambda_c}}, \ \ell = \mu \end{cases}$$

S. Meinel, PRL(2017) 1611.09696

• 给出的 $|V_{cs}|$ 和从 $D_s \rightarrow l\nu$ 得到的一致

$$\mathcal{B}(\Lambda_c \to \Lambda \ell^+ \nu_\ell) = \begin{cases} 0.0363(38)(20), \ \ell = e, \\ 0.0349(46)(27), \ \ell = \mu. \end{cases}$$

BESIII, PRL(2015) 1510.02610 BESIII, PLB(2017) 1611.04382

(轴)矢量流的6个形状因子 ₩ CP **⊷**C54 4 C53 ₩F43 ₩F63 $a = 0, \ m_{\pi} = 135 \text{ MeV}, \ m_{\eta_s} = 689 \text{ MeV}$ 2.0 $f_{\perp}(\Lambda_c o \Lambda)$ 0.9 $g_{\perp}(\Lambda_c \to \Lambda)$ 1.8 0.8 1.6 0.7 1.4 0.6 1.2 0.5 1.0 $f_+(\Lambda_c \to \Lambda)$ 0.9 $g_+(\Lambda_c \to \Lambda)$ 1.2 1.0 0.7 0.8 0.6 0.5 0.6 1.1 $f_0(\Lambda_c o \Lambda)$ $g_0(\Lambda_c \to \Lambda)$ 1.0 0.9 0.80.8 0.7 0.6 0.6

最新的BESIII结果

BESIII, 2207.14149

149 $\mathcal{B}(\Lambda_c \to \Lambda e^+ \nu_e) = 0.0356(11)(7)$ using a 4.5 fb⁻¹ data sample

0.4

 $q^2/q_{\rm max}^2$

0.2

0.0

0.6

0.8

0.0

0.2

0.4

 $q^2/q^2_{\rm max}$

0.8

0.6

$\Lambda_c \rightarrow n l \nu$

S. Meinel, PRD97 (2018) 034511, 1712.05783

 $\begin{aligned} \mathcal{B}(\Lambda_c \to ne^+\nu_e) \\ &= (0.410 \pm 0.026_{\text{LQCD}} \pm 0.012_{\tau_{\Lambda_c}} \pm 0.002_{|V_{cd}|})\% \\ \mathcal{B}(\Lambda_c \to n\mu^+\nu_{\mu}) \end{aligned}$

 $= (0.400 \pm 0.026_{\text{LQCD}} \pm 0.012_{\tau_{\Lambda_c}} \pm 0.002_{|V_{cd}|})\%$

- ・ 末态含中子以及中微子, 不利于实验测量
- 可和其他理论计算比较

$$\frac{\Gamma(\Lambda_c \to ne^+\nu_e)}{|V_{cd}|^2} = (0.405 \pm 0.016_{\text{stat}} \pm 0.020_{\text{syst}}) \,\text{ps}^{-1}$$

(误差来自形状因子)

74

Reference	Method	$\Gamma(\Lambda_c \to n e^+ \nu_e) / V_{cd} ^2 \text{ [ps}^{-1}\text{]}$	$\Gamma(\Lambda_c \to n\mu^+ \nu_\mu) / V_{cd} ^2 \text{ [ps}^{-1]}$
Ivanov et al. [1]	Quark model	0.26	
Pervin et al. [2]	Quark model	0.203, 0.269	
Gutsche et al. [5]	Quark model	0.20	0.19
Lü et al. [6]	SU(3) symmetry	0.289 ± 0.035	
Faustov and Galkin [7]	Quark model	0.265	0.260
Li <i>et al.</i> [8]	Light-cone sum rules	0.267 ± 0.011	
This work	Lattice QCD	0.405 ± 0.026	0.396 ± 0.025

2022/11/19 刘朝峰

 $\Lambda_c \rightarrow \Lambda^*(1520) l\nu$

形状因子的 q^2 依赖用(w-1)的幂次函数描写 •

$$w = v \cdot v' = (m_{\Lambda_c}^2 + m_{\Lambda^*}^2 - q^2)/(2m_{\Lambda_c}m_{\Lambda^*})$$

054511, 2107.13140

$$w = 1$$
对应 $q^2 = q_{\max}^2 = \left(m_{\Lambda_c} - m_{\Lambda^*}\right)^2$

$$f(q^2) = \frac{1}{1 - q^2 / (m_{\text{pole}}^f)^2} \sum_{n=0}^2 a_n^f L_n^f (w - 1)^n,$$

where the factors

$$L_{n}^{f} = \begin{bmatrix} 1 + C_{n}^{f} \frac{m_{\pi}^{2} - m_{\pi, \text{phys}}^{2}}{(4\pi f_{\pi})^{2}} + D_{n}^{f} a^{2} \Lambda^{2} \end{bmatrix}$$

手征外推 离散效应

BESIII reports the first evidence (4 σ) of $\Lambda_c \rightarrow \Lambda^*(1520)e^+\nu_e$

BESIII, 2207.11483

$$V_{cs}| = 1.3 \pm 0.3_{\mathcal{B}} \pm 0.1_{\mathrm{LQCI}}$$

离散效应

 $f(q^2) = \frac{1}{1 - q^2 / (m_{\text{pole}}^f)^2} \sum_{n=0}^{\infty} (c_n^f + d_n^f a^2) [z(q^2)]^n$

结合Belle实验结果

 $\mathcal{B}_{\text{Belle}}(\Xi_c^0 \to \Xi^- e^+ v_e) = (1.72 \pm 0.10 \pm 0.12 \pm 0.50)\%$ $\mathcal{B}_{\text{Belle}}(\Xi_c^0 \to \Xi^- \mu^+ v_\mu) = (1.71 \pm 0.17 \pm 0.13 \pm 0.50)\%$ $|V_{cs}| = 0.834(0.051)_{\text{stat.}}(0.056)_{\text{syst.}}(0.127)_{\text{exp.}}$

结合ALICE实验结果

 $\mathcal{B}_{\text{ALICE}}(\Xi_c^0 \to \Xi^- e^+ v_e) = (2.43 \pm 0.25 \pm 0.35 \pm 0.72)\%$ $|V_{cs}| = 0.983(0.060)_{\text{stat.}}(0.065)_{\text{syst.}}(0.167)_{\text{exp.}}$

实验误差主导

$$z(q^2) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

z-expansion

$|V_{cd}|$ 和 $|V_{cs}|$

 $f_D|V_{cd}| = 46.2(1.2) \text{ MeV}, \quad f_{D_s}|V_{cs}| = 245.7(4.6) \text{ MeV}$ $f_+^{D\pi}(0)|V_{cd}| = 0.1426(18), \quad f_+^{DK}(0)|V_{cs}| = 0.7180(33)$

PDG2020, PTEP2020, 083C01

HFLAV, EPJC81(2021) 226, 1909.12524

- ・ 纯轻过程,LQCD误差比实验误差小 (2+1,2+1+1味)
- ・ 介子半轻过程,LQCD误差比实验误差 大
- ・ 使用形状因子的q²依赖显著降低|V_{cx}|
 的误差
- ・ 重子半轻过程,实验误差主导
- CKM幺正性(第二行)在10⁻²精度上成立 (2+1味)

$$|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 - 1 = 0.01(3)$$

FLAG Review 2021, [arXiv:2111.09849]

D-meson mixing

• D-mixing 被doubly Cabibbo压低 ($|V_{ub}V_{cb}^*|^2$), long distance contribution dominates

- 但标准模型里long distance contribution中的CP破坏可忽略,所以可以考虑新物理中local有效算符 带来的CP破坏
- 最一般的 $\Delta C = 2$ 有效哈密顿量(dimension-6): $H_{\text{eff}}^{\Delta C=2} = \frac{1}{4} \sum_{i=1}^{5} C_i(\mu) Q_i(\mu)$ $Q_1 = [\bar{c}^a \gamma_\mu (1 - \gamma_5) \ell^a] [\bar{c}^b \gamma_\mu (1 - \gamma_5) \ell^b],$ • In the SUSY basis, they are: $Q_2 = [\bar{c}^a (1 - \gamma_5) \ell^a] [\bar{c}^b (1 - \gamma_5) \ell^b],$

$$\begin{aligned} & Q_2 = [c^{-}(1-\gamma_5)c^{-}][c^{-}(1-\gamma_5)c^{-}], \\ & Q_3 = [\bar{c}^a(1-\gamma_5)\ell^b][\bar{c}^b(1-\gamma_5)\ell^a], \\ & Q_4 = [\bar{c}^a(1-\gamma_5)\ell^a][\bar{c}^b(1+\gamma_5)\ell^b], \\ & Q_5 = [\bar{c}^a(1-\gamma_5)\ell^b][\bar{c}^b(1+\gamma_5)\ell^a], \end{aligned}$$

标准模型里,
只有
$$Q_1$$
有贡献

D-meson mixing

- ETMC (2味, 精度3-5%, bag parameters, 4a's; PRD90(2014), 1403.7302)
- ETMC (2+1+1味, 4-8%, 3a's; PRD92(2015), 1505.06639)

Isospin-breaking effects

- ・ 精度达到约1%时, 需开始考虑同位旋破缺效应
 - ・ 上下夸克质量差: $O((m_d m_u)/\Lambda_{QCD}) \sim 1\%$
 - QED效应: $O(\alpha_{em}) \sim 1\%$
- 1+1+1+1味QED+QCD模拟 [Borsanyi et al., Science 2015]
 - ・ **质量差**: *n p*, *D*[±] *D*⁰,
 - Wilson-clover, 4 *a* ∼ [0.06 − 0.10] fm
 - $\alpha_{\rm em} = 0, 1/137, 1/10, 1/6$
- 3味QED+QCD模拟 [Horsley et al., J. Phys. G 2016]
 - ・ 质量差: n p, π⁺ π⁰
- Quenched QED
 - ・ 海夸克不带电荷
 - ・ 价夸克带电

• de Divitiis et al., PRD87.114505.2013

- ・ 质量差: n p, π⁺ π⁰
- ・ 2味ETMC组态
- Giusti et al., Lattice2017
 - 质量差: $\pi^+ \pi^0, K^+ K^0, D^{\pm} D^0$
 - $\delta M_{D_s^+}$
 - ・ 2+1+1味ETMC组态
- Di Carlo et al., PRD100.034514.2019
 - π⁺, K⁺的纯轻衰变, 2+1+1味ETMC组态
- HPQCD, PRD102.054511.2020
 - $f_{J/\psi} = 410.4(1.7)$ MeV
 - ・ HISQ作用量
 - ・ 2+1+1味MILC组态

夸克双线性算符的非微扰重整

- 格点计算中, 格距倒数是一个自然的紫外截断: 格点正规化
- 一般来说, 算符的强子矩阵元需要重整以消除对格距的发散依赖
- •Nonperturbative: not using lattice perturbation theoy (LPT)
- Lattice Perturbation Theory
 - Complicative, most calculation at 1-loop
 - Converges slowly
- •Schrödinger functional [Lüscher et al., NPB384(1992)168, lat/9207009]
- •Using Ward Identities

- Sint, NPB421(1994)135, lat/9312079
- E.g., Z_A from $\partial_{\mu}A^{\mu} = 2m_q P$ for chiral fermions
- •RI/(S)MOM [Martinelli et al., NPB445,81,1995, arXiv:hep-lat/9411010]
 - **Regularization Independent (RI)**
 - Momentum subtraction scheme (MOM)

RI/(S)MOM

- Why RI?
 - Works with both dimensional regularization ϵ and lattice regulator a
 - Match to MS scheme (continuum perturbation theory)
- (S)MOM: imposed on off-shell Green functions

- Nonperturbative effects are more suppressed in SMOM (1/p⁶ vs. 1/p²) [Aoki et al., PRD78.054510(2008)]
- Nonperturbative effects: infrared effects
 - Irrelevant to ultraviolet behavior, need to be subtracted
- Conversion ratio $Z^{\overline{\text{MS}}}/Z^{\overline{\text{SMOM}}}$ may converge faster than $Z^{\overline{\text{MS}}}/Z^{\overline{\text{MOM}}}$, true for Z_S [PRD82.114001, 054017(2010)]

- ・ 包含动力学夸克自由度的全QCD格点模拟近年来取得了很多进展
 - 强子谱学、强子结构、极端条件QCD、软件和组态产生、强子矩阵元精确计算、.....
- ・ 粲物理相关的格点QCD计算可精确检验标准模型
 - ・衰变常数
 - ・形状因子
 - 新物理模型低能有效算符的强子矩阵元
- ・ 计算精度在向 1% 以内努力
 - ・提高统计量
 - ・ 控制各项系统误差 (离散效应、手征外推、……)
 - ・ 考虑同位旋破缺效应、电磁效应
 - 提高重正化常数的计算精度
- 考虑高阶电弱修正进一步提高精度

