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1. The foundation of the inverse problem approach
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- Physical applications and discussions, perspectives

2. More details on the inverse problem approach

- Introduction and mathematical basis of the inverse problems

. D' — D" mixing and its inverse problem.
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Motivation: Problems of non-perturbation
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 Particle physics: color confinement

.New physics: muon g-2, Br(B — D")t)/Br(B - DV¢y)

- Parton physics: mass and spin of nucleon, PDF, GPD, TMD, LCDA
*Hadron physics: tetraquarks, pentaguark, glueballs

*High energy nuclear physics: QCD phase transition, critical point

-Low energy nuclear physics: nuclear force
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Motivation: non-perturbative approaches

- Lattice QCD

*QCD sum rules

- Dyson-Schwinger Equation
*Chiral perturbation theory

Other EFTs and phenomenological models

*Each of them has its advantages and shortcomings.

- |t is always welcome to develop a new theoretical method for non-perturbation,

to make complimentary predictions what are difficult by the above methods.



Criteria of a good theoretical approach

(1) Well defined in mathematics
(2) Realization in numerical calculations
(3) Can be systematically improved

(4) Simple at the beginning



The main idea of the inverse problem approach
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The main idea of the inverse problem approach
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-With the dispersion relation of QFT, the non-perturbative quantities are obtained by
solving the inverse problem with the perturbative calculations as inputs.

Using the regularization method, the solutions are stable, and can be converged to
the true value as the input errors approaching zero.

* The precision of the predictions can be systematically improved, without any
artificially assumptions.



The main idea of the inverse problem approach

1. Dispersion relation and its inverse problem
2. Proof of ill-posedness

3. Regularization method

4. Test of some toy models

5. Physical discussions and perspectives
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1. Dispersion relations and inverse problems

Dispersion relation:

- Based on Quantum Field Theory and correlation functions

» Analyticity of QFT, relation between a physical point and the curves,
or relation between the real and imaginary parts

[(g°) = i f d* xe'* (O(x)0(0)) A

T s — 5/

Re[TI(s)] = lpfoo Im [IT(s")] q¢
0
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1. Dispersion relations and inverse problems
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2. Proof of the ill-posedness

» Dispersion relation: first-class Fredholm integration equation

a ) b
tom A PQ@ P/O -VJ f()dx=g(y),ye[c,d], ¢c>b, a>0
K To be solved calculable J a y — A
* Proof of the ill-posedness
» Existence of solutions Most of inverse problems are ill-posed.
* Uniqueness of the solution Solving such problems is non-trivial.

» Instability of the solution

13



2. lll-posedness of the inverse problem

*Most of inverse problems are ill-posed

2 3%, =5
XI xz * xl — 1, X2 — 1
1.9999x, + 3.0001x, = 5

2x; 4+ 3%, =5
XI XZ * x1=—5, X2=5
1.9999x, + 3.0001x, = 5.001

* A very small noise might cause a large change of solutions
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2. lll-posedness of the inverse problem

2 3%, =5
XI—I_ xz * x1=1, X2=1
1.9999x, + 3.0001x, = 5

2x,+3x, =5

XI xz * x1=—5, X2=5

1.9999x, + 3.0001x, = 5.001
* A very small noise might cause a large change of solutions

Ax =y, x=A""y
2 3 L AF 6000.2 —6000
A — — A — —
(1.9999 3.0001)’ A1 = 0.0005, A (—3999.8 4000 )

A~ ! enhances the errors
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2. lll-posedness of the inverse problem

+The operator K : X — Y, Kx=y, xe€X, yeY
- Inverse problem: solve x by known of Kandy, X = K_ly

» Definition of well-posedness:

Define:  The operator equation (3.1) is called well-posed if the following holds [§]:
I.Existence: For every g € G there is (at least one) f € F such that K f = g;
2.Uniqueness: For every g € G there is at mostone f € F with Kf = g;

3.Stability: The solution f depends continuously on g; that is, for every sequence (f,) C F with
Kf, = Kf(n — ), it follows that f, — f(n — o0)

* [ll-posedness: At least one of the above conditions is not satisfied

. If well-posed, K~ must be a bounded or continuous operator, otherwise ill-posed.
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2. lll-posedness of the inverse problem

+ The operator K : X — Y, Kx=y, xe€X, yeY

* The inverse problem of dispersion relation must be ill-posed.

- K is a linear bounded compact operator. It doesn’t have a bounded inverse operator in the infinite
dimensional space.

Proof. Itis easily to check that K fi + Kf> = K(f) + f2) and aKf = K(af) so the K : F — G operator 1s

a linear operator. For any f € L?(a, b), by the Cauchy inequality, we have

KA1 f (K )dy = fl ( f

f f (—)zdx f f(x)dxdy<(—) (b= a)d - s, = M, < +o0.

where M > 0 is a constant. Thus, from the form of the equation (3.2), we easily know K : F - G is a

f(x)dx)zdy (3.2)

bounded operator.
Since ¢ > b, the mth order derivative of K f exists for any m € N and by the Cauchy inequality, we

have

HO"’"(Kf)

(=1)"m!
L2ed) f’ ( (y — x)" — f()dx)*dy < ClIfl72, 4 (3.3)

where C > 0 is a constant depending on a, b, ¢, d only. Therefore, K f € H"(c,d) for any m € N. Since m
is arbitrary, by the embedding theorem, we know K f € C*®[c,d]. And since H'(c,d) is embedded into

L?*(c,d) compactly, we know the operator K is a compact opgrator. The proof is completed O



2. Proof of the ill-posedness

dx=g(), y€lc,d]l, ¢>b, a>0

b
Proof of uniqueness: J 0

aY X
Proof. Since K 1s a linear operator, we know that Kf1 — Kf> = K(f1 — f2) = 0. Setting f = f1 — f2, we

just need to prove that Kf = 0 implies f(x) =0, a. e. x € [a, b].

If d < +00, taking z € D := {z € C : |z| > ¢}, we have

It is easy to obtain that Kf = J;b )%xf(x)dx = fab G Zf_u(g)/‘)f(x)dx. Since x € [a,b], y € [c,d],

L 1X . é ) . * o x\k . 00 2 k ' X e ] 00 1 0 1 — bk b
¢ > b, we know |by| < |7| < 1, which implies that Zk:O(y) f(x)| < 2peo(2)1f(x)| for all x € [a,b] | Z 1 kaf(x)dx| . Z _k| bekf(x)dXI . Z _kf PCNd < 460,
Combined with L | f(x)|dx < +co and the control convergence theorem, we have =0 & VYa k=0 € a k= ¢ Ya
b o0 C oy . o b : : : b :
y f - 1 - F(x)dx = z )LA f ¥fdx =0, ye e d). (3.4) which implies that the series };~ ﬁ L X f(x)dx is convergent uniformly on D. Since % j; X f(x)dx 1s
a J — ’ a . . . 0 b
=0 analytic on D for each k and use the Weierstrass theorem, we conclude that the series ., _, ziL fa XX f(x)dx
If d = +00, by using (3.4), we have . . 0 b : : : :
) ( is analytic on D. Further, we know .~ , )i* fa x* f(x)dx is real analytic on y € (¢, +o0). Combined with
b b b
| | . . . .
j f(x)dx + 5 j xf(x)dx + -+ )7 j X f(x)dx+-=0, yEe/(c,+0). (3.5) the analytic continuation, we know that (3.4) holds for y > ¢, 1. e.
a ’ a a
Letting y — +c< in (3.5), we have | ? f(x)dx = 0. Then multiplying y on both sides of (3.5) and letting Z 1 fb X f(x)dx =0, ye/(c,+o).
y — +0co, we also have _{:’ xf(x)dx = 0. Repeating above process, we can obtain that k=0 ¥ Ja

b . . — b — — .
f Ffodx=0, k=012 (3.6) Similar to the proof process of the case d = +o0, we also conclude that fa *f(x)dx=0,k=0,1,2,

ford < +o0.
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2. Proof of the ill-posedness

b
J /) dx=¢(), y€lc,d], c>b, a>0

a4

Proof of uniqueness:

Proof. Since K 1s a linear operator, we know that Kf1 — Kf> = K(f1 — f2) = 0. Setting f = f1 — f2, we

just need to prove that Kf = 0 implies f(x) =0, a. e. x € [a, b].

, , - ) , - By using (3.6), we know that f b f(x)Qn(x)dx = 0. Combined with the Cauchy inequality, we have
Since Cla, b] is dense in L“(a, b), then for f(x) € L“(a, b) and any € > 0, there exists f(x) € C[a, b], a

~ ~ . . b b
such that [[f — fll;24.p) <~e. On the other hand, for f(x) € Cla, b], there exists a polynomial Q,(x) of I f”iz(a,b) _ f f2( X)dx = f ( fz( X) = f(X)0,( x)) dx
degree n € N, such that || f — Q,llcia,p) < € by the Weierstrass theorem. Therefore, we have ; b .
< f If )] - 1f(x) = Qn(X)ldx
If = Qulli2apy < I = fllziapy + If = ulli2ap) ‘

b 1 b 1
2 2 3 2,.\2
<e+ Vb—d|f - Onllciap < (L / (x)dx) (j; (%) = Cul2) dx)
< E+E€E \/b - a, = ||f"L2(a,b)”f - Qn”L-’-(a,b)
< (e +€Vb—a)lfll2p)

Letting € — 0, we have ||f]|;2,5) = 0,1. e. f(x) =0, a. e. x € [a, b}/ The proof is completed. O
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2. Proof of the ill-posedness

. ” b Ax)
Proof of instability: J dx=¢(), ve€lc,d], ¢>b, a>0

a YA

We show the instability of the inverse problem of dispersion relation by the special case. Taking
a=0,b=1,¢c=2,d =3, falx) = fi(x) + VYncos(nrnx), and fi, are the solutions of g|, with
gi(y) = ﬁ)l ﬁ fi(x)dx. As n — oo, 1t 1s obvious that

, 1/2
If2 = fillrz,1y = ( j(; (Vn COS(nﬂX))ZdX) (3.7)

and

(3.8)

1 3 1 1 | 1/2
g2 = gillzea) = —=— ( fz () (y_x)2 sin(mrx)dx)zdy)

That means the solutions could be changed infinitely even though the noise of the input data 1s approaching

to vanish. So the inverse problem is unstable.

20



2. Proof of the ill-posedness

b
J M) = o). veledl ¢>b. a>0

a YA

1) Existence \/

2) Uniqueness \/

X

3) Stabllity

The inverse problem of dispersion relation is ill-posed

How to find a good solution is the most important issue.

21



The main idea of the inverse problem approach

1. Dispersion relation and its inverse problem: Well defined
2. Proof of ill-posedness: Instability

3. Regularization method

4. Test of some toy models

5. Physical discussions and perspectives

22



3. Regularization method

Define: A regularization strategy is a family of linear and bounded operators R, : G — F,a > (),

such that im R, K = f for all f € F, where the « is the regularization parameter [8].

a—0

. Construct a bounded operator which is approximate to K _1,

. lll-posed problem -> well-posed approximate problem, so thatfg = ng(3

. fg is the approximate solution related to both a and 0.

.An effective regularization strategy is to satisfy f2 — f, as ||g° — g|| <6 = 0

”f(f _fHF = ”Ragé _R“g”F +lIRag = flip Kf=g, feF,geG
< IRall||g° - gl|; + IReK S — I

SO|Re + IR K S — [l
| | - To keep a balance, a can be

o0 0 a— 0 neither too large nor too small
23



3. Tikhonov Regularization

R,:=(al+KK)'K*:G > F af’ + K*Kf° = K*g°
1 Q
5 o _ = ) 2 hd 2
fo = agminJ(f), J) = J0KF = & e * 3

178 = 7|, < SlRll +IRKS = fll
\/EE A priori condition: f = K*v, v € G, ||v||s < E

5|
wa 2

Ife = fllF <

Take a = O/ E

* The most important: the uncertainty

0 _
Vo —JllF<VoE—0, 00 converges to vanishing as 0 — 0

24



3. Selection rules of the Regularization parameter

A-priori methods are always difficult to use in practice.
A-posterior methods can be tried.

L-curve method: @ = arg min (”fg“,: ||85 — Kfcf“c;)
foeL?(a,b)

Both of Hfgﬂ and ||g° — ngﬂ should be minimized together,

1 0
. 5 : _t 012 112
considering f, = ;12%21(1:1; J(f), J(f)= 2HKf &M 2yt 2HfHLz(a,b)

25



The main idea of the inverse problem approach

1. Dispersion relation and its inverse problem: Well defined
2. Proof of ill-posedness: Instability

3. Regularization method: Tikhonov

4. Test of some toy models

5. Physical discussions and perspectives

20



4. Test of Toy Models

*Questions on the inverse problem approach:

(1) Regularization: How important are the regularization methods?
Can the solutions be systematically improved by the regularization method and
the method of selecting the regularization parameter?

(2) Impact of input uncertainties: What is the dependence of the errors of solutions
on the uncertainties of inputs”? Larger, smaller or similar?

(3) Impact of o and /\: How sensitive are the solutions to the parameters o and A?
Does it exist a plateau?

(4) Impact of more conditions: Can the solutions be improved if we known more

conditions?

27



4. Test of Toy Models

»Simple at the beginning: Tikhonov regularization + L-curve method for the regulator

* They are simple in mathematics and in practice and thus are very helpful to develop the new approach
in the future.

-Uncertainties are the most important issue. b; = u; £ o

f®) = afi® +mh®  £O)=bigi) + b)) &0) = [ Idx

Model 1: a monotonic function as fi(x) = sin(mx), f>(x) = e* ;

Model 2: a simple non-monotonic function as fi(x) = xe ™, fo(x) =0 ;

Model 3: an oscillating function as fi(x) = sin(2nx), fo(x) = x.

They are either helpful to clarify the properties of inverse problems or close to the real physical problem
28



4. Test: Importance of regularization

The solutions without any regularization:

3000 T T T T T T T T T 60 ' ' . . . , , : : 100
— e — e —true
2500 w— g pproximate | 7 w— g pproximate w—Fpproximate
|
1500 | 20 ‘ l
’ | | l | { s I 4 L LI 1
1000 l “ 0 l' “’ M l'“ nenl .
500 . ol I ) J| L rl' 2 Il'P“ .'.'s l
WGAREL AL DR R B I LA N l |
-20
-500
-1000 | 100
40 r
-1500
-2000 : : : : : : : : : 60 1 L L . . : ! L 1 -150 1 1 I 1 1 ! ! ) ]
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

* [t can be clearly seen that the solutions are unstable and far from the true values.
* The ill-posed inverse problems can not be solved without any regularization.
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4. Test: Importance of regularization

The solutions with Tikhonov regularization:

94 5= 0.1 0.01 0.001 . 0.0001

jarak

N
o
-
N

0 1 2 0 1 2 0 1

1e-06 1e-07 1e-08 1e-09
5 5 5 5 . 19'07
M 0.2 0.2
0 - o 1 2 o 1 2 o0 1 2
1e-11 . 1e-12 . 1e-13 1e-14 1e-11 1e-12
0.4 0.4 0.
D,J\1 0.2 o.f\ 0.
o 1 2 0 1 2
1e-16 — 1e-17 1e-18 1e-19 1e-17
40
20
.20
40 1 200 .50 .
0
model 3
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The solutions with Tikhonov regularization:

o =

0 1 2
1e-11
10
5
0
0 1 2

0 1 2
1e-07
10
5
0
0 1 2

4. Test: Importance of regularization

0.01

0.001

20
10%
0

0 1
1e-08

2

0 1
1e-13

10
5
0

2

10
5
0

0 1

2

model 1

0.0001

1e-05
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* [t can be seen clearly that some values of
regularization parameters can give good results.

* The ill-posed inverse problems can be solved by
regularization.

* The regularization parameter can be neither too
small (not enough for regularization), nor too large
(dominate over the original problem)

- But o still works by ranging several orders of
magnitude.

* The regularization methods are very important in
solving the inverse problems.



4. Test: Impact of input uncertainties

* The most important issue is
to control the uncertainties!

* The uncertainties of the solutions are almost
at the same level of the input errors.

* The smaller the input errors are, the more
precise the solutions are.

* The precision of the predictions can be
systematically improved by lowering
down the input errors.

Input errors: 30% 10% 1%
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4. Test: Impact of improved regularization method

* The regularization method
can be modified according
to the problem of physics

* The norm space of f(x) is changed from
L’(a,b) to H'(a, b)

 The solutions are perfect for model 1 and 2.
Model 3 is also significantly improved.

 The uncertainties stemming from the
regulator a is automatically included in the
final results. Don’t need to estimate the
uncertainties from a.

Input errors: 30% 10% 1%
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4. Test: Plateaus of the regularization parameter
1fe = Al

k rhodell 1 '

I I I 0 1 1 1 1 1 1 1 1
o 10 19 0 2 4 6 8 10 12 14 16 18 lOg
0. 0.01 0.001 0.0001 1 0.1 0.01 0.001 0.0001
5 5 5 5 5
0 % DM SM 10M OA m m m m m
9 ¢ .
a 1 2 0 1 33 1 2 JO 1 2 OU 1 2 00 1 2 UO 1 2

There exist plateaus. Solutions are insensitive to regularization parameter. L-curve method is suitable.
The inverse problem approach works for the non-perturbative calculations.
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4. Test: Plateaus of the separation scale A
f‘s(l)

o model 1
8 -
7r i
6”
5r i
4 +
3 -
2 -
1_
0 |
2 3 4 5 6 7 8
1e-07 1e-09
15 40 1e-08 400 1e-09
. 100
20
: 50 200
0 0
0 1 2 0 1 2 3 0 0
0 2 4 0 2 4 6
1e-10 1e-11 1e-11

 There exist plateaus.

» Solutions are insensitive to the separation scale for monotonic and simple non-monotonic functions.
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- The continuous condition at /A might be even more helpful.
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17z = fll
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4. Test: Insensitivity to @ and A
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Solutions are insensitive to the
regularization parameter and the
separation scale.

* The uncertainties of the inverse
problem can be well controlled.
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4. Test: Constrained data

37

If there is an experimental data or lattice
data with much smaller uncertainty than the
original solutions, we can use It to constrain
the solution to be more precise.

Therefore, this method can combine with
experiments and Lattice QCD to improve
the precision of predictions



The main idea of the inverse problem approach

1. Dispersion relation and its inverse problem
2. Proof of ill-posedness

3. Regularization method

4. Test of some toy models

5. Physical discussions and perspectives
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The precision can be systematically improved

Without any beyond-control assumptions, the precision can be systematically improved:
(1) Suitable regularization method and selection rule of the regulators

(2) Higher precision of input data

(3) Combination with higher precise data of experiments or Lattice QCD.

39



Criteria of a good theoretical approach

(1) Well defined in mathematics Dispersion relation + proof of ill-posedness
(2) Realization in numerical calculations Regularization methods
(3) Can be systematically improved Converging to vanishing as 0 — 0

(4) Simple at the beginning Tikhonov regularization

40



5. Physical applications: neutral meson mixing

AF1<=2|F12|

A
457107 .

XXX i O P

3.5

\/ 3

(s = 5)(81 = 5)(55 = ) [A [y5(s7) g’ |
AT ; (8" — )" — 51" — $9) ol
= (5] — )M 5(s) + (55 — S)M;,(s51) + (s — 5)M,(5,) | ) ) ) )
(s —s)(s] — $)(55 — ) J'OO ['5(s") I
2T A =8 = s = 57)
I = > AiquDisc(Eq\i / diz T (H3§=1(x)ﬁgg=l(0)) B,)
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Inverse problem in Lattice QCD

p(w) Log[D(T)]
T~0
D/D thresh. D(T) = ro dwe "“p(w)
—2My,
w Inverse problem .
Hadron spectral function Euclidean time correlation function

Rothkopf, 2211.10680

Spectral function reconstruction from Euclidean lattices

42



Inverse problem in Lattice QCD

Hadronic on the Lattice

Lattice QCD: Euclidean field theory using the path-integral formalism: time-dependent matrix
elements are problematic.

1% _]_ 4,192
’w_47z < £

i@ 40| | p,s>

Euclidean hadraonic tensor:

W, (P, d,1=t,—1) = e 12X, SUJ(??., (X1, 1) | p,s)

Back to Minkowski space by solving the inverse problem:

| K.F Liu and 5. J. Dong, PAL 72, 1790 (1994)
W,.(p.q.7)= JdD'Wpu(Ps q.v)e”"" K.-F. Liu, PRD62, 074501 (2000)
J. Liang ol. al,PRD101, 114503 (7020)

J. Liang ot al., PRD 102, 0345 14 (2020)

Jian Liang’s talk @ 2nd EicC CDR workshop
43



Maximum entropy method (MEM) D(1) = f OOK(T,W)A(W) dw
0

® MEM is a method to circumvent these difficulties by making a statistical inference of the most probable
SPF (or sometimes called the image in the following) as well as its reliability on the basis of a limited
number of noisy data.

® |ts basis Is Bayes’ Theorem:

PlY|X|P[X
Pix|Y) = 2L }L[)],] X]
From Bayes' Theorem, we can get :
PlalDH] ) P[DlAH]P[AlH]‘
PIDIA] OP|A|DH

The most probable image is A(w) that satisfies the condition: [6J4 | 0.
(1) Firstly, they make:

P|D|AH|] = -Zl— et | —

L = %Z(D(n) — Da(m:))C5(D(73) — Dal(r3)),
L

In the case where P[A|H] = 0, maximizi'ng P[A|DH] is equivalent to standard x> — fitting. However, the

x* — fitting does not work.
hep-lat/0011040
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5. Physical perspectives

(1) Provide the quantities at the whole non-perturbative region

(2) Advantage for the excited states. Either calculate directly, or combine with LQCD
for ground states

(3) Advantage for non-local correlation functions: widths and lifetimes, inclusive
processes, distribution amplitudes

4) QCD sum rules with modification on the quark-hadron duality.

5) Constrain some input parameters.

(4)

(5)

(6) Solving some inverse problems in Lattice QCD.

(7) More efforts on perturbative calculations to improve the input precision.
(8)

8) And many others...
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Outline

1. The foundation of the inverse problem approach

-+ The main idea of the inverse problem to non-perturbative QCD

- Dispersion relation and its inverse problem, ill-posedness and Tikhonov
regularization, toy models

- Physical applications and discussions, perspectives

2. More details on the inverse problem approach

- Introduction and mathematical basis of the inverse problems

. DY — D" mixing and its inverse problem.
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r’ £

a4

Proof of uniqueness: dx=g(y), vy€E€lc,d], c>b, a>0

Proof. Since K 1s a linear operator, we know that Kf1 — Kf> = K(f1 — f2) = 0. Setting f = f1 — f2, we

just need to prove that Kf = 0 implies f(x) =0, a. e. x € [a, b].

It is easy to obtain that Kf = j;b %f(x)dx = j;b (% Z,‘Z‘;O(f)k)f(X)dx. Since x € [a,b], y € [c,d],

y—X

¢ > b, we know Iil < I%I < 1, which implies that ‘ Z,‘:‘;O(f)"f(x)l < Z,‘;‘;O(g)"lf(x)l for all x € [a,b].

Combined with fa ’ |f(x)|dx < +0c0 and the control convergence theorem, we have

1 - 1
)’f — f(x)dx = Z — fbxkf(x)dx =0, ye€led]. (3.4)
a y — X k=0 y a
If d = +00, by using (3.4), we have
b 1 [ 1
f f(x)dx + ;f xf(x)dx+---+ }7 fbxkf(x)dx+ ---=0, yE€/ (c,+00). (3.5)

Letting y — +oc0in (3.5), we have j; ’ f(x)dx = 0. Then multiplying y on both sides of (3.5) and letting

y — +oco0, we also have fa ’ x f(x)dx = 0. Repeating above process, we can obtain that

b
f Xfx)dx=0, k=0,1,2,---. (3.6)

62



Proof of uniqueness:

Ifd < +co,takingze D :={z€ C: |z] > ¢}, we have

|ilfbxkf(X)dx|<il|fbxkf(x)dx|<ib_kfblf(x)ldx<+OO
k:()zk . —kzoc" ., B & ). ’

k=0

which implies that the series >, _, zlk j; > ¥k f(x)dx 1s convergent uniformly on D. Since zlk L ? ¥k f(x)dx 1s
analytic on D for each k and use the Weierstrass theorem, we conclude that the series };;" , zlk L 7 5k f(x)dx
is analytic on D. Further, we know ;7 )lk fa ’ x* f(x)dx is real analytic on y € (c, +o0). Combined with

the analytic continuation, we know that (3.4) holds for y > ¢, 1. e.
Z = f X f(x)dx =0, ye/(c,+oo).
k=0 y d

Similar to the proof process of the case d = +o00, we also conclude that fa P ¥k f(x)dx=0,k=0,1,2,---

for d < +o0.
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Proof of uniqueness: Since C[a, b] is dense in L?(a, b), then for f(x) € L*(a,b) and any € > 0, there exists f(x) € C[a, b],
such that ||f — f]| 12(ap) < € On the other hand, for f(x) € C[a,b], there exists a polynomial Q,(x) of

degree n € N, such that || f — Onllcrap) < € by the Weierstrass theorem. Therefore, we have

If = Cullrzcasy < WF = Fllzs + I1F = Onllzzcas
<€+ Vb- a”f_ Qn”C[a,bJ

<e+eVb-a,

By using (3.6), we know that L b f(x)Q,(x)dx = 0. Combined with the Cauchy inequality, we have

12200 ) = f FAx)dx = f (£2(0) = F()Qu(x))dx
< f OOl - 1f(x) — Qu(Wldx
b 1 b 1
< ( f F(xdx) ( f £(x) = Qu(x)Pdx)?

=|If ||L2(a,b)||f - Qn||L2(a,b)
< (e + € Vb = D|fll 2a.),

which implig

Letting € — 0, we have ||fl[;2,5) = 0,1. €. f(x) =0, a. € x € [a, b]. The proof is completed. O
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. i " Ax)
Proof of instability: J dx=g(), yv€lc,d], ¢c>b, a>0
a YA

We show the instability of the inverse problem of dispersion relation by the special case. Taking
a=0,b=1,c¢=2,d =3, oa(x) = fi(x) + Vncos(nnx), and f,, are the solutions of g|, with
gi(y) = fol y%x fi(x)dx. As n — oo, it is obvious that

, 1/2
2 = fllzze,n = ( j; (\/ﬁcos(nﬂx))zdx) (3.7)

and

(3.8)
0o Y— X

That means the solutions could be changed infinitely even though the noise of the inpQ

. s Mg 1/2
182 — &1ll22,3) = i ( fz (| ( )” sin(nﬂx)dx)zdy)

data 1s approaching

to vanish. So the inverse problem 1s unstable.
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3. Numerical Method of Tikhonov Regularization

=== x € [xio1, %),

. - 1 a
f° = arg min J(f) = arg min (5\\Kf - 86‘@2((;,(1) T Eufuiz(a,b))

v h LXis X1 feL?(a,b) feL?(a,b)
0, otherwise,
X—X n
T h s X € [x()axl],
o) = | 5 ()= cipi(x)
0, otherwise, i=0
2 2
1 || 5 @ ||~
HTH_Is X € [xn—l,xn]a J(f(in) - 5 Z CiK(pi B g T 5 Z Ci"Oi
Pn(x) = 0 oo i=0 L*(c,d) i=0 L*(a,b)
, Otherwise. n 7 | n
= > cici(Kei Koizea — ), cilKein 8 )i2ea) + (@, ey + o > cicien i
9 A 19 J/LA(¢c,d) ! I L(c,d) 9 > L-(c,d) 9 Y\ ¥ 1)L (a,b)
(,j=0 i=0 hi=0

Xn =S an{ O ¥15°°° n}
p (p (p (p Al] — (K(pb KQD])LZ(C,d) BU — ((Pia‘Pj)Lz(a,b) C — (C(), Cl1,* " ,Cn)T

0 a(x) = gnb cipi(x)

)
(A+aB)C =D Di = (K¢i, 8°)r2(c.a)
Theorem 4.3. If the noise 0 and the regularization parameter @ are fixed, we have || fg,n — fg lz2(a.6) —
66
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YEFIEE (fm)

—O = = - e | |
DY — D" Mixing PR
% | o iR
2y 02 |
The time evolution ".,,;0, oor o1 :
1/6EE (GeV-1)
8 [ D) —(M—fr) D°(t)
‘e \ D) ) 2 )\ D't

- Mixing parameters: Mass and Width differences E
DY DY

x_Am_ml—mg A T'y =T
- T Y=9r T T or

I [’

- Useful to search for new physics, ’ u
- but less understood in the Standard Model
B ¢

6/



u cC
C U

- Before 2017, exclusive approach is hopeful

Falk, et al, '02; Cheng, Chiang, '10
yppipy = (3.6 £2.6) X 1077

1

Inclusive approach -
doesn’t work

Yincl ™ 10_7

Lenz, et al, ’12

*
| EXxp
yppopy efore 2017
YD
1 Verp=(6.1£0.8)x 107

v

- After 2017, exclusive approach is dying

yppapy = (2.1 £0.7) X 1072
Jiang, FSY, Qin, Li, LG, 17

No theoretical methods work for DO mixing

No theoretical predictions for indirect CP violation
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Inclusive
Approach D meson

Hagelin 1981, Cheng 1982

Buras, Slominski and Steger 1984
NLO QCD Golowich and Petrov 2005

y e 5 :
x>~ 6 x10
SM > ;
‘ " y~6x 10" .
Suppressed by GIM E
quark level :
Short-distance HFLAV at Moriond201§ E
r=(3.9113)
Exp.

y = (6.5175%5) \

SM

Exp.

B.meson

Artuso, Borissov and Lenz, 2016

AM, = (18.3 +£2.7)ps "’
AT, = (0.088 £ 0.020)ps "

{

HFLAV

AM¢= (17.757 £0.021) ps~!
Ay = (0.082+0.006) ps—

SM

Theory / Exp. comparison (for inclusive)

Bd meson

Artuso, Borissov and Lenz, 2016

|

(0.528 +0.078) ps~!

AM,
AT, = (2.61%£0.59) . 10-3 ps~!

Exp.

1

HFLAV

AM 4= (0.5055 +0.0020) ps~!
ATy = 0.66(1+10)-10 3 ps!

e For B, B, mesons, the data are reproduced within lo.

e For D meson, the order of magnitude 1s not reproduced within leading-power.

69



Dispersion Relation

\_

Dispersion Relation:

Relll(s)| = %’P/

0

O

~ Im|II(s')]

ds’

/

D" — DY mixing:

M12 — DY g g DD

Re[MlZ(S)] — %J' IWL[M12(S )] s’

/

x(s) = lrc y(s’) g’

/



Inverse Problem

D" — DY mixing g g o

\_

s — s’

//OA ds’ y(s) _ mx(s) — /00 ds’ y(s) = w(s)

A s— 8’

parametrization:

u(s) = Ns[by + b1(s — m?) + ba(s — m?)?]

~

(s — m2)2 + d2]?

/

Li, Umeeda, Xu, FSY, PLB(2020)

/1

unstable solutions

~

-
—
- ———
e

Additional conditions:

data of x and y as inputs

/

Predict indirect CPV
g/p = 1.0002¢-00¢

consistent with data

q/p — (0-9694—0'050)6";(—3.91"::

—0.045

/
A

5
6)




Applications of the Inverse Problem: muon g-2

Y
- Muon g-2: 4.20 deviation from the SM Muon g-2, PRL(2021)
u
- Dominate uncertainty of the SM prediction: hadronic vacuum polarization (HVP)
Aoyama, et al, Phys.Rept(2020)
* Inverse Problem: TImlII ( ) 11 (O) Hr(—S) ImlI ( )
/ ds’ T——2 = — / ds’ r=p, W qﬁ
N s'(s' + s) S S A s'(s' + s) >

*Result:  Inverse problem: azwp (641783) x 10719 H.n.Li, Umeeda, '20

Data driven: GEVP (693 9 4.0) x 1010 Davier, Hoecker, Malaescu, Zhang, ‘20

Lattice QCD: GEVP = (654 + 321_%%) x 10710 Della Morte et al, ‘17

Non-perturbative properties can be revealed from asymptotic QCD by solving an inverse problem.
/2



Applications of the Inverse Problem: QCD sum rules

- Conventional QCD sum rules  I1,,,.(¢°) = 73/d4a:e"'q"’3(0|T[Ju(a:)Jl,(0)]\O)

OO

Dispersion relation: H(qz) — ZL fds H(S)z —% /dsslmql;[(s)ie
g’ S —( 9

tmz’n

ImII(¢*) = 7w fi-6(¢" — myi;) + 7m”‘(qzﬁz —9

1
Quark-hadron duality: p"(s) = —ImIIP"" (8@ —9
T

o0 h o0 pert
/ 7P (s)2 1 LdSImH 2(3)
@ S —(q T @ S — (¢

Uncertainty sources: quark-hadron duality and Borel transformation

/3



Applications of the Inverse Problem: QCD sum rules

 Inverse-Problem QCD sum rules

pert pert
i. g I1(s) _1 SImH(s) 1 SImH (s) 1 | / dsH (s)
271 S—q? s—q® s — g2 21t Jo S — @?

Involving excited states and parameterization:

ImII(¢*) = 7rf35(q2 — mi) T 7rf§<1450)5(q2 — mi(1450)) T Wf§(1700)5(q2 ~ mi(1700))

+rf28(% —m3) + mot(a?),

p"(y) =boPo(2y — 1) + b1 P1(2y — 1) + boPo(2y — 1) + b3 P3(2y — 1) + - - -

(- )
my(770) (mp(1450), M ,(1700) mp(lgog)) ~ 0.78 (146, ].70, 190) GeV

For10) (Fo1450), Fou00), Fo(1000) & 0.22 (019, 0.14, 0.14) GeV

74 H.n.Li, Umeeda, '20




Dispersive analysis of neutral meson mixing

Hsiang-nan Li
Institute of Physics, Academia Sinica, Taipei, Taitwan 115, Republic of China

 Revisited by the inverse matrix method
-SU(3) breaking effects: physical thresholds of D — ziw, Kn, KK

* The solutions are stable

*B mixing and kaon mixing are also studied in the same formalism
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Inverse Problem: inverse matrix method

* The inverse matrix method was proposed by Hsiang-nan Li, on the studies of glueballs in
arXiv:2109.04956 and on pion LCDA in arXiv:2205.06746

* A unique and stable solution can be attained before an ill posed nature appears.
(Discretized regularization)

AA;; (v @Q)A + D—vz 0 @vl\ = TD
Inverse Problem: / @ / dv ( IJ / dv ( 1J
0 U — U u—v \ 'r'ij—’r’[/, U —7v

To be solved calculable

Notice that the range of v = [0, + 00)

/0



Inverse Problem: inverse matrix method

dv

*  AA; AP (yA+m e~V 0 APX(vA +m
*Inverse Problem: / dv j(v) _/ dv —2 ( IJ) / J ( IJ)
0 0 -

u—v uUu—7v u—v

ij—TIJ

* Expansion by generalized Laguerre polynomials:

N
AAi(v) =) alDve LY, (v),
n=1

Unknown coefficients: (%) — (agij), agij), e ,a%j)),

a=3/2 by physical condition of AA;;(v) ~v¥%atv—0

'm+a+1)
m!

orthogonality: / v¥e "L (v) Ly (v)dv = bmn  independent a’
0

7



O
‘Inverse Problem: / dv
0 uUu—7v

2

AA,']' (’U) _ /oo o A%QX(UA —+ mIJ)e_'” | /
0 U—v | r

0 APX (YA + m
1 A7 ( 1J)

u—v

ij—TIJ

n—1

N
Expansion by generalized Laguerre polynomials: AA;;(v) = z a,ffj)v“e""L("‘) (v),
n=1

N
» Taylor expansion of the integral: L — Z Y
u—v =

m—1

um

for a sufficiently large |u]

— pl27)

Umn _ / dUUm_1+a€_vL£LC)i)l (’U) Uaj(’lf])
0

0

plid) — / dvvm_lAEjox(vA + mIJ)e_”2 +/ dvv
0 r

lnverse Problem: inverse matrix method

ij—TIJ

m—lA%px (’UA -+ m[,])

0(19) — [—1p(id)

N X N: regularization

/8



Inverse Problem: inverse matrix method

a(i9) — [—1p(d)

One can then solve for the vector a(¥) through a(%) = U~1b(¥) by applying the inverse matrix U~!. The existence of
U ! implies the uniqueness of the solution for a(*). An inverse problem is usually ill posed; namely, some elements of
U~ rise fast with its dimension. Nevertheless, the convergence of Eq. (15) can be achieved at a finite N, before U1
goes out of control. The difference between an obtained solution and a true one produces a correction to Eq. (14)

only at power 1/uNt1. and the coefficients an”) built up previously are not altered by the inclusion of an additional
higher-degree polynomial into the expansion in Eq. (15), because of the orthogonality condition in Eq. (16). The
convergence of solutions in the polynomial expansion and their insensitivity to A will validate our approach, which is
thus free of tunable parameters.
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D" — DY mixing

1 [ ['19(s
-Dispersion relation:  Mi2(s) = o / ds’ 312—(3’) o g § 0

Dig) =gl £qD%) L= /2=
T = e ;ml = %Re -%(QMIZ — ZT12): Y = Fzz—rlﬁ = —%Im :g(sz — 7T12):
In the CP-conserving case: == 2]?12, y = %
- Absorptive piece:  Tia(s Z Aid;Tij(s i,j =d,s,b,and A\ = Ve Vi, k = d, s, b

T'12(mp) = Ao[Caa(mp) — 2T as(mp) + Tas(mp)] + 2A: A [Caa(m) — Las(mp)] + ApTaa(mp)
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D" — D" mixing

1 [ ['19(s
-Dispersion relation:  Mi2(s) = o / ds’ 312—(3’) o g g 0

- Absorptive piece:  T'ia(s Z/\ A;Tij(s i,j =d,s,b, and Ay = Vr Vi, k = d, 8, b

G% f3my, Bp
box _ ~FJD box
Atlarge s TP(s) = A7 (s)

1272
A" (8) = o ?)/2 (l — )( J)
X {(1 | a“f}) 327, —xp(x; +75) — 2(zs — x;)%] + 22p (2 + ;) (Ts + 75 — xo)}

MlQ(S) — Zi,j AZA]M'IJ (S)

* In principle, the dispersion relation, as a result of QCD dynamics which has nothing to
do with the CKM factors, holds for each pair of the components Mij(s) and TlTij(s)

. Inverse problem for each components of ij. A, (s) is monotonic, easily for solutions.
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D" — DY mixing

1 [ ['19(s
-Dispersion relation:  Mi2(s) = o / ds’ 812_(8,) o § g 0

T oh — 2wp(wi + ;) + (s — x5)°
2 (- 21— )

£L;T 4 .

A;’;’x (s) =

3/2

I';:(s) grows like 5%, so the integration is divergent.

', converges due to SU(3) cancellation.

*Reformulate the dispersion relation: 11, (s) = M;;(s) — iTy;(s)/2

. ,
L f g ii(s) _

) s — g’ \ Ky




D" — D" mixing / \
. . . :': ‘\W /;\ _">
*Reformulate the dispersion relation:  11,;(s) = M;;(s) — ily;(s)/2 \ ! S/
A ! S
L. ds’ I1i;(s') =0
271 s — g
- 1 (R Ty(s) | 1 I (s 2 ,,
Physical threshold: M;;(s) = — / ds' —? (s) b — / ds' —2 ( ), Max =AM, mac = (mo+mi)?, muw = 4mk,
2T s s s—s  2m Jo, s— 8’
R CONN I (s")
Quark-level threshold: M;™(s) = 5 / ds' ———= + — / ds' —— Mg = 4m3, Mas = (ma +m)?, may = 4m2,
2T J o, S— S 21 Jon, S— 8

At large s, M (s) = MUOX(S), as heavy meson mixings.

I s — g/

/R g Lia(s) _ /R do L (8)

mrJ mij
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D" — DY mixing
- Reformulate the dispersion relation: /R d /R LT

s — g’ s—g

mrJg mi4

To be solved

Introduce a subtracted unknown function:
AT;;(s,A) =Ty (s) — T (s){1 — exp[—(s — mys)*/A%]}

The scale A characterizes the order of s, at which I';;(s) transits to the perturbative expression I'?%%(s)

]

Alternative formula, like 1 — exp[—(s — m75)?/A%] | only vary the solution by few percent

The subtraction term can be regarded as an ultraviolet regulator.

1 1
ds’ - = ds' — ds' —
S — 8 N S — 8

*Inverse problem: /oo ATy (s, A) /oo Ih(s) expl—(s' = m1s)?/A%) /m [box (/)

8—8, !/

mr.Jg My
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Numerical results

FIG. 1: Dependencies of y4s(s) = '4s(s)/I" on s for N = 3 (dotted line), N = 8 (dashed line), N = 13 (solid line) and N = 23
(dot-dashed line) with A = 5 GeV?.

ds ds ds ds ds ds ds ds
105 X (ag )aag )’a:(s )7"' ’agz ),agg ),a§4 )7"' ’agz )>a'g3 ))

= (4.04,2.47,1.45,--- ,—2.08 x 107%,—4.59 x 1072,9.25 x 1077, - -+ ,7.49 x 107%,1.04),



Numerical results

FIG. 2: Comparison of the solutions y;;(s) = I';;(s)/I" (solid lines) with the inputs y};’j

ij = dd, (b) ij = ds and (c) ij = ss at A =5 GeV?.
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FIG. 2: Comparison of the solutions y;;(s) = I';;(s)/T" (solid lines) with the inputs y2*(s) = I';?*(s)/T" (dashed lines) for (a)
ij = dd, (b) ij = ds and (c) ij = ss at A =5 GeV?>.
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FIG. 3: Dependencies of (a) Yaa — 2yds + Yss, (b) Yaa — yas and (c) yh9* — 2y2%* + y2o* on s for A = 5 GeV?.




Numerical results
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FIG. 4: Solutions of y(s) for A = 4.0 GeV?, 4.5 GeV?, 5.0 GeV* and 5.5 GeV?, corresponding to the curves with the peaks
from left to right, in the cases (a) with and (b) without the second term in Eq. (20).
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FIG. 5: Dependencies of y(m%) on A in the cases with (upper curve) and without (lower curve) the second term in Eq. (20).
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FIG. 7: Behaviors of z(s) (dotted line) and y(s) (solid line) for A = 4.3 GeV?.
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FIG. 2: Comparison of the solutions y;;(s) = I';;(s)/T" (solid lines) with the inputs y2*(s) = I';?*(s)/T" (dashed lines) for (a)
ij = dd, (b) ij = ds and (c) ij = ss at A =5 GeV?>.
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