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Outline
1. The foundation of the inverse problem approach

• The main idea of the inverse problem to non-perturbative QCD
• Dispersion relation and its inverse problem, ill-posedness and Tikhonov 

regularization, toy models
• Physical applications and discussions, perspectives

2. More details on the inverse problem approach
• Introduction and mathematical basis of the inverse problems
•  mixing and its inverse problem. D0 − D0
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Motivation: Problems of non-perturbation

•Particle physics: color confinement

•New physics: muon g-2, 
•Parton physics: mass and spin of nucleon, PDF, GPD, TMD, LCDA
•Hadron physics: tetraquarks, pentaquark, glueballs
•High energy nuclear physics: QCD phase transition, critical point
•Low energy nuclear physics: nuclear force

Br(B → D(*)τν)/Br(B → D(*)ℓν)

5



Motivation: non-perturbative approaches

•Lattice QCD
•QCD sum rules 
•Dyson-Schwinger Equation
•Chiral perturbation theory
•Other EFTs and phenomenological models

•Each of them has its advantages and shortcomings.
•It is always welcome to develop a new theoretical method for non-perturbation, 
to make complimentary predictions what are difficult by the above methods.
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Criteria of a good theoretical approach

(1) Well defined in mathematics

(2) Realization in numerical calculations

(3) Can be systematically improved

(4) Simple at the beginning
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 The main idea of the inverse problem approach 

If s > Λ,

To be solved calculable
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If s > Λ,

calculableTo be solved

The main idea of the inverse problem approach

•With the dispersion relation of QFT, the non-perturbative quantities are obtained by 
solving the inverse problem with the perturbative calculations as inputs. 

•Using the regularization method, the solutions are stable, and can be converged to 
the true value as the input errors approaching zero. 

•The precision of the predictions can be systematically improved, without any 
artificially assumptions.
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The main idea of the inverse problem approach

1. Dispersion relation and its inverse problem

2. Proof of ill-posedness

3. Regularization method

4. Test of some toy models

5. Physical discussions and perspectives
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1. Dispersion relations and inverse problems

 Dispersion relation:

• Based on Quantum Field Theory and correlation functions

• Analyticity of QFT, relation between a physical point and the curves, 
or relation between the real and imaginary parts
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If s > Λ,

calculableTo be solved

⊕
⊖

⊖

⊕ ⃗A ( ⃗x) =
μ0

4π ∫
⃗J( ⃗x′ )eik( ⃗x− ⃗x′ )

| ⃗x − ⃗x′ |
dV′ 

1. Dispersion relations and inverse problems
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•Dispersion relation: first-class Fredholm integration equation

•Proof of the ill-posedness

• Existence of solutions
• Uniqueness of the solution
• Instability of the solution

∫
b

a

f(x)
y − x

dx = g(y), y ∈ [c, d], c > b, a > 0

2. Proof of the ill-posedness

Most of inverse problems are ill-posed.
Solving such problems is non-trivial.
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•Most of inverse problems are ill-posed

2x1 + 3x2 = 5

1.9999x1 + 3.0001x2 = 5
x1 = 1, x2 = 1{

2x1 + 3x2 = 5

1.9999x1 + 3.0001x2 = 5.001
x1 = − 5, x2 = 5{

•A very small noise might cause a large change of solutions

2.  ill-posedness of the inverse problem
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2.  ill-posedness of the inverse problem

2x1 + 3x2 = 5

1.9999x1 + 3.0001x2 = 5
x1 = 1, x2 = 1{

2x1 + 3x2 = 5

1.9999x1 + 3.0001x2 = 5.001
x1 = − 5, x2 = 5{

•A very small noise might cause a large change of solutions

|A | = 0.0005,A = ( 2 3
1.9999 3.0001),

x = A−1y

A−1 =
A*
|A |

= ( 6000.2 −6000
−3999.8 4000 )

Ax = y,

 enhances the errorsA−1
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• The operator ，K : X → Y Kx = y, x ∈ X, y ∈ Y

• Inverse problem: solve  by known of  and ,x K y

• Definition of well-posedness:

• Ill-posedness: At least one of the above conditions is not satisfied

2.  ill-posedness of the inverse problem

Define:

• If well-posed,  must be a bounded or continuous operator, otherwise ill-posed.K−1

x = K−1y
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• The operator ，K : X → Y Kx = y, x ∈ X, y ∈ Y

2.  ill-posedness of the inverse problem

• The inverse problem of dispersion relation must be ill-posed. 

• K is a linear bounded compact operator. It doesn’t  have a bounded inverse operator in the infinite 
dimensional space.
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Proof of uniqueness:

2. Proof of the ill-posedness

∫
b

a

f(x)
y − x

dx = g(y), y ∈ [c, d], c > b, a > 0
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∫
b

a

f(x)
y − x

dx = g(y), y ∈ [c, d], c > b, a > 0Proof of uniqueness:

2. Proof of the ill-posedness
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2. Proof of the ill-posedness

∫
b

a

f(x)
y − x

dx = g(y), y ∈ [c, d], c > b, a > 0Proof of instability:
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1) Existence

2) Uniqueness

3) Stability

The inverse problem of dispersion relation is ill-posed

How to find a good solution is the most important issue.

2. Proof of the ill-posedness

∫
b

a

f(x)
y − x

dx = g(y), y ∈ [c, d], c > b, a > 0
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The main idea of the inverse problem approach

1. Dispersion relation and its inverse problem: Well defined

2. Proof of ill-posedness: Instability

3. Regularization method

4. Test of some toy models

5. Physical discussions and perspectives
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•Construct a bounded operator which is approximate to , 

•Ill-posed problem -> well-posed approximate problem, so that 

•  is the approximate solution related to both  and .

•An effective regularization strategy is to satisfy  , as 

K−1

f δ
α = Rαgδ

f δ
α α δ

f δ
α → f ∥gδ − g∥ ≤ δ → 0

3. Regularization method
Define:

0∞ α → 0
•To keep a balance,  can be 
neither too large nor too small

α
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3. Tikhonov Regularization

A priori condition: f = K*v, v ∈ G, ∥v∥G ≤ E∥f δ
α − f∥F ≤

δ

2 α
+

αE
2

Take α = δ/E

∥f δ
α − f∥F ≤ δE → 0, δ → 0

•The most important: the uncertainty 
converges to vanishing as  δ → 0
24



3. Selection rules of the Regularization parameter

L-curve method:

A-priori methods are always difficult to use in practice.
A-posterior methods can be tried. 

Both of  and  should be minimized together,∥f δ
α∥ ∥gδ − Kf δ

α∥

considering
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The main idea of the inverse problem approach

1. Dispersion relation and its inverse problem: Well defined

2. Proof of ill-posedness: Instability

3. Regularization method: Tikhonov

4. Test of some toy models

5. Physical discussions and perspectives
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4. Test of Toy Models

•Questions on the inverse problem approach:

(1) Regularization: How important are the regularization methods?  
Can the solutions be systematically improved by the regularization method and 
the method of selecting the regularization parameter?

(2) Impact of input uncertainties: What is the dependence of the errors of solutions 
on the uncertainties of inputs? Larger, smaller or similar? 

(3) Impact of  and : How sensitive are the solutions to the parameters  and ? 
Does it exist a plateau?

(4) Impact of more conditions: Can the solutions be improved if we known more 
conditions?

α Λ α Λ
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4. Test of Toy Models

• They are simple in mathematics and in practice and thus are very helpful to develop the new approach 
in the future.

•Simple at the beginning: Tikhonov regularization + L-curve method for the regulator 

•Uncertainties are the most important issue.  

They are either helpful to clarify the properties of inverse problems or close to the real physical problem
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4. Test: Importance of regularization

• It can be clearly seen that the solutions are unstable and far from the true values.
• The ill-posed inverse problems can not be solved without any regularization.

The solutions without any regularization:

model 1 model 2 model 3
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4. Test: Importance of regularization

The solutions with Tikhonov regularization:

model 2

α =

model 3
30



4. Test: Importance of regularization

• It can be seen clearly that some values of 
regularization parameters can give good results.

• The ill-posed inverse problems can be solved by  
regularization.

• The regularization parameter can be neither too 
small (not enough for regularization), nor too large 
(dominate over the original problem)

• But  still works by ranging several orders of 
magnitude. 

• The regularization methods are very important in 
solving the inverse problems.

α

The solutions with Tikhonov regularization:

model 1

α =
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4. Test: Impact of input uncertainties

• The most important issue is 
to control the uncertainties! 

30% 10% 1% Input errors:

• The uncertainties of the solutions are almost 
at the same level of the input errors. 

• The smaller the input errors are, the more 
precise the solutions are.

• The precision of the predictions can be 
systematically improved by lowering 
down the input errors.
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4. Test: Impact of improved regularization method

•The regularization method 
can be modified according 
to the problem of physics

30% 10% 1% Input errors:

• The norm space of f(x) is changed from 
 to 

• The solutions are perfect for model 1 and 2. 
Model 3 is also significantly improved. 

• The uncertainties stemming from the 
regulator  is automatically included in the 
final results. Don’t need to estimate the 
uncertainties from . 

L2(a, b) H1(a, b)

α

α
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4. Test: Plateaus of the regularization parameter α
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There exist plateaus. Solutions are insensitive to regularization parameter. L-curve method is suitable.
The inverse problem approach works for the non-perturbative calculations.

∥f δ
α − f∥H1
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4. Test: Plateaus of the separation scale Λ

Λ

model 1 model 2 model 3

• There exist plateaus. 
• Solutions are insensitive to the separation scale for monotonic and simple non-monotonic functions. 
• The continuous condition at  might be even more helpful. Λ
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4. Test: Insensitivity to  and α Λ
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•Solutions are insensitive to the 
regularization parameter and the 
separation scale.

•The uncertainties of the inverse 
problem can be well controlled.
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4. Test: Constrained data

•If there is an experimental data or lattice 
data with much smaller uncertainty than the 
original solutions, we can use it to constrain 
the solution to be more precise. 

•Therefore, this method can combine with 
experiments and Lattice QCD to improve 
the precision of predictions
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The main idea of the inverse problem approach

1. Dispersion relation and its inverse problem

2. Proof of ill-posedness

3. Regularization method

4. Test of some toy models

5. Physical discussions and perspectives
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The precision can be systematically improved

(1) Suitable regularization method and selection rule of the regulators

(2) Higher precision of input data

(3) Combination with higher precise data of experiments or Lattice QCD.

Without any beyond-control assumptions, the precision can be systematically improved:
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Criteria of a good theoretical approach

(1) Well defined in mathematics

(2) Realization in numerical calculations

(3) Can be systematically improved

(4) Simple at the beginning

 Dispersion relation + proof of ill-posedness

 Regularization methods

 Converging to vanishing as 

 Tikhonov regularization

δ → 0
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K0 − K0

5. Physical applications: neutral meson mixing 

1/τKS

ΔΓK = 2 |Γ12 |

(s − s1)(s1 − s2)(s2 − s)
2π ∫

Λ

sth

Γ12(s′ )
(s′ − s)(s′ − s1)(s′ − s2)

ds′ 

−
(s − s1)(s1 − s2)(s2 − s)

2π ∫
∞

Λ

Γ12(s′ )
(s′ − s)(s′ − s1)(s′ − s2)

ds′ 

= (s1 − s2)M12(s) + (s2 − s)M12(s1) + (s − s1)M12(s2)
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Inverse problem in Lattice QCD

Rothkopf, 2211.10680

Spectral function reconstruction from Euclidean lattices
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Inverse problem in Lattice QCD

Jian Liang’s talk @ 2nd EicC CDR workshop
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hep-lat/0011040
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5. Physical perspectives 

(1) Provide the quantities at the whole non-perturbative region

(2) Advantage for the excited states. Either calculate directly, or combine with LQCD 
for ground states

(3) Advantage for non-local correlation functions: widths and lifetimes, inclusive 
processes, distribution amplitudes

(4) QCD sum rules with modification on the quark-hadron duality.

(5) Constrain some input parameters. 

(6) Solving some inverse problems in Lattice QCD.

(7) More efforts on perturbative calculations to improve the input precision.

(8) And many others…
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𝑥(𝑡) = 𝑡2 𝑦(𝑠) = 𝐾𝑥

𝑥(𝑡) = 𝑡2 + sin(10𝜋𝑡) 𝑦 = 𝐾𝑥

正问题
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Blurred and noise

Recovered 
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Proof of uniqueness: ∫
b

a

f(x)
y − x

dx = g(y), y ∈ [c, d], c > b, a > 0

62



Proof of uniqueness:
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Proof of uniqueness:
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∫
b

a

f(x)
y − x

dx = g(y), y ∈ [c, d], c > b, a > 0Proof of instability:
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3. Numerical Method of Tikhonov Regularization
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Mixing

• The time evolution 

• Mixing parameters: Mass and Width differences

• Useful to search for new physics, 
• but less understood in the Standard Model
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Exp

yD

yPP+PV before 2017

yPP+PV after 2017

• Before 2017, exclusive approach is hopeful

• After 2017, exclusive approach is dying

 Jiang, FSY, Qin, Li, Lü, ’17

 Falk, et al, ’02; Cheng, Chiang, ’10

Inclusive approach 
doesn’t work

No theoretical methods work for D0 mixing
No theoretical predictions for indirect CP violation

HFLAV, ’16

Lenz, et al, ’12

yPP+PV = (3.6 ± 2.6) × 10−3

yexp = (6.1 ± 0.8) × 10−3

yPP+PV = (2.1 ± 0.7) × 10−3

yincl ∼ 10−7
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quark level

Short-distance

Inclusive 
Approach
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Π(s)

Dispersion Relation:

Dispersion Relation 

 M12 =

x(s) =
1
π ∫

∞

0

y(s′ )
s − s′ 

ds′ 

Re[M12(s)] =
1
π ∫

∞

0

Im[M12(s′ )]
s − s′ 

ds′ 

 mixing: D0 − D0
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 mixingD0 − D0
unstable solutions

Predict indirect CPV consistent with data

Additional conditions:

data of x and y as inputs

parametrization:

Li, Umeeda, Xu, FSY, PLB(2020)

 Inverse Problem 

q/p = 1.0002ei0.006∘
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 Applications of the Inverse Problem: muon g-2 

• Muon g-2: 4.2  deviation from the SMσ

• Dominate uncertainty of the SM prediction: hadronic vacuum polarization (HVP)

Muon g-2, PRL(2021)

Davier, Hoecker, Malaescu, Zhang, ‘20

Aoyama, et al, Phys.Rept(2020)

• Inverse Problem:

H.n.Li, Umeeda, ’20

Data driven:

• Result: Inverse problem:

Lattice QCD: Della Morte et al, ‘17

Non-perturbative properties can be revealed from asymptotic QCD by solving an inverse problem.
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 Applications of the Inverse Problem: QCD sum rules 

• Conventional QCD sum rules

Uncertainty sources: quark-hadron duality and Borel transformation

Dispersion relation:

Quark-hadron duality:
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 Applications of the Inverse Problem: QCD sum rules 

• Inverse-Problem QCD sum rules

Involving excited states and parameterization:

H.n.Li, Umeeda, ’2074



•Revisited by the inverse matrix method

•SU(3) breaking effects: physical thresholds of D → ππ, Kπ, KK

•The solutions are stable

•B mixing and kaon mixing are also studied in the same formalism
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•The inverse matrix method was proposed by Hsiang-nan Li, on the studies of glueballs in 
arXiv:2109.04956 and on pion LCDA in arXiv:2205.06746 

•A unique and stable solution can be attained before an ill posed nature appears. 
(Discretized regularization)

76

Inverse Problem: inverse matrix method

To be solved calculable

Inverse Problem:

Notice that the range of v = [0, + ∞)
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Inverse Problem: inverse matrix method

•Inverse Problem:

•Expansion by generalized Laguerre polynomials:

Unknown coefficients:

by physical condition of 

orthogonality: independent a(ij)
n
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•Inverse Problem:

•Expansion by generalized Laguerre polynomials:

•Taylor expansion of the integral: for a sufficiently large |u|

•Inverse Problem: inverse matrix method : regularizationN × N
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Inverse Problem: inverse matrix method



•Dispersion relation:

80

 mixingD0 − D0

In the CP-conserving case:

•Absorptive piece:



•Dispersion relation:
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 mixingD0 − D0

•Absorptive piece:

At large s

• In principle, the dispersion relation, as a result of QCD dynamics which has nothing to 
do with the CKM factors, holds for each pair of the components Mij(s) and Γij(s) 

• Inverse problem for each components of ij.  is monotonic, easily for solutions. Aij(s)



•Dispersion relation:

82

 mixingD0 − D0

 grows like , so the integration is divergent. 

 converges due to SU(3) cancellation.

Γij(s) s3/2

Γ12

•Reformulate the dispersion relation:
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 mixingD0 − D0

•Reformulate the dispersion relation:

Physical threshold:

Quark-level threshold:

At large s, , as heavy meson mixings. Mij(s) = Mbox
ij (s)
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 mixingD0 − D0

•Reformulate the dispersion relation:

To be solved

•Introduce a subtracted unknown function:

Alternative formula, like                                   , only vary the solution by few percent

The subtraction term can be regarded as an ultraviolet regulator. 

•Inverse problem:



Numerical results
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Numerical results
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