

中國科學院為能物得湖完所 Institute of High Energy Physics Chinese Academy of Sciences

Research Progress of The Glass Scintillator of HCAL

Reporter: Peng Hu (hupeng@ihep.ac.cn) Co-Advisor: Sen Qian

On behalf of the Glass Scintillators R&D Group 2022.09.07

1. Motivation and target

2. Simulation of HCAL

3. Research and preparation progress

1.1 Motivation

Future electron-position colliders (e.g. CEPC)

- Main physical goal: precision measurements of the Higgs and Z/W bosons
- Challenge: unprecedented jet energy resolution $\sim 30\% / \sqrt{E(GeV)}$

CEPC detector: crystal ECAL + glass scintillator HCAL

- A leap in terms of sampling fractions
- Aim to improve the energy resolution: esp. the hadronic resolution
- Physics performance goal: Boson Mass Resolution(BMR) $4\% \rightarrow 3\%$

Next generation HCAL: Glass Scintillators

- Higher density provides higher energy sampling fraction
- Certain doping to enhance neutron capture: improve hadronic response (Gd)
- More compact HCAL layout (given 4~5 nuclear interaction lengths in depth)

1.2 Target

Key parameters	Value	Remarks		
Tile size	$\sim 30 \times 30 \text{ mm}^2$	Reference CALICE-AHCAL, granularity, number of channels		
Tile thickness	~10 mm	Energy resolution, Uniformity and MIP response		
Density	6-7 g/cm ³	More compact HCAL structure with higher density		
Intrinsic light yield	1000-2000 ph/MeV	Higher intrinsic LY can tolerate lower		
Transmittance	~75%	transmittance		
MIP light yield	~150 p.e./MIP	Needs further optimizations: e.g. SiPM type, SiPM-glass coupling		
Energy threshold	~0.1 MIP	Higher light yield would help to achieve a lower threshold		
Scintillation decay time	~100 ns	Mitigation pile-up effects at CEPC Z-pole (91 GeV)		
Emission spectrum	Typically 350-600 nm	To match SiPM PDE and transmittance spectra		

1. Motivation and target

2. Simulation of HCAL

3. Research and preparation progress

2.1 Simulation of glass of different density

□ Setup

- A specific HCAL based on glass scintillator was implemented in the CEPC_v4
- Primaries input: 240 GeV e+e- \rightarrow ZH (Z $\rightarrow \upsilon\upsilon$, H \rightarrow gg)
- Glass composition: GS1, GS2, GS4, GS6, GS9, GS10
- Cell size: 3x3x1 cm³
- Lambda of each layer: 0.124 (3mm PS+ 2cm Steel)
- Total Layers: 40

	theoretical value			
	Composition	Density (g/cm ³)		
GS-Simu1	Gd-Al-Si-Ce ³⁺	5.10		
GS-Simu2	Gd-B-Si-Ce ³⁺	5.35		
GS-Simu3	Gd-B-Si-Ce ³⁺	5.49		
GS-Simu4	Gd-B-Si-Ge-Ce ³⁺	5.51		
GS-Simu5	Gd-Ga-Si-B-Ce ³⁺	5.64		
GS-Simu6	Gd-Ge-B-Ce ³⁺	5.68		
GS-Simu7	Gd-Ga-B-Ce ³⁺	5.77		
GS-Simu8	Gd-Ga-Ba-B-Ce ³⁺	5.78		
GS-Simu9	Gd-Ga-Ba-B-Si-Ce ³⁺	5.81		
GS-Simu10	Gd-Ga-Ge-B-Si-Ce ³⁺	6.03		

11

6

2.2 BMR Analysis with Marlin

□ Setup

- Edep threshold in HCAL cell was set to 0.3 MIP
- Edep in each sampling layer of HCAL was based on sampling fraction *f* and calibration coefficient *k* (i.e. Edep_{digi}=*k*×Edep_{raw}/*f*)
- BMR Cut: Pt_ISR<1 GeV && Pt_neutrino<1 GeV && |Cos(Theta_Jet)|<0.8

• Track digitization and reconstruction

- CaloHit digitization
- CaloHit clustering, cluster and track linking, PID

2.3 BMR vs. glass density

Preliminary

Density: 5.51 g/cm³

Density: 5.68 g/cm^3 •

Density: 5.81 g/cm³

Density: 6.03 g/cm^3 ٠

2.4 More optimization required in reconstruction

□ Further work

- Non-gaussian distribution and deviation from expected invariant mass should be checked
 - The calibration coefficient of HCAL needs to be optimized
 - The parameter used in Arbor PFA may need to be tuned in the case of glass scintillator HCAL

Glass Scintillator AHCAL

• Understanding the contribution of glass scintillator to the Arbor PFA and BMR

PS+Steel AHCAL

1. Motivation and target

2. Simulation of HCAL

3. Research and preparation progress

3.1 PL vs XEL vs LY

	Density (g/cm ³)	XEL	Light yield	
GS-1	4.67	0.103	0.050	
GS-2	4.50	0.105	0.091	
GS-3	4.53	0.144	0.077	
GS-4	4.20	0.289	0.091	
GS-5	4.18	0.203	0.136	
GC	3.30	0.949	0.181	
BGO	7.13	1	1	

- Photoluminescence is not related to its scintillation properties;
- X-rays and gamma rays interact with scintillation materials in different processes;
- When the composition of glass scintillator is similar, the lower the glass density, the higher the light yield;

3.2 Research progress

Density≈6.5 g/cm³

3.3 Gd-B-Si-Ce³⁺ glass

	Composition	Density (g/cm ³)	Light yield (ph/MeV)	Energy Resolution (%)	Decay time (ns)
GS-Si-1#	Gd-B-Si-Ce ³⁺	4.963	568	35.59	/
GS-Si-2#	Gd-B-Si-Ce ³⁺	5.161	782	33.19	256 (15%), 1641
GS-Si-3#	Gd-B-Si-Ce ³⁺	5.152	694	35.26	268 (16%), 2099
GS-Si-4#	Gd-B-Si-Ce ³⁺	5.161	756	31.42	294 (22%), 925
GS-Si-5#	Gd-Ge-B-Si-Ce ³⁺	5.309	418	/	/
GS-Si-6#	Gd-Te-B-Si-Ce ³⁺	5.838	246	/	/
GS-Si-7#	Gd-Te-B-Si-Ce ³⁺	6.038	212	/	/
GS-Si-8#	Gd-Pb-B-Si-Ce ³⁺	6.111	151	/	/
GS-Si-9#	Gd-B-Si-Ce ³⁺	5.299	375	67.10	/

• The density of Gd-B-Si-Ce³⁺ glass is about 5.0-6.1 g/cm³, maximum light yield is 782 ph/MeV.

3.4 Gd-Ga-B-Ce³⁺ glass

	Composition	Density (g/cm ³)	Light yield (ph/MeV)	Decay time (ns)	
GS-Ge-1#	Gd-Ge-B-Ce ³⁺	6.0	225	/	
GS-Ge-2#	Gd-Y-Ge-B-Ce ³⁺	5.57	209	/	
GS-Ge-3#	Gd-Mg-Ge-B-Ce ³⁺	6.1	110	/	
GS-Ge-4#	Gd-Ge-B-Ce ³⁺	6.0	370	/	
GS-Ga-5#	Gd-Ga-B-Ce ³⁺	5.91	550	148(24%), 1954	

- The density of Gd-Ga-B-Ce³⁺ glass is about 5.6-6.1 g/cm³, maximum light yield is 550 ph/MeV.
- It is the main research direction of high-density and high light yield glass scintillator:
- 1. Add SiO₂ to the glass—Gd-Ga-B-Si-Ce³⁺ glass;
- 2. Efficient reduction of Ce³⁺ ions in high-density glass.

3.5 Scintillation decay time

- The scintillating decay time of the glasses usually has two components and is longer than that of crystal. The decay time of glass scintillator can reach about 150 ns (24%).
- The fast component originate from trapping processes during the transport stage, and slow component originate from **re-trapping processes.**

1. Motivation and target

2. Simulation of HCAL

3. Research and preparation progress

4.1 Summary

- Ultra-high density tellurite glass—6.6 g/cm³
- High light yield glass ceramic—1600 ph/MeV
- Fast scintillating decay time— 100 ns

Glass scintillator of high density and light yield

- 5.2 g/cm³ & 800 ph/MeV—Gd-B-Si-Ce³⁺ glass
- 5.9 g/cm³ & 550 ph/MeV—Gd-Ga-B-Ce³⁺ glass

4.2 Plan

Number	Composition	Density (g/cm ³)	Transmittance (%)	Light yield (ph/MeV)	Energy Resolution (%)	Decay time (ns)	Emission peak (nm)
GS1	Gd-Al-B-Si-Ce ³⁺	4.5	67	802	26.77	318,1380	393
GS2	Gd-Al-Si-Ce ³⁺	4.2	65	1206	22.98	346,1740	430
GS3	Gd-Al-B-Si-Ce ³⁺	4.0	70	1094	19.64	231,1897	440
GS4	Gd-K-Y-Si-Ce ³⁺	3.3	80	1601	27.27	210 ,1622	380
G85	Gd-B-Si-Ce ³⁺	5.2	80	780	33.09	256,1640	390
GS6	Gd-Ga-B-Ce ³⁺	5.9	70	550	/	148,1954	390
	?	~6	>75	~2000	<20	<100	350-500

- **Gd-Ga-B-Si glass** will be the focus of future research.
- This glass can balance the targets of high density and high light yield.
- Next, the properties of the glass will be further improved through raw material purification and vacuum preparation.

Thank you!