Potential of a TeV scale muon-ion collider SYSU-PKU collider physics forum November 09, 2022

左训午 (KIT)

Based on:

- D. Acosta, W. Li, Nucl. Inst. Meth. A 1027 (2022) 166334
- D. Acosta, E. Barberis, N. Hurley, W. Li, O. M. Colin, D. Wood, X. Zuo, Snowmass 2021 white paper

Muon-ion collision

Typical process - deep inelastic scattering (DIS)

- Scattered lepton (neutrino) and quark in forward directions.
- In case of sufficient center-of-mass energy, production of other particles through momentum exchange.

xunwu.zuo@cern.ch

Muon-ion collision

Physics descriptions:

- *s* squared center-of-mass energy
- Q^2 squared four-momentum transfer
- *x* Bjorken scaling (parton momentum fraction)
- y Bjorken scaling (lepton momentum fraction)

Prelude - legacy from HERA

Electron-proton experiment at DESY

- 6.3 km storage ring
- $E_e 27.5 \text{ GeV} \times E_p 920 \text{ GeV} (\sqrt{s} \sim 318 \text{ GeV})$
- 2 collider experiments (H1 and ZEUS)
- 500 pb^{-1} from each experiment (1992 2007)

HERA provided profound understandings of proton structure and QCD physics

 Paved the way for precision measurements at the LHC

Prelude - legacy from HERA

HERA data are still crucial inputs to QCD fits nowadays

LHC also measures PDF, with caveats:

- Need SM (DY, top) cross sections to measure PDF, and need PDF to for SM cross sections
- Cannot decouple from complicated QCD processes
- Varying PDFs from both sides

Constrain one side with HERA PDF and measure the other

xunwu.zuo@cern.ch

CTEQ global fit

Prelude - legacy from HERA

Gluon saturation: gluon density increases dramatically toward small x and reaches an equilibrium at some scale

Questions to be answered by more DIS experiments

Illustration: gluon saturation

xunwu.zuo@cern.ch

Example of proton PDF

Prelude - physics at EIC

Electron-proton/ion experiment planned at BNL

- 3.8 km storage ring
- $E_e \rightarrow 18 \text{ GeV} \times E_p \rightarrow 275 \text{ GeV} (\sqrt{s} \sim 140 \text{ GeV})$
- Polarization of both beams

Steady progresses toward construction, expect data-taking in 2030s

- $L_{inst} = 10^{33} 10^{34} \text{ cm}^{-2}\text{s}^{-1}$
- 100-1000 fb⁻¹ in 10 years

Prelude - physics at EIC

Some highlights in QCD and nuclear physics

- Proton and nucleon structure
- Gluon saturation scale and mechanism
- Proton and nucleon spin

EIC white paper

Proton spin "crisis"

- Valence quark polarization accounts only for ~30% of proton spin
- Gluon polarization contributes ~20% (with large uncertainties)
- Sea quarks seem unpolarized
- What about the rest? (orbital angular momentum?)

xunwu.zuo@cern.ch

Prelude - the LHeC proposal

Electron-proton experiment proposed at CERN

- Existing LHC proton beam
- Extra electron ring
 - Total circ. 8.9 km, bending radius 550 m
- $E_e 50 \text{ GeV} \times E_p 7 \text{ TeV} (\sqrt{s} \sim 1.2 \text{ TeV})$
- **Concurrent with HL-LHC**
 - Replace ALICE detector
 - Expect ~1 ab^{-1}

MulC expect to have very similar \sqrt{s} and physics case to LHeC

(More comparisons in the rest of the talk)

Prelude - muon colliders

Muon-antimuon collision

- Much higher energy reach than electron beams
- Much cleaner environment than proton collisions

Very appealing idea, but a long way to go

- Only preferable to e^+e^- at very high energy
- Need to increase muon beam energy from currently available ones of O(10) GeV to the goal over 1 TeV

More information in talks from this series by <u>*C. Zhang*</u> and <u>K. Xie</u> and <u>X. Wang</u>

Now, the MulC proposal

Wide coverage of physics topics, from nuclear physics to high energy physics

- Nucleon structure, spin structure
- QCD precision measurements, gluon saturation
- EW/Higgs/top production, BSM searches

Comparing to HERA and EIC

- Much higher \sqrt{s}
- better reach for high Q^2 and low x
- potential for HEP topics

Comparing to LHeC

- LHmuC

xunwu.zuo@cern.ch

Similar physics potential

Better-balanced beam energies (better separation of final products)

Potential to upgrade LHeC to

Comparing to muon colliders

- Rich physics outputs starting from *E_u* ~100 GeV
- Use existing infrastructure, can run concurrently with mega projects like FCC/CEPC
- R&D benefits muon colliders

Note: - High energy physics - Nuclear physics xunwu.zuo@cern.ch

The muon-ion option:

- Rich, and some unique, physics programs
- Can be concurrent with other mega projects

Outline

Conceptual design

- Benchmark configurations
- Detector requirements

Physics cases

- Inclusive cross section
- EW precision measurements
- Higgs physics
- Top physics
- Leptoquark "factory"

Conceptual design

xunwu.zuo@cern.ch

MulC experiment

MulC

- Reuse hadron ring of RHIC/EIC, replace electron beam by muon beam
- LHC-like magnets for muon beam ($E_{\mu} \sim 1 \text{ TeV}$)
- Take the hadron beam from EIC ($E_p \sim 275 \text{ GeV}$)
- 1-2 experiment sites

Physics cases overlap with LHeC

Potential to upgrade LHeC to LHmuC

xunwu.zuo@cern.ch

MulC dataset

Staging of MulC:

- Start with a muon beam with relatively low energy and low luminosity
- Early data-taking in parallel with accelerator R&D
- Stable running of MulC at $\sqrt{s} \sim 1$ TeV as a realistic scenario.

In the realistic scenario, expect **400** fb⁻¹ of data for 10 years operation 10^{35} (10³⁴) 10³⁴ 10³³ 10³³

		MulC		MulC2	LHmuC
E _p (TeV)		0.275		0.96	7
E _μ (TeV)	0.1	0.5	0.96	0.96	1.5
$\sqrt{s_{\mu p}}$ (TeV)	0.33	0.74	1.0	1.92	6.5
L _{int} (x10 ³³ cm ⁻² s ⁻¹)	0.07	2.1	4.7	4.7	2.8

Detector concept

Tracking and PID

 $-4 < \eta < 2.4$

PID is crucial for QCD and nuclear physics

Calorimeter

 $-5 < \eta < 2.4$

Wide coverage to retain sensitivity to missing energy

 $-7 < \eta < 0$

Important to detect scattered muons at high η

xunwu.zuo@cern.ch

Tungsten nozzle

To clean electrons from the muon beam

(sacrifice some access to proton remnants)

Roman pot

 $5 < \eta < 8$

Physics cases

xunwu.zuo@cern.ch

Physics landscape

<u>Remember this plot on QCD fit?</u>

The MulC dataset

- \clubsuit Extends coverage of Q^2 and xby an order of magnitude
- Early datasets already good for nuclear physics and QCD measurements
- Opportunities open for EW physics and BSM searches as \sqrt{s} and lumi increase

Inclusive cross sections

- Need very high luminosity to reach extreme Q^2

xunwu.zuo@cern.ch

• Abundant cross sections for DIS at moderate Q^2 (including EW scale)

W, Z production

Many different modes for W, Z production

For MuIC at
$$\sqrt{s} \sim 1$$
 TeV

•
$$\sigma_{W^{\pm}} = 19.4 \text{ pb}$$

• $\sigma_Z = 3.6 \text{ pb}$

With 400 fb⁻¹ data

- expect 8M W, 1.5M Z
- All are EWK production (no DY, no QCD-induced backgrounds)
- Clean and sufficient dataset for precision measurement on (SM and anomalous) triple gauge coupling.

xunwu.zuo@cern.ch

Example diagrams for vector boson production

EW measurements

- Most final objects within the acceptance
- Little overlap between the scattered muon and the lepton(s) from V boson decay.

Similar performance expected at MulC and LHeC

LHeC report

$WW\gamma$ coupling at LHeC assuming 1 ab⁻¹

Higgs production

Mainly produced via VBF process, with both charged current (CC) and neutral current (NC) exchanges

For MuIC at $\sqrt{s} \sim 1$ TeV

- $\sigma_{CC} = 64.5 \, \text{fb}$
- $\sigma_{NC} = 11.6 \text{ fb}$
- Expect 30k Higgs with 400 fb⁻¹ at MuIC
- Very clean environment

Note: tH production also possible, but much less

- Negligible ($\sigma_{tH} \ll 1$ fb) at MuIC ($\sqrt{s} \sim 1$ TeV)
- Visible ($\sigma_{tH} > 10$ fb) at LHmuC ($\sqrt{s} \sim 7$ TeV)

xunwu.zuo@cern.ch

Higgs event kinematics

xunwu.zuo@cern.ch

At MuIC, all final objects within the acceptance

- Decay products and struck quarks in central detector (in contrast to LHeC)
- Forward muon detector is essential

$H \rightarrow b\bar{b}$ case study

- Selection: Target CC VBF-H signal over NC DIS bb background
 - 2 b-tagged jets + 1 light jet
 - $p_T(b\bar{b}) > 20 \text{ GeV}$
 - Muon veto, $E_T^{miss} > 30 \text{ GeV}$
- Expected statistical precision ~ 3%
 - Comparable with HL-LHC expectation
 - Consistent with LHeC, which has a greater cross section but less acceptance than MuIC
- Expect 10X more signal at LHmuC

MadGraph LO samples + Delphes simulation

top quark production

Cross section grows fast as Q^2 becomes less suppressed

MuIC
$$\sqrt{s} \sim 1$$
 TeV
MuIC2 $\sqrt{s} \sim 2$ TeV
LHmuC $\sqrt{s} \sim 6.5$

MuIC
$$\sqrt{s} \sim 1$$
 TeV
MuIC2 $\sqrt{s} \sim 2$ TeV
LHmuC $\sqrt{s} \sim 6.5$

xunwu.zuo@cern.ch

	0.95 pb
/	5.44 pb
TeV	48.1 pb

Distinct final states in $\mu - p$ environment

- Direct measurement of $|V_{tb}|$
- Potential to probe $|V_{td}|$ and $|V_{ts}|$ as well

,	0.014 pb
/	0.22 pb
TeV	4.62 pb

• With enough data, direct measurement on $t\bar{t}\gamma$ and $t\bar{t}Z$ couplings

What about positive *t* quark? — FCNC

Single *t* quark production in $\mu^- p$ collisions only possible via FCNC *tq* γ , *tq*Z, and *tq*H couplings

- Extremely suppressed in SM
- Tag scattered μ^- and $t \to W^+(\ell^+\nu)b$ decay
- Null test with distinct final states

From LHeC report, expectation at 400 fb⁻¹

- $BR(t \rightarrow q\gamma) < 2 \times 10^{-5}$ at 95% CL
- $BR(t \to qZ) < 1 \times 10^{-4}$ at 95% CL

Same order as current LHC limits

- Probe via production vs decay
- Much more sensitive at LHmuC

xunwu.zuo@cern.ch

LHCtopWG

Direct probe of leptoquarks

- Direct single LQ production
- μq scatter through t-channel LQ exchange

Note: all cross section results assume Yukawa coupling strength of LQ - lq at 0.1

xunwu.zuo@cern.ch

Signature related to B-anomalies

Flavor changing signature involving τ

Flavor changing signature involving top

Note:
The m

%
- High energy physics

%
- Nuclear physics

* Can

xunwu.zuo@cern.ch

The muon-ion option:

- Rich, and some unique, physics programs
- Can be concurrent with other mega projects

Summary - key merits of MulC

A versatile machine with unique specialities

- Nuclear physics and QCD measurements
- Measure certain EW parameters (TGC, κ_{Hbb} , and $|V_{tb}|$)
- Probe certain BSM signatures (top FCNC and leptoquarks)

A relatively small and affordable experiment

- Reuse existing facilities
- Can be complementary to and concurrent with other major projects

A path to muon accelerator technologies

Gradual steps with rich physics yields along the way

xunwu.zuo@cern.ch

Backups

xunwu.zuo@cern.ch

xunwu.zuo@cern.ch

xunwu.zuo@cern.ch

