Measurement of Higgs boson width and first evidence of its off-shell production

Li Yuan Beihang University

Seminar@ 京沪云坛 September 23, 2022

Outline

- ❖ Introduction
- ❖ CMS detector
- ❖ Physics Objects Performance
- ❖ Analysis Strategies
	- ❖ H→ZZ→4*l* on-shell analysis
	- ❖ H→ZZ→4*l* off-shell analysis
	- **❖** H→ZZ→2*l2v* off-shell analysis (more details)
- ❖ Summary

Higgs is so peculiar

- **• The only scalar in fundamental particles**
- **• Responsible for EWSB and explain the origin of mass**
- **•Its mass is at EW scale O(100GeV), 1017 times smaller than Planck scale**
- **•Its special mass lineshape.**

Important to measure its properties.

Higgs Properties Measurements

Higgs Width

- **Predicted width in SM** Γ_{H} **: 4.1MeV**
- **• Due to detector response, the reconstructed Higgs mass is smeared** $\sigma \sim 1-2 \text{GeV}$

e.g for an electron E_e~50 GeV,
$$
\sigma_e
$$
~1 GeV
\n
$$
m_H = \sqrt{(E_{e1} + E_{e2} + E_{e3} + E_{e4})^2 - (p_{4e})^2}
$$
\n
$$
\sigma_{mH} \sim 2 \times \sigma_e = 2 \text{GeV}
$$
\n500 times SM $\Gamma_H \sim 4.1 \text{MeV}$

• Difficult to measure Higgs width through on-shell pole

relative energy resolution for e

W, Z width measurements @ LEP

- $\Gamma_Z = 2.4952 \pm 0.0023$ GeV (in PDG)
- **• Measure the Z→e+e cross section at different √s around Z pole.**
- **• Fit the lineshape to extract ^Z**

- $\Gamma_W = 2.085 \pm 0.042$ GeV (in PDG)
- **• Directly fit the invariant mass of qq or lv** to extract Γ _W
- **• Affected by the jet or lepton resolution**

Indirect way to measure Γ_{H}

• By measuring the signal strengths in on-shell and off-shell, and take their ratio, we could measure Γ **H**

 $\Gamma_{H}/\Gamma_{SM} = \frac{\mu_{off-shell}}{\mu_{on-shell}}$

Off-shell Higgs

Off-shell Higgs in ZZ channel

• Difficulties for probing off-shell Higgs:

- low production rate: $\sim 10\%$ of total xs
- large destructive interference with continuum background

HVV anomalous couplings

- **• Could probe the HVV anomalous couplings in ZZ final states** $A(HVV) \sim \left[a_1 - e^{i\phi_{\Lambda_1} \frac{(q_{V1}^2 + q_{V2}^2)}{\Lambda_1^2}} + \cdots \right] m_V^2 \epsilon_{V1}^* \epsilon_{V2}^* + |a_2| e^{i\phi_{a2}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + |a_3| e^{i\phi_{a3}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu}$ In SM, $a_1=2$ and the rest are 0.
- $f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_{i} |a_i|^2 \sigma_i}, \ \ a_j = a_1, a_2, a_3, \frac{1}{\Lambda_1^2}$ **• Define:**
- **Measure** $f_{ai} \cos(\Phi_{ai})$ by assuming $a_i \geq 0$, $\cos(\Phi_{ai}) = \pm 1$ to probe **HVV Anomalous couplings**

CMS detector

How particles detected?

CMS recorded data in Run 2

Vertex Reconstruction

 x [mm]

 0.7

 0.6

 0.5

Primary vertex position x-y Primary vertex position x-z

 \sqrt{s} = 13 TeV, 2017 (Legacy) $rac{10^3}{10^3}$ **CMS** Preliminary 0.9 0.8

Muon reconstruction and resolution

Electron reconstruction and resolution

16

MET Resolution

• MET resolution significantly improved with Particle Flow Algorithm (PFA)

Analyses Involved

Object/Event selection for H→ZZ→4*l*

- Loose ID and isolated $e(\mu)$ with $p_T > 7(5)$ GeV, $|\eta| < 2.5(2.4)$
- Vertex d_{xy} < 0.5cm, d_z < 1 cm, SIP_{3D} < 3
- Any OS-SF pair $12 \le m_{\text{lly}} \le 120 \text{ GeV}$
- For any ZZ candidates, define Z_1 candidate with m_{ll} closest to m_{Z} :
	- $m_{Z1} > 40$ GeV; $pT(l) > 20$ GeV; $pT(l) > 10$ GeV
	- $\Delta R > 0.02$ between each of the four leptons
	- $mII > 4$ GeV for OS pairs (regardless of flavour)
	- Reject 4 μ and 4e candidates where the alternative pair ZaZb satisfies $m_{Za} m_Z < |m_{Z1} m_Z|$ and m_{Zb} $< 12 \text{ GeV}$
	- m_{4} > 70 GeV
- If more than one ZZ candidate is left, choose the one of highest $\mathcal{D}bkg^{kin}$.
- If Dbkg^{kin} is the same, take the one with Z_1 mass closest to m_z.

Analysis Strategy for on-shell H→ZZ→4*l*

using 2015-2018 data

• MELA matrix element discriminants for production or decay of 4l system (+associated particles) in event categorisation or observables used in the fit:

$$
\mathcal{D}_{alt}\left(\boldsymbol{\Omega}\right)=\frac{\mathcal{P}_{sig}\left(\boldsymbol{\Omega}\right)}{\mathcal{P}_{sig}\left(\boldsymbol{\Omega}\right)+\mathcal{P}_{alt}\left(\boldsymbol{\Omega}\right)}
$$

sig: signal hypo. **alt**: alternative hypo.

$$
\mathcal{D}_{int}(\Omega) = \frac{\mathcal{P}_{int}(\Omega)}{2\sqrt{\mathcal{P}_{sig}(\Omega)\mathcal{P}_{alt}(\Omega)}}
$$

sig: signal hypo. **alt**: alternative hypo. **int**: with interference hypo.

• Event categorisation for 2016-2018 data: VBF-2jet, else VH-hadronic, else VH-leptonic, else VBF-1jet, else boosted, or else untagged.

No event categorisation for 2015 data, use observables D_{bkg} , D_{BSM}^{dec} , D_{int}^{dec} **in the fit.**

Event distributions

- **• 105 < m4l < 140 GeV is used in the on-shell analysis.**
- **• Example distributions for VBF-2jet and Untagged categories shown.**

Analysis Strategy for off-shell H→ZZ→4*l*

- **• Only look at the off-shell region (m4l > 220 GeV) with 2016+2017 data.**
- **• Also use MELA discriminants for the event categorisation and observables in the fit.**
- **• Event categorisation:** VBF-tagged, else VH-hadronic, else untagged.

Event distributions

- **• m4l > 220 GeV is used in the off-shell analysis.**
- **• Example distributions for Untagged category.**
- **• Some selection applied to the plots in order to enhance the signal contribution.**

Analysis strategy for off-shell $H\rightarrow ZZ\rightarrow 2l2\nu$

- **• Due to the undetectable neutrinos, unable to reconstruct the Higgs mass peak. Difficult to perform on-shell analysis in this channel.**
- **NEW off-shell analysis in** $ZZ \rightarrow 2l2\nu$ **with 2016-2018 data. Several improvements in methodology w.r.t Run 1. Will describe in detail.**
- **• Observables:**
	- main observable is transverse mass m_T

$$
m_\text{T}^\text{ZZ2} = \left[\sqrt{p_\text{T}^{\ell\ell^2}+m_{\ell\ell}^2}+\sqrt{p_\text{T}^\text{miss^2}+m_{\text{Z}}^2}\right]^2-\left|\vec{p}_\text{T}^{\ell\ell}+\vec{p}_\text{T}^\text{miss}\right|^2
$$

- missing transverse momentum p_T^{miss}
- MELA discriminants $D_{2\, jet}^{VBF(.BSM)}$ when N_j \geq 2 by assuming $\eta_{vv} = \eta_{ll}$ to discriminate VBF from ggF or discriminate SM from BSM

$$
{\mathcal D}^{{\rm VBF},a}_{\rm 2jet} = \frac{{\mathcal P}^{a}_{\rm VBF}}{\mathcal P}^{a}_{\rm VBF} + {\mathcal P}^{\rm SM}_{\rm QCD\ H+2jet}
$$

Event categorisation based on jet multiplicity (N_j=0, 1, \geq 2) and lepton flavour $(ee, \mu\mu)$

Object/Event selection for H→ZZ→2*l2v*

Signal and backgrounds

- **• ggF and VBF/VH signal**
- **• ggZZ and VBS ZZ (interfering backgrounds)**
- $q\rightarrow ZZ, WZ$
	- dominant background, constrained by 3*l* WZ Control Region (CR)
- **Instrumental** p_T^{miss}
	- mostly from Z +jets events, estimated from single photon CR
- **• Non-resonant (ttbar, WW)**
	- reweighting eµ events from Data
- **• tZ+X:** very small contribution, estimated fully from MC.

Signal and interfering backgrounds

- **• Signals (ggH, VBF), interfering backgrounds (ggZZ, VBS ZZ) and their interference obtained by:**
	- POWHEG samples (NLO) with different Higgs pole mass (from 125GeV to 3TeV) for Higgs production and JHUGen for Higgs decay
	- Reweighting by MELA package and Stitching together

Non-interfering backgrounds

 $q\rightarrow ZZ, WZ$

- dominant backgrounds at high m_T
- estimated from MC simulation
- constrained by 3*l* WZ Control Region (CR)
- **Instrumental** p_T^{miss}
	- mostly comes from Z +jets events
	- estimated from single photon CR
- **• Non-resonant (ttbar, WW)**
	- estimated from reweighting eµ events from Data by trigger or lepton efficiencies.
- **• tZ+X:** very small contribution, estimated fully from MC.

qq→ WZ/ZZ background

- **• ³***l* **WZ CR (selection as left)**
- **• Additional k-factors for NLO EW and NNLO QCD corrections applied.**
- **Joint fit with this CR with** m_T **^{WZ} as the observable:**

$$
m_{\rm T}^{\rm WZ^2} = \left[\sqrt{p_{\rm T}^{\ell\ell^2} + m_{\ell\ell}^2} + \sqrt{\left| \vec{p}_{\rm T}^{\rm miss} + \vec{p}_{\rm T}^{\ell_{\rm W}} \right|^2 + m_{\rm W}^2} \right]^2
$$

$$
- \left| \vec{p}_{\rm T}^{\ell\ell} + \vec{p}_{\rm T}^{\ell_{\rm W}} \right|^2
$$

• Constrain both the normalisation and the shapes for WZ/ZZ in SR.

l **WZ CR distributions**

• Good agreement between Data and MC.

Instrumental p_T^{miss}

- **• Significant contribution from Z+jets events in SR**
	- large cross section of Z +jets process
	- miscalibration of jets or neutrinos from hadrons
- **Estimated with** γ **+jets CR (** γ **as a proxy for Z)**
	- bad modelling of p_T^{miss} in MC Z+jets
	- single, isolated γ expected to preserve similar kinematics as Z boson.
	- relatively higher statistics in γ +jets CR than Z+jets events.
- **Transfer factors derived in terms of Vertices, boson η and boson** p_T
- **• Genuine MET contributions for high MET region subtracted:**
	- $Z(\rightarrow vv)y$: estimated by lly CR
	- W+jets: estimated by single electron CR
	- others: from MC

+jets CR distributions

- **• +jets simulation could not model well data since it is LO!**
- We are estimating the size of the Z+jets contribution by γ +jets **in data.**

Non-resonant background (tt, WW, H→WW, ττ)

- **• Two isolated leptons not from the same mother particle, thus no Z peak**
- **Flavour symmetry:** $N_{ee} = N_{\mu\mu} = 1/2 N_{e\mu}$
- **• Use eµ CR, reweighted by the trigger and lepton efficiencies:**

$$
w_{e\mu}^{1\ell2} = \frac{1}{2} \times \frac{\epsilon_{\ell1}^{\text{reco}} \cdot \epsilon_{\ell2}^{\text{reco}}}{\epsilon_{\mu}^{\text{reco}} \cdot \epsilon_{e}^{\text{reco}}} \times \frac{\epsilon_{\ell\ell}^{\text{trigger}}}{\epsilon_{\mu e}^{\text{trigger}}} \times f_{\text{corr}}^{\ell1\ell2}(p_{\text{T}}^{\text{miss}})
$$

where $f_{\text{corr}}^{\ell_1\ell_2}$ is the residual p_T^{miss} difference because of unclustered energy between $e\mu$ and other $\ell\ell$ events. This correction is derived from the sideband with the inverted b-tagging requirment,

$$
50 \text{ GeV} \le m_{\ell\ell} < 201.2 \text{ GeV} \ \cup \ p_{\text{T}}^{\ell\ell} \ge 25 \text{ GeV} \ \cup \ \sim \text{SR}
$$

Measured efficiencies

µµ trigger Efficiencies ee trigger Efficiencies

Estimated Non-resonant background in SR

- **• Data-driven estimation agrees with MC prediction.**
- **• Smaller uncertainty from data-driven estimation.**

m_T ^{ZZ} distribution after all selections

Other observables distributions

• Observed data favours SM off-shell Higgs other than no off-shell (Γ_{H} **=0) hypothesis especially in high** m_{T} **^{ZZ} and** $D_{2\text{jet}}$ **^{VBF}** \rightarrow **1 regions.**

Event display for a VBF/VBS candidate

• observed event with $m_T Z Z = 1.4 TeV$ **and** $D_{2jet} VBF = 0.87$ **, will be very likely a VBF/VBS candidate.**

Event yields

Table 1: Comparisons between the number of observed events in the $2\ell 2\nu$ channel with postfit expectations from the SM and no-off-shell scenarios as a function of N_i for low and high m_T^{ZZ} . An additional requirement of $p_T^{\text{miss}} \geq 200$ GeV has been imposed for $N_i \geq 2$.

For more sensitive region $(m_T Z Z > 450 \text{ GeV})$, data clearly consistent **with SM expectation, disfavour no off-shell hypothesis.**

Systematic Uncertainties

- **• Theoretical uncertainties**
	- renormalisation scale and factorisation scale (up to 30%)
	- α s (mZ) and PDF variations (up to 20%)
	- simulation of the second jet in gg samples (up to 20%)
	- scale and tune variations of PYTHIA
	- NLO EW corrections (qq $\rightarrow ZZ$, WZ)
	- uncorrelated uncertainties for normalisation in 3l WZ CR
- **• Experimental uncertainties**
	- Luminosity (between 1.2% and 2.5%)
	- Pile-up, JES, JER, and MET resolution uncertainty
	- simulation of the second jet in gg samples (up to 20%)
	- uncertainties on lepton, trigger, pile-up jet ID, b-tagging efficiencies

Uncertainties on both normalisation and shape are accounted.

Evidence for off-shell from 2*l***2***ν***+4***l*

- **excluded by more than 99.9% CL, i.e off-shell Higgs sensitivity 3.6σ**
- **Both No off-shell ggF production (μ_F^{off-shell=0)**} and No off-shell EW production $(\mu v^{\text{off-shell}}=0)$ **excluded more than 95% CL.**

Measured Higgs width

*l***2***ν***+4***l* **combined results summary**

HVV anomalous coupling limits

Summary

- Combination of H→ZZ→2*l*2*^ν* and H→ZZ*→*4*l* off-shell analyses results in finding the first evidence of off-shell Higgs production at LHC
- Combine ZZ on-shell and off-shell analyses to measure $\Gamma_{\rm H, \,}$ gives

 $\Gamma_H = 3.2^{+2.4}_{-1.7}$ MeV

Reaching \sim 50% precision for the first time!

- Off-shell events further constrain HVV anomalous couplings.
- Paper Accepted by Nature Physics on June 21!

CMS physics briefing: https://cms.cern/news/life-higgs-boson

CERN news: <https://home.cern/news/news/physics/cms-homes-higgs-bosons-lifetime>

环球科学: <https://mp.weixin.qq.com/s/SDgXu8aM8k2omyLR0R5sfQ>

4. Higgs boson width

Stay tuned for more exciting results with more data and more advanced analysis techniques.

⁴⁶ <https://indico.ihep.ac.cn/event/14180/session/0/contribution/93/material/slides/0.pdf>

Previous results on width measurement

- \bullet **CMS:** $H \rightarrow ZZ \rightarrow 4l$ **on-shell:** Run $1 +$ Run $2(77.5fb^{-1})$ **off-shell:** Run 2 (77.5fb⁻¹) 5.1 fb⁻¹ (7 TeV) + 19.7 fb⁻¹ (8 TeV) + 77.5 fb⁻¹ (13 TeV) **CMS** -Observed --- Expected -Observed, 2016+2017 $10¹$ --- Expected, 2016+2017 -2 \triangle InL 8 6 10 12 14 $\Gamma_{\rm H}$ (MeV) 68% [95%] Observed Expected Parameter $3.2^{+2.8}_{-2.2}$ [0.08, 9.16] $4.1^{+5.0}_{-4.0}$ [0.0, 13.7] Γ_H (MeV) Observed Expected Parameter μ ^{off-shell} $1.00_{-0.99}^{+1.20}$ [0.0, 3.2] $0.78_{-0.53}^{+0.72}$ [0.02, 2.28] $\mu_F^{\rm off-shell}$ $0.86_{-0.68}^{+0.92}$ [0.0, 2.7] $1.0^{+1.3}_{-1.0}$ [0.0, 3.5] $\mu_V^{\rm off-shell}$ $0.67^{+1.26}_{-0.61}$ [0.0, 3.6] $1.0^{+3.8}_{-1.0}$ [0.0, 8.4]
- **• ATLAS: H→ZZ→4***l* **& H→ZZ→2***l2^ν* **on-shell:** Run 2 (36.1fb-1)

off-shell: Run 2 (36.1fb⁻¹)

The 95% CL upper limits on $\mu_{\text{off-shell}}$, $\Gamma_H/\Gamma_H^{\text{SM}}$ and R_{gr} . Both the observed and expected limits are given. The 1 σ (2 σ) uncertainties represent 68% (95%) confidence intervals for the expected limit. The upper limits are evaluated using the CL_s method, with the SM values as the alternative hypothesis for each interpretation.

Additional results on μ off-shell

Table 4: Constraints on the $\mu_F^{\text{off-shell}}$, $\mu_V^{\text{off-shell}}$, and $\mu^{\text{off-shell}}$ parameters are summarized. The constraints on $\mu^{off-shell}$ are obtained with $R_{V,F}^{off-shell}$ unconstrained or = 1. The measurements are presented using the $2\ell 2\nu$ analysis alone, or with the inclusion of off-shell 4 ℓ events. The designation 'c.v.' stands for the central value obtained in the likelihood scan, and the expected central value is always unity, so it is not quoted explicitly.

HVV anomalous coupling from on-shell

TABLE VI. Summary of allowed 68% C.L. (central values with uncertainties) and 95% C.L. (in square brackets) intervals for the anomalous coupling parameters f_{ai} cos (ϕ_{ai}) obtained from the analysis of the combination of Run 1 (only on-shell) and Run 2 (on-shell and off-shell) data sets. Three constraint scenarios are shown: using only on-shell events, using both on-shell and off-shell events with the Γ_H left unconstrained, or with the constraint $\Gamma_H = \Gamma_H^{\text{SM}}$.

Parameter	Scenario	Observed	Expected
f_{a3} cos(ϕ_{a3})	On-shell	$-0.0001_{-0.0015}^{+0.0004}$ [-0.163, 0.090]	$0.0000^{+0.0019}_{-0.0019}$ [-0.082, 0.082]
	Any Γ_H	$0.0000^{+0.0003}_{-0.0010}$ [-0.0165, 0.0087]	$[0.0000^{+0.0015}_{-0.0015}$ [-0.038, 0.038]
	$\Gamma_H = \Gamma_H^{\text{SM}}$	$0.0000^{+0.0003}_{-0.0009}$ [-0.0067, 0.0050]	$0.0000^{+0.0014}_{-0.0014}$ [-0.0098, 0.0098]
f_{a2} cos(ϕ_{a2})	On-shell	$0.0004_{-0.0006}^{+0.0026}$ [-0.0055, 0.0234]	$0.0000^{+0.0030}_{-0.0023}$ [-0.021, 0.035]
	Any Γ_H	$0.0004^{+0.0026}_{-0.0006}$ [-0.0035, 0.0147]	$0.0000^{+0.0019}_{-0.0017}$ [-0.015, 0.021]
	$\Gamma_H = \Gamma_H^{\text{SM}}$	$0.0005_{-0.0006}^{+0.0025}$ [-0.0029, 0.0129]	$0.0000^{+0.0012}_{-0.0016}$ [-0.010, 0.012]
$f_{\Lambda 1}$ cos($\phi_{\Lambda 1}$)	On-shell	$0.0002_{-0.0009}^{+0.0030}$ [-0.209, 0.089]	$0.0000^{+0.0012}_{-0.0006}$ [-0.059, 0.032]
	Any Γ_H	$0.0001_{-0.0006}^{+0.0015}$ [-0.090, 0.059]	$0.0000^{+0.0013}_{-0.0007}$ [-0.017, 0.019]
	$\Gamma_H = \Gamma_H^{\text{SM}}$	$0.0001^{+0.0015}_{-0.0005}$ [-0.016, 0.068]	$0.0000^{+0.0013}_{-0.0006}$ [-0.015, 0.018]
$f_{\Lambda1}^{Z\gamma}$ cos($\phi_{\Lambda1}^{Z\gamma}$)	On-shell	$0.0000^{+0.3554}_{-0.0087}$ [-0.17, 0.61]	$0.0000^{+0.0091}_{-0.0100}$ [-0.098, 0.343]

Photon Identification and Energy Correction

Jet energy correction and resolution performance

- **• JEC performed sequentially:**
	- pileup offset subtraction
	- detector response from MC
	- residual correction in data or Data/MC

• JER

- measured with dijet and Z/γ + jets p_T balance methods in data and simulated events after JEC applied
- SFs derived for $p_T \ge 100 \text{GeV}$ with dijet and $p_T < 100 \text{GeV}$ with Z/γ + jets
- SFs of 1.1-1.2, larger in EC-HF transition region of $|\eta| \in [2.5, 3]$

