

Chinese Academy of Science

Inclusive J/ψ pair production cross section measurement

Muhammad Ahmad¹, Gerry Bauer¹, Zhen Hu¹, Ozgun Kara³, Hongbo Liao², Zhengchen liang¹, Jinfeng Liu¹, Kai Yi^{1,4}, Taozhe Yu², Yuan Yuan¹, Shunliang Zhang^{1,5}

P&P meeting 2022.9.22

Tsinghua University, China
 Institute of High Energy Physics, China
 Cukurova University, Turkey
 Nanjing Normal University, China

Introduction

 \geq Measure the inclusive J/ ψ pair production cross section using all Run2 data in CMS

$$\sigma_{fid} = \frac{N_{events}}{\varepsilon \mathcal{LB}^2(J/\psi \rightarrow \mu^+ \mu^-)}$$

 $\varepsilon = acceptance \times Eff_{\mu_{RECO}} \times Eff_{\mu_{ID}} \\ \times Eff_{\mu^{+}\mu^{-}} \times Eff_{HLT} \times Eff_{\mu^{+}\mu^{-}\mu^{+}\mu^{-}}$

➤Last presentation

- We calculated the acceptance and a list of reconstructed efficiencies
- We do closure test for the acceptance and efficiencies
- ➤This presentation
 - Study the variable which can distinguish prompt and non-prompt J/ψ
 - \bullet Make the strategy to extract the prompt J/ $\!\psi$ pair

Object and event selection

Trigger HLT_Dimuon0_Jpsi_Muon

≻Muon

- Standard Soft muon ID
- pT(muon)>=3.5GeV
- |η(muon)|<=2.4
- Do the match with Gen muon
 - DeltaR(Gen muon, RECO muon)<0.03

≻J/ψ

- The J/ψ was reconstructed by two opposite sign muon
- The vertex probability of the 2 muons associated to the J/ψ is greater than 0.5%
- •2.95<m(dimuon)<3.25GeV

≻J/ψ Pair

- The vertex probability of the 4 muons is greater than 1%
- J/ ψ 1(muon12) and J/ ψ 2(muon34) do not share a common muon

Variable to distinguish prompt and non-prompt J/ψ

The L_{xy} is calculated as $L_{xy}(J/\psi) = \vec{L} \cdot \vec{p}_T(J/\psi)/|p_T(J/\psi)|$

- \vec{L} is the vector from the primary vertex to the J/ ψ decay vertex in the $r \phi$ plane
- $\vec{p}_T(J/\psi)$ is the transverse momentum vector

To reduce the dependence on J/ ψ transverse momentum bin size and placement, a new variable $c\tau$, called pseudoproper decay time, is used instead of L_{xy} :

$$c\tau = L_{xy}(J/\psi) \cdot M(J/\psi)/p_T(J/\psi)$$

- L_{xy} or $c\tau$ can be the variable to distinguish prompt and non-prompt J/ ψ
- Using the official sample B meson ->J/ ψ +x and private DPS and $b\bar{b}$ -> J/ ψ J/ ψ + X sample to compare J/ ψ L_{xy} and $c\tau$ distribution:

Prompt/Non-prompt sample		Sample	
Non-prompt sample	B meson -> J/ψ + X	/BsToJPsiPhi_JPsiToMuMu_PhiToKK_SoftQCDnonD_TuneCP5_13TeV-pythia8-evtgen/RunIISummer20UL18RECO- 106X_upgrade2018_realistic_v11_L1v1-v2/AODSIM	
	bbbar -> J/ψ J/ψ + X	/Pythia8_BBartoJJ/jinfeng-MC2018_SKIM_JinfengLiu_bDecay-2c13f6522fd88ab3fbb3f545dbe011e8/USER	
Prompt sample	DPS	/Pythia8_DPStoJJ/jiayis-MC2018_SKIM_JinfengLiu_v2-1631c8025908d8822669ac074a24ab90/USER	

Variable distribution without Four mu vertex cut

- > We plot L_{xy} or $c\tau$ distribution without the four muon vertex cut
 - All sample event number normalize to 1
 - Non-prompt sample's tail is longer than prompt sample's

>The official B meson ->J/ ψ +x sample have a similar distribution with private $b\overline{b}$ -> J/ ψ J/ ψ

+ X sample, that validities our private sample

Variable distribution with Four mu vertex cut

- Using double Gauss function to fit prompt sample
 - The two gauss function mean are same and width are different
- Using double-sided Crystal Ball (DSCB) function to fit non-prompt sample

Closure test (1)

- We mix the DPS and $b\bar{b}$ -> J/ ψ J/ ψ histogram in some fraction to do closure test.
- We will use the function to fit mixed histogram to see if we can extract the DPS sample

Closure test (2)

	total	DPS fraction	DPS number
DPS + $b\overline{b}$ -> J/ ψ J/ ψ	17925	0.67 ± 0.01	12000.9 \pm 178.4
0.5^{*} DPS + $2^{*}b\overline{b}$ -> J/ ψ J/ ψ	17895	0.34 ± 0.01	6073.5±197.5
$2*DPS + 0.5*b\overline{b} > J/\psi J/\psi$	26917.5	0.88 ± 0.03	23812±792

- We fix some parameters to fit the mixed histograms
 - Prompt sample: mean and width
 - Non-prompt sample: mean, width and alpha
- The DPS shape and number of events satisfy our expected

3D Fit closure test

- We will use 3D fit(invariant mass of J/ ψ 1 and J/ ψ 2, $c\tau$) to extract prompt J/ ψ pair events in our analysis
 - The J/ ψ 1, J/ ψ 2 mass dimension can distinguish J/ ψ and combinatorial background
 - The $c\tau$ dimension can distinguish prompt and non-prompt J/ $\!\psi$
- In this 3D closure test, we just fix the DPS and $b\overline{b}$ -> J/ ψ J/ ψ sample to see if we can extract prompt J/ ψ events in the third dimension $c\tau$

• We use double-sided Crystal Ball (DSCB) function to fit J/ ψ 1, J/ ψ 2 mass

Summary

- L_{xy} or $c\tau$ can be the variable to distinguish prompt and non-prompt J/ ψ
- Fit the L_{xy} and $c\tau$ distribution of prompt and non-prompt J/ ψ
- Use 1D and 3D fit to do the closure test

≻Next step

- Using the data to do 3D fit to extract prompt J/ψ

backup

Ctau fit without four muon vertex cut

• B meson ->J/ ψ +x and $b\overline{b}$ -> J/ ψ J/ ψ use the function to fit

double-sided Crystal Ball (DSCB) function and exponential function convolution