

The tau lepton studies at the ATLAS

Boping Chen Tel Aviv University

京沪云坛 第14期 Sep 30, 2022

Introduction and motivation

2

Why tau?

- Heaviest lepton, decay to hadrons(~65%)
- Study new physics/SM with tau

•••

- We are TAU(Tel Aviv University)!
- Single τ algorithm in ATLAS
- New boosted di- τ tagger
- Trigger upgrade study for au

Large Hadron Collider(LHC)

- 27 kilometers in circumference
- 175 meters beneath the France– Switzerland border
- Four crossing points

- Largest and most powerful particle collider in the world
- Collides proton beams(Lead–lead and proton-lead collisions one month per year)

3

 ATLAS: study Higgs boson & search for evidence beyond Standard Model

A Toroidal LHC ApparatuS(ATLAS)

4

Pseudorapidity: η =-ln[tan(θ /2)], θ : polar angle in spherical coordinate

Cross section of ATLAS

5

- Muon Spectrometer
 - Detect muon and its momentum
- Hadronic Calorimeter
 Energy of hadron
- Electromagnetic
 Calorimeter
 - Energy of photon and charged particle, stop photon and electron
- Tracking
 - Momentum, charge and direction of charged particle

Jet

High energy quark and gluon will produce ionization shower. A much heavier particle, W/Z/H/t ... if its energy is high enough, the final decay products will merge together.

New single τ algorithm

7

- The τ had-vis candidates are seeded by jets formed using the anti-kt algorithm, with a distance parameter of 0.4.
- τ identification:
 - Track identification: RNN: 4 categories: τ track; conversion track; isolation track; fake track; Run 2: boosted decision tree (BDT)
 - τ id: RNN: same as run 2 with new tracks from above
 - Electron discrimination: RNN; Run2 BDT
 - Decay mode classification: DeepSet

/tikz.net/tau_decay/

Boosted di- τ

- The reconstruction fails when two \(\tau\) are merged together(from a boosted object, like Higgs boson)
- Instead of two jets, using one large-R jet
 - Useful for high energy region, or low pT & low mass resonance region
- Four boosted di- τ channel:

8

- High(low)-pT $au_{Had} au_{Had}$
- High(low)-pT $au_{\mu} au_{Had}$

High pT boosted di- τ

- The di-\(\tau\) candidates are seeded by jets formed using the anti-kt algorithm, with a distance parameter of 1.
 - With at least two R=0.2 subjets
- BDT is trained for the identification
 Inputs: track, subjet, large-R jet
- Search in the heavy resonance -> HH->bb $\tau\tau$

Low pT boosted di- τ analysis

- No discovery for the heavy resonance...How about low mass?
- Two analyses using the low pT
 - $ttX(X \rightarrow \tau \tau)$ and $H \rightarrow XX \rightarrow \tau \tau \gamma \gamma$, X mass: [10GeV, 60GeV]
- Still working on the tagger

11

Trigger study for τ

Run2

Run1

12

2015-2018

- Run3(phase 1 upgrade) **2022-2024**
- Run4(high luminosity LHC, phase 2 upgrade) **2027**?

ATLAS run 2 trigger system

13

- Too many data!
 - ~1.7b pp collision / s
- Trigger
 - Event selection system
- Two level
 - First-level(L1) hardware trigger
 - Located on the detector
 - Using subset(calorimeter, inner detector, muon) of the information from the detector
 - High level trigger(HLT), software
 - Data passing L1 trigger as input
 - Using information for full detector
 - Running with ~40000 cpu
- Only ~0.0025% will be stored

https://twiki.cern.ch/twiki/pub/AtlasPublic/ApprovedPlotsDAQ/tdaqFullNew2017.pdf

Hardware trigger upgrade

14

- The field-programmable gate array (FPGA) is used since Run 2
- More powerful FPGAs are used for Run3 and Run4
- CPU vs GPU vs FPGA
- CPU: good at doing complicated job but not parallel
- GPU: good at doing many simple jobs
- FPGA: different from CPU&GPU, but difficult to use, while cost much less power

Run 3 trigger system upgrade

- 15
- Three new machines
 - Electron Feature Extractor(efex)
 - Jet(jfex)
 - Global(gfex)
- New FPGA for the efex, jfex, gfex
 - Possible to read more data(higher granularity)
 - Run more complicated algorithm(machine learning, like BDT)

ATL-DAQ-PROC-2020-015

Run 3 trigger input upgrade

16

- Run2 input: trigger tower 0.1x0.1 for η and ϕ
- Run3 input: supercell, higher granularity
 - Electron magnetic calorimeter 0 layer(EM0, or presampler): 0.1x0.1
 - EM1&EM2: 0.025x0.1
 - EM3&Had: 0.1x0.1

ATL-DAQ-PROC-2020-015

Run 4 trigger system upgrade

- New for Run 4: Global trigger
 - Input from L0Calo and Calorimeters
 - Able to access all the sensor in calorimeters(higher granularity)
 - Even more complicated algorithm(neural network)

Run 4 trigger input upgrade

18

Run2: Trigger tower vs Run3: Supercell vs Run4: Cell

$\eta imes \phi$	Run2	Run3	Run4
EMO	0.1×0.1	0.1×0.1	0.025×0.1
EM1	-	0.025x0.1	0.003125x0.1
EM2	-	0.025x0.1	0.025×0.025
EM3	-	0.1x0.1	0.05×0.025
Had	-	0.1×0.1	0.1x0.1

Hadronic τ and jet

19

- Hadronic $\tau(65\%) \rightarrow \tau$ jet in calorimeter
- τ trigger: distinguish between τ jet and QCD jet
- Signal: $Z \rightarrow \tau \tau$, background: qcd events

ATLAS Run2/3 τ trigger algorithm

20

- Seed with cell $E_T > 4\sigma$, σ : noise
- Run2 trigger object(TOB)
 - Green: calculate τ energy
 - Yellow: isolation region
- Run3 TOB
 - 0.3x0.3: calculate τ energy
 - 0.5x0.5 for isolation region
- Isolated TOB
- Run2 algorithm:
 - EM: Maximum energy of two adjacent towers in green
 - Had: Sum of 2x2 grid

•
$$E_T = E_T^{EM} + E_T^{Had}$$

If $E_T > 12.5$ GeV, identified as τ candidate

arXiv:0810.0465

Alternative Run3 τ trigger algorithm

- Boost decision tree (BDT)
- Two parameters
 - Number of tree
 - Maximum depth of the tree
- Simple and powerful, sometimes beat neural network
- Highly parallelizable(running fast)
- Small and simple, use little resource

Run3 BDT performance

-1.2

- 1.0

0.8

0.6

0.4

0.2

22

Turn on curve: signal efficiency for the Run2 τ trigger background rate

Run4 τ trigger algorithm

23

- More powerful hardware for Run4 (better FPGA)
- Detector is just like a camera -> image identification algorithm
- More complicated algorithm, like neural network (CNN, deepset...)
- With higher pile-up, much more noise, so neural network may perform better

Run4 CNN performance

24

Performance: much better than Run3 algorithm

Implement to hardware

25

- NN/bdt model-><u>hls4ml</u>->C++ code->HLS->Vivado->FPGA
- Timing: Latency: ~3 us
- Still working to optimize the NN

+	Timing: * Summary:			
	++ Clock	Target	Estimated	Uncertainty
	ap_clk	5.00 ns	4.366 ns	0.62 ns

+ Latency:

*	Summary:			+	++	+
	Latency min	(cycles) max	Latency min	(absolute) max	Interval min max	Pipeline Type
+- +-	563	564	2.815 us	2.820 us	141 491 ++	dataflow

Summary

- 26
- ATLAS τ algorithms are presented
- Much better hardware for future ATLAS trigger
- Possible to implement neural network in hardware trigger level