

 Institute of High Energy Physics Chinese Academy of Sciences

Spin-Parity determination of X(2370) in $J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta'$

¹Yanping Huang, ²Shan Jin, ¹Xiaoyan Shen, ¹Peng Zhang

¹Institute of High Energy Physics

²Nanjing University

Motivation

★ The X(2370) was first observed in $J/ψ → γπ^+π^-η'$ channel and confirmed in $J/ψ → γK\overline{K}\eta'$ channel.

Mass (MeV/c ²)	Width (MeV/c²)	Decay channel	Reference	
$2376.3 \pm 8.7(stat.)^{+3.2}_{-4.3}(syst.)$	$83 \pm 17(stat.)^{+44}_{-6}(syst.)$	$J/\psi\to\gamma\pi^+\pi^-\eta'$	PhysRevLett.106.072002	
$2341.6 \pm 6.5(stat.) \pm 5.7(syst.)$	$117 \pm 10(stat.) \pm 8(syst.)$	$J/\psi \to \gamma K \overline{K} \eta'$	<u>Eur. Phys. J. C 80, 746 (2020)</u>	

★ Determinate the Spin-Parity of X(2370) in $J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta'$ with combined two η' decay modes: $\eta' \rightarrow \pi^+ \pi^- \eta$ and $\eta' \rightarrow \gamma \rho^0$

Content

Data set

•
$$J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta', \ \eta' \rightarrow \pi^+ \pi^- \eta$$

- Event selection
- Background analysis

$$J/\psi \to \gamma K_s^0 K_s^0 \eta', \ \eta' \to \gamma \rho^0$$

- Event selection
- Background analysis
- Partial wave analysis
- Summary

Data set

- BOSS version: 7.0.8
- Data samples: 2009+2012+2018+2019
- Inclusive MC samples: 2009+2012+2018+2019
- ♦ $J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta'$ signal MC samples (10M)

•
$$\eta' \rightarrow \pi^+ \pi^- \eta, \eta \rightarrow \gamma \gamma$$
 channel:
• $J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta'$ PHSP
• $K_s^0 \rightarrow \pi^+ \pi^-$ PHSP
• $\eta' \rightarrow \pi^+ \pi^- \eta$ PHSP
• $\eta \rightarrow \gamma \gamma$ PHSP

•
$$\eta' \rightarrow \gamma \rho^0$$
, $\rho^0 \rightarrow \pi^+ \pi^-$ channel:
• $J/\psi \rightarrow \gamma K_s^0 K_s^0 \eta'$ PHSP
• $K_s^0 \rightarrow \pi^+ \pi^-$ PHSP
• $\eta' \rightarrow \pi^+ \pi^- \gamma$ DIY_Etap2gpipi_box

 $\eta' \rightarrow \pi^+ \pi^- \eta$: Object Selection

- Good Charged track
 - $R_{xy} < 1 cm, R_z < 10 cm$
 - |cosθ|<0.93
 - Ngood>=6, net charge=0
 - Without PID, all charged tracks are considered to be pion.
- Good photons
 - Energy>= $25 \text{Mev}/c^2 (|\cos\theta| < 0.8)$
 - Energy>=50Mev/ c^2 (0.86<|cos θ |<0.92)
 - 0<time<14(50ns)
 - N_good >=3
 - $\theta_{\gamma-ch} > 5^{\circ}$
- K_s^0 candidate
 - The vertex fit and the subsequent secondary vertex fit are performed to the all possible $\pi^+\pi^-$ combinations with the invariant mass satisfying $|M_{\pi^+\pi^-} M_{K_s^0}| \le 0.04 \text{GeV/c}^2$.
 - The number of K_s^0 is required to be not less than two.
 - $L/\sigma_L > 2$
 - There's no requirement of R_{xy} and R_z for the pions from K_s^0

$\eta' \rightarrow \pi^+ \pi^- \eta$: Event Selection

- $\eta' \to \pi^+ \pi^- \eta, \eta \to \gamma \gamma$ channel:
 - Photon energy: $> 0.1 \text{ GeV/c}^2$
 - 5C Kinematic fit: $\chi^2_{5c} < 50$ (S/sqrt(S+B) optimization)
 - $\left| M_{\pi^+\pi^-} M_{K_s^0} \right| < 0.009 \text{ GeV/c}^2 \text{ (select } K_s^0 \text{)}$
 - $|M_{\gamma\gamma} M_{\pi^0}| > 0.02 \text{ GeV/c}^2 \text{ (veto } \pi^0\text{)}$
 - $|M_{\gamma\gamma\pi^{+}\pi^{-}} M_{\eta'}| < 0.010 \text{ GeV/c}^{2} \text{ (select } \eta')$
 - 7C Kinematic fit: successful. K_s^0 and η' candidates should be constrained to their known masses by for further PWA

 $\eta' \rightarrow \pi^+ \pi^- \eta$: 2D plots

$$\bullet \ m_{K_s^0 K_s^0 \eta'} \text{VS} \ m_{K_s^0 K_s^0}$$

• There is a strong correlation between the X(2370) and $f_0(980)$ in the $K_s^0 K_s^0$ mass spectrum below 1.1 GeV/c².

 $\eta' \rightarrow \pi^+ \pi^- \eta$: 2D plots

(b)

 $\eta' \rightarrow \pi^+ \pi^- \eta$: Mass spectrum

• Invariant mass spectra of $K_s^0 K_s^0 \eta'$ and $K_s^0 K_s^0$

• Require $M_{K_{s}^{0}K_{s}^{0}} < 1.1 \text{ GeV/c}^{2}$ to focus on X(2370).

• We can see the clear structures around 2.1 GeV , 2.4 GeV and 2.9 GeV.

$$\eta' \rightarrow \pi^+ \pi^- \eta$$
: Backgroud analysis

- Non- η' process background
 - Ratio of non- η' process background is 1.76%.
 - Other background is negligible. So we use the events in η' sideband region to describe backgroud in PWA.
 - Distribution of signal and background.

 η' signal region: $\left|M_{\gamma\gamma\pi^{+}\pi^{-}} - M_{\eta'}\right| < 10 \text{ MeV/c}^{2}$

$\eta' \rightarrow \gamma \rho^0$: Object Selection

- Good Charged track
 - $R_{xy} < 1 cm, R_z < 10 cm$
 - |cosθ|<0.93
 - N_good>=6, net charge=0
 - Without PID, all charged tracks are considered to be π in this analysis.
- Good photons
 - Energy>= $25 \text{Mev}/c^2 (|\cos\theta| < 0.8)$
 - Energy>= $50 \text{Mev}/c^2 (0.86 < |\cos\theta| < 0.92)$
 - 0<time<14(50ns)
 - N_good >=2
 - $\theta_{\gamma-ch} > 5^{\circ}$
- K_s^0 candidate:
 - vertex fit and the subsequent secondary vertex fit are performed to the all possible $\pi^+\pi^-$ combinations with the invariant mass satisfying $|M_{\pi^+\pi^-} M_{K_s^0}| \le 0.04 \text{GeV/c}^2$.
 - The number of K_s^0 is required to be not less than two.
 - $L/\sigma_L > 2$
 - There's no requirement of R_{xy} and R_z for the pions from K_s^0

$\eta' \rightarrow \gamma \rho^0$: Event Selection

- - Photon energy: $> 0.1 \text{ GeV/c}^2$
 - 4C Kinematic Fit: $\chi^2_{4c} < 38$ (S/sqrt(S+B) optimization)
 - $\left| M_{\pi^+\pi^-} M_{K_s^0} \right| < 0.009 \text{ GeV/c}^2 \text{ (select } K_s^0 \text{)}$
 - $|M_{\gamma\gamma} M_{\pi^0}| > 0.02 \text{ GeV/c}^2 \text{ and } |M_{\gamma\gamma} M_{\eta}| > 0.03 \text{ GeV/c}^2 \text{ (veto } \pi^0\text{)}$
 - $0.55 < M_{\pi^+\pi^-} < 0.9 \text{ GeV/c}^2 \text{ (select } \rho^0 \text{)}$
 - $|M_{\gamma \pi^+ \pi^-} M_{\eta'}| < 0.015 \text{ GeV/c}^2 \text{ (select } \eta')$
 - 7C Kinematic fit: successful. K_s^0 and η' candidates should be constrained to their known masses by for further PWA

 $\eta' \rightarrow \gamma \rho^0$: 2D plots

$$\bullet \ m_{K_s^0 K_s^0 \eta'} \text{ VS } m_{K_s^0 K_s^0}$$

• There is a strong correlation between the X(2370) and $f_0(980)$ in the $K_s^0 K_s^0$ mass spectrum below 1.1 GeV/c².

 $\eta' \rightarrow \gamma \rho^0$: 2D plots

(c)

(d)

 $\eta' \rightarrow \gamma \rho^0$: Mass spectrum

• Invariant mass spectra of $K_s^0 K_s^0 \eta'$ and $K_s^0 K_s^0$

• Require $M_{K_s^0 K_s^0} < 1.1 \text{ GeV/c}^2$ to focus on X(2370).

• We can see the clear structures around 2.1 GeV , 2.4 GeV and 2.9 GeV.

$\eta' \rightarrow \gamma \rho^0$: Backgroud analysis

- Non- η' process background
 - Non- η' process background fraction is 6.76%.
 - Other background is negligible. So we use the events in η' sideband region to describe backgroud in PWA.
 - Distribution of signal and background.

 η' signal region: $|M_{\gamma\pi^+\pi^-} - M_{\eta'}| < 15 \text{ MeV/c}^2$

PWA strategy

- Perform a combined fit on the candidate events of the two η' decay modes to improve the sensitivity.
- Combined log likelihood value:

$$\begin{split} S &= S_1 + S_2 \\ &= \left(-ln\mathcal{L}_{sig1} + f_{norm1} \cdot ln\mathcal{L}_{bkg1} \right) + \left(-ln\mathcal{L}_{sig1} + f_{norm1} \cdot ln\mathcal{L}_{bkg2} \right) \end{split}$$

- Here, S_1 and S_2 are the log likelihoods of the two decay modes, respectively. f_{norm1} and f_{norm2} are the normalization factors from η' sideband to η' signal region.
- Two individual phase space MC samples are combined according to the normalized intergral of the two η' decay modes.
- Background treatment: After normalization, the events in η' sideband region are used to describe non- η' background in η' signal region.

PWA strategy

Combined log likelihood value:

$$S = \left(-\ln \mathcal{L}_{sig1} + f_{norm1} \cdot \ln \mathcal{L}_{sideband1}\right) + \left(-\ln \mathcal{L}_{sig1} + f_{norm2} \cdot \ln \mathcal{L}_{sideband2}\right)$$
$$= -\left(\sum_{i=1}^{N_{sig1}} \ln \frac{\omega(\xi_i)}{\sigma}\right) - \left(\sum_{i=1}^{N_{sig2}} \ln \frac{\omega(\xi_i)}{\sigma}\right)$$
$$+ f_{norm1} \cdot \left(\sum_{i=1}^{N_{sideband1}} \ln \frac{\omega(\xi_i)}{\sigma}\right) + f_{norm2} \cdot \left(\sum_{i=1}^{N_{sideband2}} \ln \frac{\omega(\xi_i)}{\sigma}\right)$$

decay mode	$N_{event}^{selected\ data}$	$N_{event}^{selected MC}$	$N_{event}^{sideband}$	<i>f</i> _{norm}
$\eta' o \pi^+ \pi^- \eta$	1395	22873	31	1.05
$\eta' o \gamma \pi^+ \pi^-$	3979	78729	338	1.07

Resonance parameterization

 The ordinary intermediate resonance is parameterized by the Breit-Wigner propagator:

$$BW(s) = \frac{M_R \Gamma_R}{s - M_R^2 + iM_R \Gamma_R}$$

• According to the result of CLEO collaboration, the η_c signal is parameterized following formula:

$$f_{propagator}^{(\eta_c)} = \sqrt{f_{damp}(E_{\gamma})} \times BW(s)$$
$$f_{damp}(E_{\gamma}) = e^{-\frac{E_{\gamma}^2}{8\beta^2}}, \ \beta = 0.065 \ GeV$$
$$E_{\gamma} = \frac{m_{J/\psi}^2 - s}{2m_{J/\psi}}$$

Nominal solution

- Combined channels: $J/\psi \to \gamma K_s^0 K_s^0 \eta', \eta' \to \pi^+ \pi^- \eta$ and $\eta' \to \gamma \rho^0$
- ◆ Data: all $M_{K_s^0 K_s^0 \eta'}$ with $M_{K_s^0 K_s^0} < 1.1 \text{ GeV}/c^2$, momenta from 7C kimimatic fit
- Background: η' sideband
- Justification: significance > 5σ , interference < 100%
- Current nominal pwa solution

state	J^{PC}	Decay mode	Mass (MeV/c^2)	Width (MeV/c^2)	Significance
X(2370)	0-+	$f_0(980)\eta'$	2395^{+11}_{-11}	188^{+18}_{-17}	14.9σ
X(1835)	0-+	$f_0(980)\eta'$	1844	192	$> 20\sigma$
X(2750)	0^-+	$f_0(980)\eta'$	2815^{+53}_{-54}	641^{+181}_{-108}	16.4σ
η_c	0^-+	$f_0(980)\eta'$	2983.9	32.0	> 20.0 \sigma
риср	0-+	$\eta'(K^0_S K^0_S)_{S-wave}$			9.0σ
гпъг	U	$\eta'(K^0_S K^0_S)_{D-wave}$			16.3σ

Nominal solution

Interference for all combinations of two components:

Table 12: The fractions of each components and their interferences

component(%)	$X(2370) \rightarrow f_0(980)\eta'$	$X(1835) \rightarrow f_0(980)\eta'$	$X(2750) \rightarrow f_0(980)\eta'$	$\eta_c \to f_0(980)\eta'$	$PHSP \rightarrow \eta'(K^0_S K^0_S)_{S-wave}$	$PHSP \rightarrow \eta'(K^0_S K^0_S)_{D-wave}$
$X(2370) \rightarrow f_0(980)\eta'$	15.4	26.2	27.2	0.7	-19.2	0.1
$X(1835) \rightarrow f_0(980)\eta'$		35.6	11.5	-0.9	-33.3	0.1
$X(2750) \rightarrow f_0(980)\eta'$			36.2	4.4	-28.1	0.1
$\eta_c \to f_0(980)\eta'$				5.0	1.0	0.0
$PHSP \rightarrow \eta'(K^0_S K^0_S)_{S-wave}$					15.7	-0.1
$PHSP \rightarrow \eta'(K^0_S K^0_S)_{D-wave}$						2.4

Table 13: The interference intensity $(\frac{N_{ij}}{\sqrt{N_i \cdot N_j}})$ of two components

component	$X(2370) \rightarrow f_0(980)\eta'$	$X(1835) \rightarrow f_0(980)\eta'$	$X(2750) \rightarrow f_0(980) \eta'$	$\eta_c \to f_0(980)\eta'$	$PHSP \rightarrow \eta'(K^0_S K^0_S)_{S-wave}$	$PHSP \rightarrow \eta'(K^0_S K^0_S)_{D-wave}$
$X(2370) \rightarrow f_0(980)\eta'$	1.00	1.12	1.15	0.08	-1.23	0.02
$X(1835) \rightarrow f_0(980)\eta'$		1.00	0.32	-0.07	-1.41	0.01
$X(2750) \rightarrow f_0(980)\eta'$			1.00	0.33	-1.18	0.02
$\eta_c \to f_0(980)\eta'$				1.00	0.11	0.00
$PHSP \rightarrow \eta'(K^0_S K^0_S)_{S-wave}$					1.00	-0.02
$PHSP \rightarrow \eta'(K^0_S K^0_S)_{D-wave}$						1.00

Scanning curves of nominal solution

- left: X(2370)
- right: X(2750)

Branch fraction measurement

The corresponding product branching fraction can be calculated as the following formula

$$\mathcal{B}[J/\psi \to \gamma X(2370)] \times \mathcal{B}[X(2370) \to f_0(980)\eta'] \times \mathcal{B}[f_0(980) \to K_S^0 K_S^0]$$

$$= \frac{N_{X(2370)}}{N_{J/\psi} \cdot \left(\mathcal{B}[K_S^0 \to \pi^+\pi^-]\right)^2 \cdot \left(\mathcal{B}[\eta' \to \pi^+\pi^-\eta, \eta \to \gamma\gamma] \cdot \varepsilon_{X(2370)}^{\eta' \to \pi^+\pi^-\eta} + \mathcal{B}[\eta' \to \gamma\pi^+\pi^-] \cdot \varepsilon_{X(2370)}^{\eta' \to \gamma\pi^+\pi^-}\right)}$$

 We change the mass and width of X(2370) by one standard statistical deviation and each mass-width combination is performed PWA fit 300 times.

$$egin{split} \mathcal{B}[J/\psi o \gamma X(2370)] imes \mathcal{B}[X(2370) o f_0(980)\eta'] \ imes \mathcal{B}[f_0(980) o K^0_S K^0_S] = ig(1.32^{+0.22}_{-0.22}(stat.\,)ig) imes 10^{-5} \end{split}$$

Projection plots of nominal solution

- Combined two η' decay modes:
 - Total intensity of sum of all interference terms: -10.3%

Check list of nominal solution

- * J^{pc} of the resonances in the nominal resolution
 - X(2370), PHSP, X(wide), X(1835) and η_c
- Significance of additional waves
- Significance of additional resonances
 - Addtional resonance $(X_{K_s^0 K_s^0 \eta'})$ scanning
 - The X(2120) (observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$, Phys. Rev. Lett.117:042002)
 - The X(2600) (observed in $J/\psi \rightarrow \gamma \pi^+ \pi^- \eta'$, arXiv:2201.10796)

J^{pc} check of nominal solution

♦ J^{pc} check for the X(2370)/PHSP

Table 9: ΔS comparing to nominal solution for different J^{PC} of X(2370) and PHSP. The changes of S value (ΔS) and the number of degrees of freedom ($\Delta ndof$) are marked with black and blue respectively.

State			X(2370)	
State	J^{PC} and decay mode	$0^{-+} \rightarrow f_0(980)\eta'$	$1^{++} \rightarrow f_0(980)\eta'$	$2^{-+} \rightarrow f_0(980)\eta'$
PHSP -	$0^{-+} \to (K^0_S K^0_S)_{S/D-wave} \eta'$	$0(0) (\Delta S)_{min}$	ⁿ +89 (+2)	+50 (+4)
	$1^{++} \to (K^0_S K^0_S)_{S/D-wave} \eta'$	+45 (+6)	+92 (+8)	+78 (+10)
	$2^{-+} \to (K^0_S K^0_S)_{S/D-wave} \eta'$	+44 (+10)	+101(+12)	+56 (+14)
	$2^{++} \rightarrow (K^0_S K^0_S)_{D-wave} \eta'$	+36 (+2)	+104(+4)	+69 (+6)

⋆ J^{pc} check for the X(wide)

State	J^{PC}	Decay mode	ΔS	$\Delta n d o f$
	0^{-+}	$f_0(980)\eta'$	0	0
X(wide)	1^{++}	$f_0(980)\eta'$	+108	+2
	2^{-+}	$f_0(980)\eta'$	+78	+4

- Both the X(2370) and the PHSP favor to 0^{-+}
- X(wide) favor to 0⁻⁺

J^{pc} check of nominal solution

• J^{pc} check for the X(1835)

State	J^{PC}	Decay mode	ΔS	$\Delta n d o f$
	0^-+	$f_0(980)\eta'$	0	0
X(1835)	1++	$f_0(980)\eta'$	+150	+2
	2-+	$f_0(980)\eta'$	+203	+4

• J^{pc} check for the η_c

State	J^{PC}	Decay mode	ΔS	$\Delta n d o f$
	0^{-+}	$f_0(980)\eta'$	0	0
η_c	1++	$f_0(980)\eta'$	+31	+2
	2-+	$f_0(980)\eta'$	+26	+4

• The η_c and the X(1835) favor to 0⁻⁺, which are consistent with previous study.

Additional wave check

- Significance of additional wave for each resonance in nominal solution
 - The significance of every additional wave $< 5\sigma$

state Decay mode	X(2370)	X(1835)	X(2750)	η_c	PHS P
$0^{-+} \rightarrow f_0(980)\eta'$					2.0σ
$0^{-+} \rightarrow f_0(1500)\eta'$	1.1σ	3.0σ	2.2σ	1.2σ	2.3σ
$0^{-+} \rightarrow f_2(1270)\eta'$	2.8σ	3.2σ	1.5σ	2.0σ	1.8σ
$0^{-+} \to K^*(1410)K_s^0$	2.4σ	0.1σ	0.5σ	0.3σ	1.2σ
$0^{-+} \to K_0^*(1430)K_s^0$	1.8σ	1.0σ	2.8σ	2.0σ	1.5σ
$0^{-+} \rightarrow K_2^*(1430)K_s^0$	3.0σ	2.0σ	2.4σ	1.5σ	2.5σ
$0^{-+} \to K^*(1680)K_s^0$	1.3σ	2.7σ	1.9σ	1.1σ	2.6σ
$0^{-+} \to (K^0_S K^0_S)_{S-wave} \eta'$	1.5σ	3.6 <i>o</i>	1.7σ	1.0σ	
$0^{-+} \to (K^0_S K^0_S)_{D-wave} \eta'$	2.7σ	2.6σ	1.2σ	1.6σ	
$0^{-+} \to (K^0_S \eta')_{P-wave} K^0_S$	3.0σ	2.1σ	1.8σ	2.0σ	2.9σ
$0^{-+} \to (K^0_S \eta')_{D-wave} K^0_S$	1.4σ	3.6 <i>o</i>	1.7σ	1.1 <i>o</i>	2.4σ

Additional resonance check

- Additional resonance $(X_{K_s^0 K_s^0 \eta'})$ scanning with step=20MeV based on the nominal solution:
- In each plot, the upper and bottom red-color dashed lines represent for the ΔS corresponding to 3σ and 5σ respectively.
- The significance of every additional resonance $< 5\sigma$

(d) $0^{-+} \rightarrow f_0(980)\eta', \Gamma = 0.2 \ GeV/c^2$ (e) $1^{++} \rightarrow f_0(980)\eta', \Gamma = 0.2 \ GeV/c^2$ (f) $2^{-+} \rightarrow f_0(980)\eta', \Gamma = 0.2 \ GeV/c^2$

The X(2120) contribution?

The changes of resonance parameters
 Phys

Phys. Rev. Lett.117:042002

• The mass and width of X(2120) are fixed to $M = 2122 \text{ MeV}/c^2$, $\Gamma = 84 \text{ MeV}/c^2$

Additional state	IPC	Decay mode	Significance	Changes of resonance parameters of X(2370)		
	J	Decay mode	Significance	$\Delta M (MeV/c^2)$	$\Delta\Gamma (MeV/c^2)$	$\Delta \mathcal{B}/\mathcal{B}\left(\% ight)$
X(2120)	0-+	$f_0(980)\eta'$	2.7σ	-10	+10	+22.14

Projection plots

The X(2600) contribution?

The optimized result after adding the X(2600) arXiv:2201.10796

state	J^{PC}	Decay mode	Mass (MeV/c^2)	Width (MeV/c^2)	Significance
X(2370)	0-+	$f_0(980)\eta'$	2405^{+13}_{-13}	167^{+20}_{-18}	12.7σ
X(2600)	0^-+	$f_0(980)\eta'$	2618.3	195	(4.2σ)
X(1835)	0-+	$f_0(980)\eta'$	1844	192	> 20 0
X(2750)	0^-+	$f_0(980)\eta'$	2781^{+32}_{-35}	363^{+146}_{-81}	10.1σ
η_c	0^-+	$f_0(980)\eta'$	2983.9	32.0	$> 20.0\sigma$
PHSP	0-+	$(K^0_S K^0_S)_{S/D-wave} \eta'$			18.0σ

The X(2370) measurement results and nominal results are consistent within the margin of error.

Changes of resonance parameters of X(2370)			
$\Delta M (MeV/c^2)$	$\Delta\Gamma (MeV/c^2)$	$\Delta \mathcal{B}/\mathcal{B}\left(\% ight)$	
+10	-21	-17.56	

Projection plots

Systematic uncertainty

- The sources of systematic uncertainty are listed in table
 - For following assumptions, the difference with nominal PWA solution will be considered as an uncertainty on mass, width and branching ratio measurement.

source	$\Delta M MeV/c^2$)	$\Delta\Gamma (MeV/c^2)$	$\Delta \mathcal{B}/\mathcal{B}\left(\% ight)$
total number of J/ψ			±0.44
K_S^0 reconstruction			±3.0
Photon detection			±3.0
4C kinematic fit			±0.7
Intermediate branching fraction			±0.5
Uncertainty from background estimation	+5 -10	+10	+13.79 -1.77
Uncertainty from the X(1835)	+2	+4 -4	+3.66 -5.06
Uncertainty from the X(2120)	-10	+10	+22.14
Uncertainty from the X(2600)	+10	-21	-17.56
Uncertainty from the $f_0(980)$ parameterization	-5	+5	+5.31
Total	+11 -15	+11 -21	+23.18 -18.30

Summary

- ♦ Based on the measurement of the combined two η' decay modes, the J^{pc} of the X(2370) is 0⁻⁺.
- In current nominal solution, the mass and width of the X(2370) are:
 - Mass = $2395^{+11}_{-11}(stat.)^{+11}_{-15}(syst.) \text{ MeV}/c^2$
 - Width = $188^{+18}_{-17}(stat.)^{+12}_{-21}(syst.) \text{ MeV}/c^2$
- DocDB: <u>Spin-Parity determination of the X(2370)</u>
- Hypernews: <u>BAM-00603</u>

Thanks!