

Time-varying resonant mass at collider and beam dump experiments

Yuxuan He(何雨轩) Peking University 2022. 10. 29@26th Mini-workshop on the frontier of LHC

2206.14221, Jinhui Guo, YXH, Jia Liu, Xiao-Ping Wang and Ke-Pan Xie

- Introduction
- Time-varying mass of the particle
- Experiments recast
- Time dependent analysis
- Conclusion

Introduction

- Time varying physical constants Dirac, Nature 139 (1937) 323
- Ultralight dark matter

EOM:
$$\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = 0$$

misalignment mechanism $\phi(t) \approx \phi_0 \cos(m_{\phi} t)$

$$\rho_{\rm DM} = m_\phi^2 \phi_0^2 / 2$$

Ultralight dark matter and varying constants

$$\mathcal{L} \supset -\sum_{f=e,p,n} \frac{m_f}{\Lambda_f} \phi \bar{f} f + \frac{\phi}{4\Lambda_\gamma} F_{\mu\nu} F^{\mu\nu}$$
 Stadnik et al, 1412.7801, 1503.08540
$$m_f \to m_f \left(1 + \frac{\phi_0 \cos(m_\phi t)}{\Lambda_f} \right), \quad \alpha \to \frac{\alpha}{1 - \phi_0 \cos(m_\phi t)/\Lambda_\gamma}$$

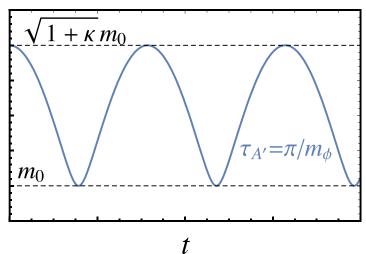
Time-varying mass of the particle

Model Setup

Consider mixing between dark photon and photon

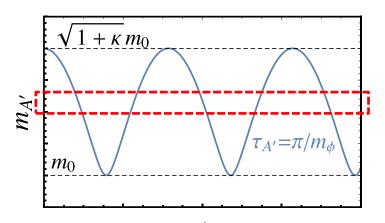
$$\mathcal{L} = -\frac{1}{4}F'_{\mu\nu}F'^{\mu\nu} + \frac{1}{2}m_0^2A'_{\mu}A'^{\mu} + \epsilon eA'_{\mu}J^{\mu}_{\text{em}}$$

Consider ultralight complex scalar DM $\phi(t) \approx \phi_0 \cos(m_{\phi} t)$ charged under U(1)'


$$(D_{\mu}\phi)^* D^{\mu}\phi \supset (g'Q_{\phi})^2 \phi^* \phi A'_{\mu} A'^{\mu}$$

Obtain a time varying mass

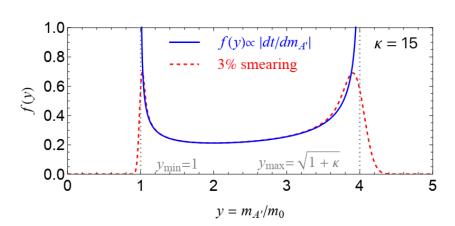
$$m_{A'}(t) = \sqrt{m_0^2 + 2(g'Q_\phi)^2 |\phi_0|^2 \cos^2(m_\phi t)} \quad \overset{\stackrel{\sim}{\mathcal{K}}}{=}$$


$$\equiv m_0 \sqrt{1 + \kappa \cos^2(m_\phi t)}$$

$$\kappa \equiv 2(g'Q_\phi)^2 \rho_{\rm DM} / \left(m_\phi^2 m_0^2\right)$$

Time-varying mass of the particle

• Time varying resonant spectrum $m_{\rm res}^2(t)=m_{\rm res}^2(t+ au)$

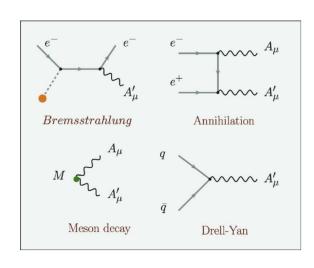


$$m_{\phi} \gtrsim 2 \times 10^{-20} \text{ eV}$$
 $t_{\text{exp}} \gg \tau$

number of events per bin

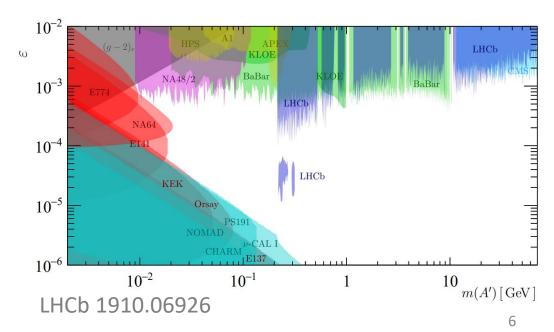
$$N_i = \sigma_{A'}^{(i)} \epsilon_i \mathcal{L} \times \frac{1}{\tau_{A'}} \int_{m_i}^{m_{i+1}} \left| \frac{dt}{dm_{A'}} \right| dm_{A'}$$

mass probability density function


$$\left| \frac{dt}{dm_{A'}} \right| = \frac{\tau}{m_0} f(y)$$

$$f(y) = \frac{2y}{\pi \sqrt{(y^2 - y_{\min}^2)(y_{\max}^2 - y^2)}}$$

double peak


Time-varying mass of the particle

The Existing constraints on dark photon mixing

$$\mathcal{L} \supset \epsilon e A'_{\mu} J^{\mu}_{\mathrm{em}}$$

$$\sigma_{
m production} \propto \epsilon^2$$

Reanalyzing of existing experiments

Collaboration	Production mode	Experimental environment	Spectrum	Resolution $\sigma_{\rm re}$	Fit window
BaBar [1406.2980]	$e^+e^- \to \gamma A'$	$\sqrt{s} \approx 10 \text{ GeV}, 514 \text{ fb}^{-1}$	$m_{ee},m_{\mu\mu}$	[1.5, 8] MeV	$m_{A'} \pm 10\sigma_{ m re}$
LHCb [1910.06926]	$pp \to A'$	$\sqrt{s} = 13 \text{ TeV}, \sim 5 \text{ fb}^{-1}$	$m_{\mu\mu}$	[0.12, 380] MeV	$m_{A'} \pm 12.5\sigma_{ m re}$
A1 [1404.5502]	$e^-Z \rightarrow e^-ZA'$	$E_e \in [0.180, 0.855] \text{ GeV}$	m_{ee}	$0.5~{ m MeV}$	$m_{A'} \pm 3\sigma_{ m re}$
NA48/2 [1504.00607]	$\pi^0 \to \gamma A'$	$1.69 \times 10^7 \ \pi^0 \rightarrow \gamma e^+e^- \text{ events}$	m_{ee}	[0.16, 1.33] MeV	single bin

Log likelihood ratio

$$-2\log\left[\frac{\operatorname{Max}_{\vec{a}'}\prod_{i}\mathcal{N}(B_{i}-B(m_{i},\vec{a}')-Sf_{S}(m_{i})|B_{i})}{\operatorname{Max}_{\vec{a}}\prod_{i}\mathcal{N}(B_{i}-B(m_{i},\vec{a})|B_{i})}\right]$$

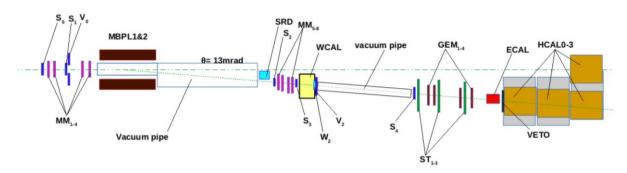
Background fit by $B(m_i, \vec{a}) = a_0 + a_1 m_i + a_2 m_i^2$ Constraints obtained by $S \equiv -2 \ln(\mathcal{L}/\mathcal{L}_0) = 3.84$

Reanalyzing of existing experiments

Collaboration	Production mode	Experimental environment	Spectrum	Resolution $\sigma_{\rm re}$	Fit window
BaBar [1406.2980]	$e^+e^- \to \gamma A'$	$\sqrt{s} \approx 10 \text{ GeV}, 514 \text{ fb}^{-1}$	$m_{ee},m_{\mu\mu}$	[1.5, 8] MeV	$m_{A'} \pm 10\sigma_{ m re}$
LHCb [1910.06926]	$pp \to A'$	$\sqrt{s} = 13 \text{ TeV}, \sim 5 \text{ fb}^{-1}$	$m_{\mu\mu}$	[0.12, 380] MeV	$m_{A'} \pm 12.5\sigma_{ m re}$
A1 [1404.5502]	$e^-Z \rightarrow e^-ZA'$	$E_e \in [0.180, 0.855] \text{ GeV}$	m_{ee}	$0.5~{ m MeV}$	$m_{A'} \pm 3\sigma_{ m re}$
NA48/2 [1504.00607]	$\pi^0 \to \gamma A'$	$1.69 \times 10^7 \ \pi^0 \rightarrow \gamma e^+ e^- \text{ events}$	m_{ee}	[0.16, 1.33] MeV	single bin

Beam Dump Experiments

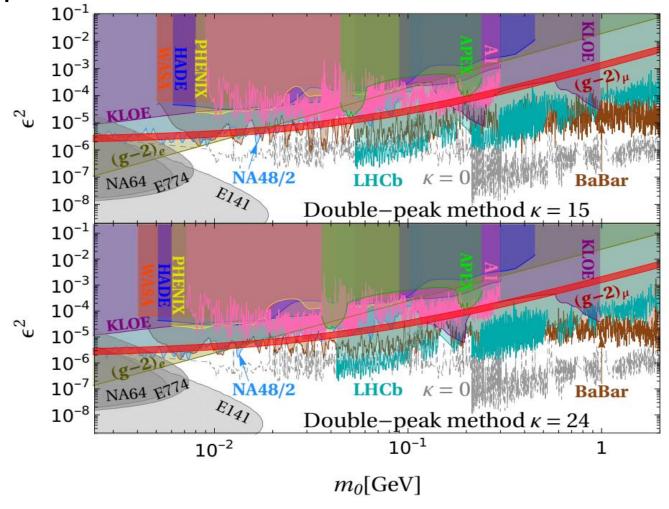
E774


E141

NA64

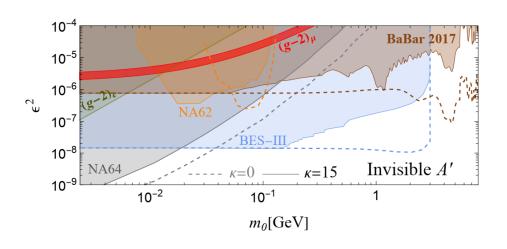
PRL67(1991)2942

PRL59(1987)755


1912.11389

Production process in NA64 $e^-Z \rightarrow e^-ZA'$

$$N(\epsilon, m_{A'}) = N_e C' \epsilon^2 \frac{m_e^2}{m_{A'}^2} e^{-a_1 L_{\rm sh} \Gamma_{A'}} (1 - e^{-a_2 L_{\rm dec} \Gamma_{A'}})$$


$$N(\epsilon, m_0, \kappa) = \frac{1}{\tau} \int_{m_0}^{\sqrt{1+\kappa}m_0} N(\epsilon, m_{A'}) \left| \frac{dt}{dm_{A'}} \right| dm_{A'}$$

g-2 in time varying case: $\frac{1}{\tau} \int_0^{\tau} dt \ \Delta a_{\mu} \left(m_{A'}(t) \right)$

Invisible Dark Photon

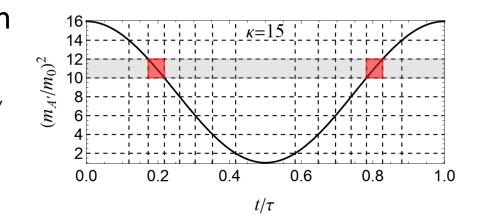
For dark photon decay to dark matter dominantly

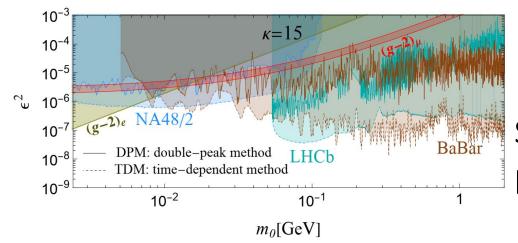
monophoton search

$$e^+e^- \to A'\gamma$$

$$E_{\gamma} = \frac{s - m_{A'}^2}{2\sqrt{s}}$$

Time varying photon energy spectrum


$$\left| \frac{dt}{dE_{\gamma}} \right| = \frac{\tau}{\pi \sqrt{(E_{\gamma} - E_{\min})(E_{\max} - E_{\gamma})}}$$


Time dependent analysis

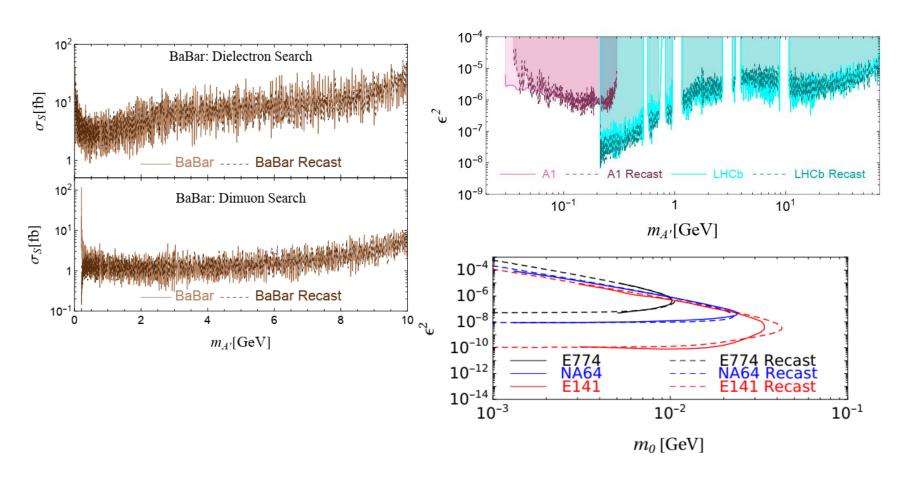
Using time information

$$N_i^{\text{red}} = N_i \frac{1}{\tau} \int_{m_i}^{m_{i+1}} \left| \frac{dt}{dm_{A'}} \right| dm_{A'}$$

$$N_{i,j} = N_i \Delta t_j / \tau$$

Signal not changed, while background suppressed

Conclusion


dark photon can have a time varying mass by coupling with ultralight scalar DM:

- The existing bounds are significantly weakened
- The muon g-2 solution becomes viable again
- Including time information of experiments can improve sensitivity

Thank You

backup

Repeating of existing constraints

backup

Other constraints

Varying SM fermion mass

$$\frac{\Delta m_f}{m_f} \simeq \frac{3 \left(e \epsilon Q_f \right)^2}{16 \pi^2} \log \left(\frac{m_0^2 + 2 (g' Q_\phi)^2 \phi^* \phi}{m_0^2} \right)$$

Early universe constraints