Measurement of Zy+jets differential cross section with ATLAS detector

Xuan YANG Institute of High Energy Physics, CAS

26th LHC Mini-workshop, Oct 30th 2022, Beijing

ATLAS-CONF-2022-047

中國科學院為能物記湖完備 Institute of High Energy Physics Chinese Academy of Sciences

Molivalion

 \blacktriangleright First Measurement of Zy+jets differential cross section in ATLAS

- Jet inclusive measurement was done in previous round (<u>JHEP03(2020)054</u>)
- Advantages:
 - Large statistics (Drell-Yan process)
 - Clear signal (di-lepton in Z mass window), good S/B
- Could be used to study:
 - Test of resumption of Sudakov logarithms at fixed QCD order
 - Test Parton Shower effects
 - > Background modeling of $ZZ/Z\gamma$ in DM searches/H->Z γ
- Could be also used to do additional re-interpretations:
 - EFT studies
 - Polarization studies
 - Axion-like-particles (ALPs)

VBS Zγ shares a similar final state

- But a EWK vertex (quartic gauge coupling)
- Featured two forward jets with large invariant mass
- A standalone analysis
 - First observation (5 σ) in ALTAS! (<u>ATLAS-CONF-2021-038</u>)
 - Observed also by CMS (<u>JHEP06(2020)076</u>)
 - Differential cross section measurements on-going

- Two same-flavor opposite-sign light leptons (e/µ)
- > Mll > 40 GeV -> suppress low mass resonances (γ *)
- Mll + Mllγ > 182 GeV -> suppress FSR events
- No requirement on di-jet mass -> negligible VBS contribution
- SR enriched with ISR Zγ events
- Main backgrounds from jet-faking-photon, ttγ

Observable	Signal Region	tīγ
Number of signal leptons	2 Opposite Sign, Same Flavour	2 Opposite
Lepton	$p_{\rm T}(\ell_1) > 30 {\rm GeV}$	$V, p_{\mathrm{T}}(\ell_2) > 2$
Photon	≥ 1 photon w	with $p_{\rm T}^{\gamma} > 30$
$m_{\ell\ell}$	> 4	40 GeV
$m_{\ell\ell} + m_{\ell\ell\gamma}$	> 1	82 GeV

140 m_{ll} [GeV] 130 120 110 Control Region ISF 100 Sign, Different Flavour 90 25 GeV GeV 90 100 110 120 130 140 150 160 170

m_{lly} [GeV]

Observa bles

ID observables to probe QCD properties: $N_{jet}, p_T^{Jet1(2)}, p_T^{Jet2}/p_T^{Jet1}, m_{ll\gamma j}, m_{jj}, H_T, p_T^{\gamma}/\sqrt{H_T}, \Delta\phi(Jet,\gamma), \Delta R(l,l), p_T^{ll}$ Sudakov logarithms related: $P_T^{ll\gamma}/m_{ll\gamma}$ in bins of $m_{ll\gamma}$ $P_T^{ll} - p_T^{\gamma}$ in bins of $p_T^{ll} + p_T^{\gamma}$ $\triangleright p_T^{ll\gamma j}$ in bins of $p_T^{ll\gamma}$ $\triangleright p_T^{ll} + p_T^{\gamma}, p_T^{ll} - p_T^{\gamma}, p_T^{ll\gamma j}$ inclusively

Sudakov logarithms: if $q_T << Q$, fixed order QCD calculations are emission of the order of $\alpha_s^n ln^m(q_T/M)$

Hard variables: represents the hard scale of the process, which are not zero at Leading Order (LO), **Resolution variables:** sensitive to additional, soft and collinear QCD radiation, which are zero at LO and become non-zero beyond LO

dominated by Sudakov logarithm terms caused by soft and collinear

Observa bles

Polarization related variables:

- $\triangleright cos\theta_{CS}v.s. p_T^Z$ 2D unfolding
- $\blacktriangleright \phi_{CS}$ v.s. p_T^Z 2D unfolding
- Measured in Collins-Soper frame
 - Z-boson rest frame
 - $\triangleright \theta$ and ϕ of negatively charged lepton
 - $\triangleright p_T^Z$ shifted higher due to ISR photon

Acceptance and resolution of detector

- Comparing to various theoretical predictions:

2D unfolding of polarization variables, extended to one dimension

X

Resolution variable $p_T^{ll} - p_T^{\gamma}$ in different $p_T^{ll} + p_T^{\gamma}$ bins

Yields

Source		$ee + \mu\mu$
$Z\gamma$ +jets signal	73500	$\pm 50 \text{ (stat.)} \pm 2600 \text{ (syst.)}$
Z + jets	9800	$\pm 460 \text{ (stat.)} \pm 2100 \text{ (syst.)}$
$tar{t}\gamma$	3600	$\pm 10 \text{ (stat.)} \pm 540 \text{ (syst.)}$
pile-up	2500	$\pm 70 \text{ (stat.)} \pm 700 \text{ (syst.)}$
$\operatorname{multiboson}$	950	$\pm 5 \text{ (stat.)} \pm 160 \text{ (syst.)}$
$tW\gamma$	150	$\pm 1 \text{ (stat.)} \pm 45 \text{ (syst.)}$
Total prediction	90500	$\pm 500 \text{ (stat.)} \pm 3500 \text{ (syst.)}$
Data	96410	

► Measured: $\sigma_{fid} = 533.7 \pm 2.1 \text{ (stat)} \pm 12.4 \text{ (syst)} \pm 9.1 \text{ (lumi)}$

Sherpa2.2.11: 479.5 ± 0.3 (stat)

• MiNNLO_{PS}: 493.0 ± 3.0 (*stat*)

Uncertainties

$N_{ m Jet}$	0	1	2	> 2	
Source	Uncertainty [%]				
Electrons	1.0	0.9	0.8	0.8	
Muons	0.3	0.3	0.3	0.4	
Jets	1.7	1.7	4.5	8.8	
Photons	1.4	1.3	1.3	1.2	
Pile-up	2.1	0.8	0.2	0.3	
Background	1.8	1.8	3.0	4.4	
Stat. MC	0.1	0.2	0.3	0.4	
Stat. data	0.8	1.5	1.8	1.9	
Luminosity	1.7	1.7	1.7	1.7	
Theory	0.6	0.2	1.4	1.0	
Total	4.2	3.8	6.3	10.3	

Mainly from non prompt photon estimate and jets

Neutral Triple Gauge Couplings (nTGCs) Important to understand electroweak symmetry mechanism A new window to search for BSM physics forbidden at tree level in the SM, but could arise from SMEFT dim-8 operators

- The anomalous coupling could:
 - > Increase inclusive cross sections of $Z\gamma$
- Increase differential cross sections at high Pt and high mass region As an example:
 - A new nTGC model proposed by Prof.John Ellis, Prof.Hongjian He and Dr.Ruiqing Xiao
 - arXiv: <u>2206.11676v2</u>

Could be very sensitive in Z->ll final states!

2σ, 5σ							
\sqrt{s}	$13 \mathrm{TeV}(\ell ar{\ell})$			$13 \mathrm{TeV}(\ell \bar{\ell}, u \bar{ u})$			
$\mathcal{L}(\mathrm{ab}^{-1})$	0.14	0.3	3	0.14	0.3	3	
$ h_4(\mathbb{O}_1) \! imes\!10^5 $	3.7(11)	2.4(7.1)	0.72(1.9)	3.7(11)	2.4(7.1)	0.72(1.9)	
$ h_4 imes 10^6$	11 (<mark>21</mark>)	8.5(16)	4.3(7.3)	7.6(14)	6.0(11)	3.1 (<mark>5.3</mark>)	
$ h_3^Z imes 10^4$	2.2(3.9)	1.7(3.0)	0.89(1.5)	1.5(2.7)	1.2(2.2)	0.67(1.1)	
$ h_3^A imes 10^4$	2.5(4.5)	2.0(3.5)	1.0(1.7)	1.8(3.1)	1.4(2.5)	0.77(1.3)	

 $L = L_{SM} + \sum_{d > 4} \sum_{i} \frac{C_i}{\Lambda^{d-4}} O_i^d$

11

Rolarizalion

Previously measured by ATLAS in run 1 (<u>JHEP08(2016)159</u>) Some disagreement seen, would like to further understand in run2 Main difficulties:

- Polarization effect only dominant in full space

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{Z} \mathrm{d}y^{Z} \mathrm{d}m^{Z} \mathrm{d}\cos\theta \mathrm{d}\phi} = \frac{3}{16\pi} \frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{Z} \mathrm{d}y^{Z} \mathrm{d}m^{Z}}$$

$$\times \left\{ (1 + \cos^{2}\theta) + \frac{1}{2} A_{0}(1 - 3\cos^{2}\theta) + A_{1} \sin 2\theta \cos \phi + \frac{1}{2} A_{2} \sin^{2}\theta \cos 2\phi + A_{3} \sin \theta \cos \phi + A_{4} \cos \theta + A_{5} \sin^{2}\theta \sin 2\phi + A_{6} \sin 2\theta \sin \phi + A_{7} \sin \theta \sin \phi \right\}.$$

$$(1.1)$$

Integrating eq. (1.1) over $\cos \theta$ yields:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^{Z} \mathrm{d}y^{Z} \mathrm{d}m^{Z} \mathrm{d}\phi} = \frac{1}{2\pi} \frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^{Z} \mathrm{d}y^{Z} \mathrm{d}m^{Z}}$$
(1.2)

$$\times \left\{ 1 + \frac{1}{4} A_{2} \cos 2\phi + \frac{3\pi}{16} A_{3} \cos \phi + \frac{1}{2} A_{5} \sin 2\phi + \frac{3\pi}{16} A_{7} \sin \phi \right\},$$

while integrating over ϕ yields:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{\mathrm{T}}^Z \,\mathrm{d}y^Z \,\mathrm{d}m^Z \,\mathrm{d}\cos\theta} = \frac{3}{8} \frac{\mathrm{d}\sigma^{U+L}}{\mathrm{d}p_{\mathrm{T}}^Z \,\mathrm{d}y^Z \,\mathrm{d}m^Z} \left\{ (1+\cos^2\theta) + \frac{1}{2}A_0(1-3\cos^2\theta) + A_4\cos\theta \right\}.$$
(1.3)

As soon as selection applied on final state leptons, polarization information disappears Need to properly taken into account the acceptance, if there is any new physics effect

12

- \triangleright Complementary to H-> $\gamma\gamma$

- Most up-to-date Zγ + jets differential cross section measurements Measurement is simple, but it could be used as a probe to many interesting things:
 - Better understand and constrain SM parameters
 - Improve background modeling to search for rare processes
 - Re-interpretations (EFT, polarization...)

Currently only a conference note, paper will be published soon

14