强脉冲辐射环境模拟与效应国家重点实验室
 西北核技术研究院 二所 盛亮
 2022年11月

报告主要内容

1

2

3

4

脉冲辐射闪烁探测与成像技术

脉冲辐射探测与成像闪烁体改性技术

脉冲辐射闪烁探测与成像记录系统

典型的脉冲辐射探测与成像系统

5 总结与展望

脉冲射线测量	单粒子测量			
大量粒子形成的脉冲	单粒子			
波形形状和幅度,能谱,时间谱,角分布,	粒子能谱,粒子计数率,绝对测量,弱计数,			
源区形状等	低本底			
灵敏度,时间响应,幅度响应,	能量分辨率,死时间,脉冲幅度,射线的吸			
剂量率响应	收,立体角,效率等			
同轴电缆或光纤,长距离	同轴电缆,短距离			
示波器,条纹相机等	多道脉冲幅度分析器等			
波形修复和回归	能量分辨,粒子分辨			
稳态和动态标定	能量刻度和计数率绝对测量			
n, γ, X, α, β, e等射线	n, γ, α, β等			
	 脉冲射线测量 大量粒子形成的脉冲 波形形状和幅度,能谱,时间谱,角分布, 源区形状等 灵敏度,时间响应,幅度响应, 剂量率响应 同轴电缆或光纤,长距离 示波器,条纹相机等 波形修复和回归 稳态和动态标定 n, γ, Χ, α, β, e 等射线 			

脉冲射线测量与粒子测量之间的基本区别

闪烁探测与成像基本原理:

X/γ射线、中子等与闪烁材料相互作用,产生次级电子或 质子等带电粒子,这些带电粒子又进一步使(敏化剂、激 活剂)材料中原子核外电子激发或电离,退激过程中产生 荧光,通过光电探测器或成像系统进行记录,是脉冲辐射 场测量中最为传统与经典的方法。

多采用电流法测量方式,通过光电探测器将大量粒子作用 在闪烁体上光转换为电流或电压。

在脉冲辐射探测与成像领域,闪烁探测与成像至今仍广为 应用,主要是因为闪烁材料对入射中子、伽马的高探测效 率与高量子数倍增效应,MeV级中子、伽马入射毫米级厚 度的闪烁体通常可获得10³以上的量子增益。

機模拟与效应国

一、脉冲辐射闪烁探测与成像技术

10-21	10-18	10-15	10-12	10-9	10-6	10-3	1	10 ³	10 ⁶	10 ⁹	1012	1015	1018
仄秒 zs	阿秒 as	飞秒 fs	皮秒 ps	纳秒 ns	微秒 μs	毫秒 ms	秒 s	千秒 ks	兆秒 Ms	吉秒 Gs	太秒 Ts	拍秒 Ps	艾秒 Es
原	子日	讨 间		<u><u></u></u>	夏 日 时	间		ĸ	时	间	天	文	时间
				Puise	a								

源产额: 10⁸~10³⁰/pulse, 强脉冲: 射线束 >10¹⁹/pulse (源), >1 MJ/pulse

虚操拟与效应自

与粒子计数法不同,在脉冲辐射探测与成像领域,特征时间是指的<mark>时间衰减常数</mark>τ(决定了源时 间波形的畸变),而<mark>不是上升时间</mark>(决定了粒子探测的定时精度)。

裂变与聚变中子能谱

C中子弹性散射与非弹散射截面

脉冲辐射探测闪烁探测与成像技术中涉及到的最常见核反应: 伽马康普顿散射、中子弹性散射

 $(\sim 2 \times 10^{13} \text{ MeV/cm}^2 \text{ } \mu\text{s})$

Guan Xing-yin, et.al, Chinese Physics C,2011. 吕敏, 试验与研究, 1982

理想闪烁体:

- ① 高探测效率 (中子-有机; 伽-无机晶体)
- ② 中子/伽马灵敏度差别大(粒子甄别能力)

③ 高光产额

- ④ 快时间响应
- ⑤ 大动态范围(剂量率饱和效应)
- ⑥ 低内本底(放射性同位素含量低)

⑦高空间分辨

- ⑧ 能量分辨性能好(脉冲场测量对此要求不高)
- ⑨ 大面积 (~Φ 100 mm)
- ⑩ 不易潮解、机械加工性能良好

"鱼与熊掌难以兼得的问题"

(1) 闪烁体表面微结构

光子晶体可以改变荧光出射角分布, 使更多光子从表面出射,减少了在闪 烁体内的多次反射与被吸收的概率, 从技术上等效提高了光产额(非本征 光产额)。对改善荧光成像质量、提 高能谱分辨率和改善具有荧光方向性 依赖的测量系统的性能等具有重要意 义。

Liu J.L, et.al, OL,2017,42(5):1

(1) 闪烁体表面微结构

电子束刻蚀/X射线衍射光刻

P.Lecoq, IEEE NS, 2013, 60(3):1653 Arno Knapitsch, NIMA,2011,628:385

(1) 闪烁体表面微结构

化学自组装

纳米压印

Chen L, NIMA, 2017,871:63

(1) 闪烁体表面微结构

EJ212塑料闪烁薄膜,纳米压印技术制作一层表面光子晶体结构。

Liu J.L, et.al, NIMA,2015,795:306

(1) 闪烁体表面微结构

荧光从闪烁体表面出射效率明显提高。荧光出射最强角度方向的光子数 提高了1.04倍。

Liu J.L, et.al, NIMA,2015,795:306

(2) 复合薄膜闪烁体

X射线作用下复合样品的工作原理

X射线同时作用于ZnO:Ga和钙钛矿 薄膜。在钙钛矿侧,输出光包含**三 种成分**: (a)钙钛矿的直接出射光; (b) ZnO:Ga发光经钙钛矿膜转化的 发光; (c) ZnO:Ga产生的未被钙钛 矿膜转化的发光。

(2) 复合薄膜闪烁体

550

Wavelength(nm)

600

1

0

650

He S Y, et.al, Materials, 2022, 15:1487

(3) 有机闪烁体纳米掺杂

(a). 无机闪烁体+塑料; (b) 宽带隙材料+塑料闪烁体; (c) 无机量子点材料+塑料闪烁体

通过水热合成法制备了粒径在20 nm到40 nm之间的BaF₂纳米颗粒,利用有机溶剂溶解了 BC408塑料闪烁体,并将其和一定量的BaF₂纳米颗粒充分混合起来,挥发溶剂并固化样品, 得到了BaF₂纳米复合闪烁体。

(3) 有机闪烁体纳米掺杂

BC408闪烁体与掺不同比例BaF2发光强度与衰减时间比较

(3) 有机闪烁体纳米掺杂

掺不同比例BaF₂纳米颗粒的BC408闪烁体发光光谱

郭泉, et.al, 现代应用物理

(4) 钙钛矿闪烁体

3D MAPbBr₃(MA, CH₃NH₃) PEA₂PbBr₄(PEA, C₆H₅C₂H₄NH₃) *难点:有机无机杂化钙钛矿性能 长期稳定性、大尺寸高质量体无 机钙钛矿闪烁体制备。* 将钙钛矿量子点(Quantum dots, QDs)分散到聚合物形成复合闪烁 体。聚合物既可以为钙钛矿量子 点提供了载体,还可以提高钙钛 矿的环境稳定性。

(5) 闪烁体温度效应

(5) 闪烁体温度效应

LYSO:Ce闪烁体衰减时间随温度变化

Weipeng Yan, et al. AIP Advances 12, 2022.

LYSO:Ce

(5) 闪烁体温度效应

LYSO:Ce闪烁体光产额、发光光谱随温度变化

Weipeng Yan, et al. AIP Advances 12, 2022.

(5) 闪烁体温度效应

LYSO:Ce闪烁体空间分辨随温度变化

(6) 阵列式闪烁体

(c)BSFA纤维阵列

(b) GSFA纤维阵列

(a) LCA液闪阵列

张美, et al. 物理学报, 2020.

(6) 阵列式闪烁体

三种阵列屏的基本结构尺寸和参数

阵列图像屏	GSFA	BSFA	LCA
像元尺寸/mm	0.3	0.5	0.1
中心波长/nm	492	432	426
衰减时间/ns	2.7	2.7	<3.5
厚度 /mm	50	50	60
闪烁材料	BCF20	BCF10	EJ309

(6) 阵列式闪烁体

LCA液闪阵列 (5cm, 100 µm)

Co源均匀性测试结果

(6) 阵列式闪烁体

时间分辨与空间分辨

Y. Song, RSI, 033702, 2022.

(6) 阵列式闪烁体

液闪阵列屏与闪烁纤维屏的MTF理论模拟曲线。左: 14 MeV中子激发下的MTF曲线;右: 1.25 MeV伽马 激发下的MTF曲线

我们所做的工作主要是基于应用需求,通过<mark>物理方法</mark>改善 闪烁体脉冲辐射探测与成像某一方面的性能,并没有改变 闪烁体材料的本征特性,因此从根本上促进闪烁探测与成 像技术的进步仍然迫切需要材料科学家发现、合成新的材 料。

典型光电探测器

常用光电探测器件: ETL 公司 9850/9815/9215/9428... <u>滨松公司</u> CR364/CR131/CR134... Photek公司 像增强器(MCP125) 全俄自动化研究所 T3/T5

(1) MCP型倍增管

MCP型倍增管(上升时间<1 ns, 电子增益>10⁵, 脉冲(100 ns)线性电流>100 mA)

(2) 门控型MCP型倍增管

正脉冲10 V门控,上升下降沿5 ns,建立时间100 ns,消光比3000:1,脉冲 线性电流300 mA

(3) 混合型倍增管(电子增益+半导体增益)

MCP-SiC-HPMT结构示意图

研制的百倍增益SiC-HPMT

Chen L, JINST, 2020, 15, P02010

(4) 时间选通成像器件-GaAs光阴极像增强器

GaAs光阴极: 面电阻小、量子效率高、电子发射角小、负电子亲和势

(4) 时间选通成像器件-GaAs光阴极像增强器

(4) 时间选通成像器件-GaAs光阴极像增强器

阴极材料与结构对电压响应的影响

阴极材料与结构对光选通开启与关闭的影响

(4) 时间选通成像器件-GaAs光阴极像增强器

不同类型像增强器光选通时间与电快门之间的对比

	无膜 Gen3-1	无膜 Gen3-2	Gen3-1	Gen3-2	Gen2	电快门
半高宽/ns	17.3	17.1	14.8	12.8	21.0	16.9
10%-90%/ns	5.6/5.6	6.6/7.1	5.3/7.2	5.7/6	8.2/8.8	5.0/6.2
10%-50%/ns	2.1/1.5	2.2/1.9	2.4/2.7	2.9/2.8	1.54/2.6	1.6/3.6

(4) 时间选通成像器件-GaAs光阴极像增强器

S20光阴极与GaAs光阴极像增强器动态空间分辨率 (10 ns)

(5) 高速数采记录仪

通常信号频率超过100 MHz时, 需要考虑电缆传输对信号的畸 变。

(5) 高速数采记录仪

主要特征

●高速光纤数据传输 ●大量程覆盖(跨五个量程 ●模块化集成式设计●全独立模块化设计

技术指标				
通道数	8扩展/16分立			
采样率	4GSPS			
扩展量程	$\pm 2mV \sim \pm 250V$			
带宽	DC~400MHz/1GHz			
量化精度	12Bits			
有效位	大于9位(400MHz)			
记录长度	80Kpt (大于20us)			
触发阈值	0.1~3.5V可调			
时间精度	±100ps(全系统)			
供电	220VAC			
存储	本地Flash和Sram			

(6) 高速CMOS相机

帧频率:~800fps@1280×1024像 素: 读出噪声: 25e-; 数字化精度: 12bit; 动态范围: >52dB; 触发阈值: 1~10V可调(默认值 3.2V); 传输方式: 20Gbps 光纤远程实时 传输: 特殊功能: 连续双帧图像采集、 高速双曝光图像获取、亚微秒超 短电子快门、双触发曝光控制等。

(7) 双爆光ICMOS相机

将高帧频CMOS相机的双曝光图像获取功能结合快响应短余晖像增强器(MCP125/P47)和重频快门,单台相机可获取两幅不同时刻的图像。

(8) 条纹相机

主要应用场景的技术要求:

(1) 长狭缝(35mm),

边缘易受外界电磁场影响。

- (2) 空间分辨>15 lp/mm(全视场)
- (3) 长扫程>100 ns
- (4) 时间延迟<100 ns
- (5) 扫描非线性<5%
- (6) 动态范围>300
- (7) 耦合方式:狭缝镜头耦合、 像增强器光锥耦合。

四、典型的闪烁探测与成像系统

五、总结与展望

闪烁体

- 1. 亚纳秒时间衰减常数
- 探测效率与2 mm BC408相 当或更高
- 3. 光产额高于10³/MeV
- 4. 空间分辨优于100 μm
- 5. 大面积(Φ>2 inch 或更大)

光电探测器与记录系统

- 1. 亚纳秒时间响应
- 2. 百ns脉冲线性电流~A
- 3. 输出线性动态范围>10³
- 4. 动态空间分辨优于100 μm
- 5. 大面积(Φ>1 inch 或更大)
- 数字化采样率10 GHz,量化位 数>12 bit,有效位>10bit

当前阶段"MeV级脉冲伽马射线、中子探测与成像"对"高性能"闪烁体与光电器件的主要技术要求。闪烁体需同时满足1,2,3;4,5是成像闪烁体的额外要求。光电探测器需同时满足1,2,3要求;4,5是成像器件的额外要求;6是波形数字化设备指标要求。

五、总结与展望

闪烁探测与成像技术(被动测量)当前的技术边界

五、总结与展望

逆康普顿散射伽马射线源-XAGL(西安高亮)

五、总结与展望

脉冲射线物理先进诊断技术

发展针对高能高强度短脉宽的伽马射线 的**强度、能量、时间宽度、时间强度谱** 测量等脉冲射线物理先进诊断技术

皮秒级伽马时间宽度测量

皮秒级电子束束长测量

窄谱脉冲伽马能谱测量

脉冲伽马剂量定标

超过了闪烁法当前的技术能力,探测效率问题是非闪烁探测方法需要重点解决 的问题。

五、总结与展望

报告中的内容只是研究所在脉冲辐射闪烁探测与成像研究方面的部 分内容,如探测系统设计与模拟、性能研究、数据处理等方面的工 作受时间所限,不能一一汇报。 受个人学识所限,错误之处在所难免,请各位老师不吝指正!

报告中涉及到的许多工作是与国内科研院所与 高校共同完成的,在此表示感谢!

特别感谢多年来在基础材料、关键器件方面长 期支持我所科研工作的合作单位!

感谢研究所中子、伽马、图像、电子学等研究团队提供报告素材!

谢谢!请批评指正! 西北核技术研究院 二所 盛亮

2022年11月

(1) 闪烁体表面改性-提高光收集效率

Snell定律

$$\begin{aligned} \theta_{c} &= \arcsin(\frac{n_{amb}}{n_{sci}}) \\ n_{sci} &= 1.5 \end{aligned} \qquad \eta = 2 \frac{\int_{0}^{\theta_{c}} 2\pi R \sin \theta R d\theta}{4\pi R^{2}} = 1 - \cos(\theta_{c}) \qquad \eta = 25.4\% \end{aligned}$$
波矢理论描述

$$\left|k_{//}\right| < n_{amb}k_0 \quad \left|k_{//}\right| = n_{sci}k_0\sin\theta$$

$$k_0 = 2\pi / \lambda$$

Arno Knapitsch, IEEE NS,2013,60(3):2322

(1) 闪烁体表面改性-提高光产额

傅里叶变换,得到光子晶体矢量G

 $G_0 = 2\pi / a$

光子晶体矢量与电磁波矢量耦合,遵循平面谐波的线性叠加(Bloch Mode)模式。 $|k_{//} + mG| < n_{amb}k_0$

 \bigcirc \bigcirc

(a) Real Lattice

(b) Reciprocal Lattice

Arno Knapitsch, IEEE NS,2013,60(3):2322 Zhichao Zhu, Liu Bo, Phys.Status.Solidd A,2014,2011(7):1583