

GRID 天格计划 微纳卫星空间探测技术

清华大学 曾 鸣 2022年11月

第二十届全国核电子学与核探测技术学术年会

科与教如何融合?

让学生更有兴趣学习核电子学与探测器?

清华工物系的两门"国家级一流本科课程"

科教融合 探索人才培养

Gamma Ray Integrated Detectors (GRID)

科学目标:寻找与引力波或快速射电暴成 协的伽马射线暴 (GRB)

技术路线:微纳卫星搭载紧凑型空间伽马 射线探测器、多星组网 "天格计划"是一个以学生为主体 的、面向基础科学前沿的科研实践项目, 也是一个理工学科交叉的基础科学人才 培养项目。

> "前沿驱动、学科交叉" "学生主体、立足培养"

天格计划: "追光少年"

追光少年 人民日报 6月7日 00:01 /08:00 倍速 根据清华大学"天格计划"真实故事改编 观看 10万+ [¹] 分享 🕥 收藏 🔂 赞 2229 🛟 在看 3.1万

2020年,清华大学招生宣传片"追光少年"
以"天格计划"作为原型改编
人民日报、新华网等转载
"拼尽全力、绝不言弃"
鼓舞2020年不平凡的考生们
立志核科学、天文系、航空航天
<mark>天</mark> 道酬勤、 <mark>格</mark> 物致知

"天格计划"科学结果

- "天格计划"是国际上同类微纳卫星伽马暴探测项目中,第一个成功发射实现 在轨科学观测的;也是其中唯一学生主力的项目
- GRB 210121A是国际上首例由纳卫星伽马暴探测器探测到、取得科学发现和 论文发表的伽马暴事例,
 - 《The Astrophysical Journal》 (IF 5.877)
- 科学数据正式汇交 国家空间科学数据中心,将向科学界开放共享,首批数据包 含几十个伽马暴事例

名称	发起单位	发起时间	发射时间
BurstCube	美国NASA	2017	未发射,计划2022年初
Moonbeam	美国NASA	2018	未发射,待定
GRID天格计划	中国清华大学	2018年10月 2020年11月 2022年2月	
CAMELOT	匈牙利/日本大学合作	2018	2021年3月22日
HERMES	意大利INAF	2016	未发射,计划2022年末
EIRSAT	爱尔兰都柏林大学	2016	未发射,待定
SkyHopper	澳大利亚墨尔本大学	2018	未发射,待定

Polarlight 极光试

H

"极光计划" - X射线偏振探测

中子星与脉冲星

相对论喷流

人类由于技术困难 停滞了40多年的 天文探测窗口

A small detector based on a high-sensitivity technique

ASIC size: 15 mm * 15 mm (14 * 14 = 196 mm² in use) Collimator open fraction: 71% Peak detection efficiency: ~10% Peak effective area: ~0.14 cm²

极光计划 空间飞行器编号:43663

- 2018年,清华主导的中意合作空间项 目 "极光计划" 成功研制发射纳卫星X 射线偏振探测载荷;
- 2020年5月《Nature · Astronomy》 封面文章

The success of the authors is threefold: they have reopened a polarimetric window that has been closed for more than 40 years, observed changes in the polarization

"他们重新开启了已停滞了40多年的天 文X射线偏振探测窗口"

同期评论专家 Mozsi Kiss

GRID 天格计划

The GRID Project and Detector

Gamma Ray Integrated Detectors (GRID) concept: ^[1]

- 10 ~ 24 CubeSats scattered in low Earth orbits
- Compact gamma-ray detectors

[1] Wen, J., Long, X., Zheng, X. *et al.* <u>GRID: a student project to monitor the transient gamma-ray sky in the multi-messenger astronomy era</u>. *Exp Astron* **48**, 77–95 (2049) [2] Wen, JX., Zheng, XT., Yu, JD. *et al.* <u>Compact CubeSat Gamma-ray detector for GRID mission</u>. *NUCL SCI TECH* **32**, 99 (2021)

背景: 宇宙伽马射线暴

背景: 宇宙伽马射线暴的发现

On July 2, 1967, at 14:19 UTC, the Vela 4 and Vela 3 satellites detected a flash of gamma radiation unlike any known **nuclear weapons** signature.

By analyzing the different arrival times of the bursts as detected by different satellites, we can determine rough estimates for the sky positions of sixteen bursts and definitively rule **out a terrestrial or solar origin**.

After thorough analysis, the findings were published in 1973 as an Astrophysical Journal article entitled "**Observations of Gamma-Ray Bursts of Cosmic Origin**".

Vela 5B in orbit

Frequency: 1~3 one day

第一代成员 (2016)

2016年,我们天格学生团队 勇敢地 对这一前沿 科学问题 发起挑战。

天格计划提出利用立方星搭 载小型探测器,多星组网探 测宇宙伽马暴。

我们的方案抓住了伽马 暴的关键物理特点,高 **亮度**,思路不同于传统 大科学卫星。

探测器结构图

学生团队:

- > 近百次学术讨论;
- ▶ 两万字科学建议书
- ▶ 物理模拟与误差分析

UHF/VHF收发器

宇宙伽马射线暴 的物理模型猜想 2008 "天格计划" 2016 第一例引力波成 协的伽马暴事例 2017 "天格计划" 一号星 2018 二号星目标: 取得科学结果

2020~2021

目前 **唯一一例与引力波同时产生和到达** 的伽马暴 (GRB 170817A 和 GW170817)

天文观测的新窗口,天体物理的新契机,

标志着 <u>多信使天文学时代</u>的到来。

中子星并和示意图

GW 170817的引力波与伽马暴信号

背景: 观测热潮

第一例引力波成 协的伽马暴事例 2017

二号星目标: 取得科学结果 2020~2021

HERMES

CAMELOT

Moonbeam

GIFTS&EIRSAT

SkyHopper

名称	发起单位	发起时间	发射时间
BurstCube	美国NASA	2017	未发射,计划2022年初
Moonbeam	美国NASA	2018	未发射,待定
GRID天格计划	中国清华大学	2016	2018年10月(一号星) 2020年11月(二号星) 2022年2月 (三号星) (四号星)
CAMELOT	匈牙利/日本大学合作	2018	2021年3月22日
HERMES	意大利INAF	2016	未发射,计划2022年末
EIRSAT	爱尔兰都柏林大学	2016	未发射,待定
SkyHopper	澳大利亚墨尔本大学	2018	未发射,待定

天格计划一号星

NORAD ID: 43663 Int'l Code: 2018-083B Perigee: 511.9 km Apogee: 528.7 km Inclination: 97.5 ° Period: 94.9 minutes Launch date: October 29, 2018 Launch site: Jiuquan Satellite Launch Center, China (JSC)

"天格计划"

Gamma Ray Integrated Detectors (GRID) 基于纳卫星的伽马射线空间探测网络

> **科学目标:**探测搜寻与引力波或 快速射电暴成协的伽马暴事例;

• 从引力波 到 中子星并和引力波事例

电磁波段	引力波暴电磁对应体探测特点	探测手段
射电	优:事件率高	大型地面射电望远镜
(余辉)	缺:持续时间长、难以判断与引力波暴是否成协,强度弱	或射电望远镜阵列
光学	优:定位精度高	地面大口径巡天望远
(余辉)	缺:事件率较低、强度弱、全天干扰源项多、探测视场小	_ 镜
X射线	优:特征明显、定位精度高	X射线观测卫星
(余辉)	缺:事件率较低、流强较弱、需要聚焦望远镜、视场小	
γ射线 (短伽马射线暴)	优:非常明亮,干扰源少,与引力波暴时间成协度强	伽马暴探测卫星
	缺:喷流张角小,可探测事件率可能极低,定位精度较低	

• 新的技术路线: 纳卫星 + 紧凑型空间伽马射线探测 + 组网

2016年10月 发起"天格计划"

- **新的组织形式:** 指导学生团队(本科生)为主体开展
- 国际同类项目的提出: 2017年, GW 170817 / GRB 170817A 事例

1.3亿光年远的NGC 4993星系中两颗中子星的合并 21

"天格计划"探测器载荷

	天格01设计值	天格01实际值(在轨)	天格02实际值(地面)		
休积	休和 0.5世 < 0.5世		< 0.5U		
rtw	0.00	$(9.4 imes 9.4 imes 5~{ m cm^3})$	(9.4 $ imes$ 9.4 $ imes$ 5 cm 3)		
质量	/	~ 780 g	~ 780 g		
击耗	3 \\/	Typ. 2.4 W	Typ. 2 W		
动和	5 VV	Max. 3 W	Max. 2.8 W		
探测面积	~ 58 cm ²	/	/		
视场	2π	Depend on attitude	/		
能量范围	10 keV ~ 2 MeV	40 keV ~ 2 MeV	Lower threshold < 15 keV Upper threshold ~ 2 MeV		
死时间	10 us	~ 50 us	~ 20 us		
本底 计数率	~ 500 cps	Norm. ~ 200 cps SAA > 3000 cps	/		
数据量	~ 1 GB/day	~ 64 MB/day	/		

3D model of the GRID detector ^[3]

[3] Wen, JX., Zheng, XT., Yu, JD. et al. Compact CubeSat Gamma-ray detector for GRID mission. NUCL SCI TECH 32, 99 (2021)

GAGG:Ce Scintillator Crystal

Bottom view of a GAGG:Ce scintillator with the ESR package ${\scriptstyle [3]}$

- ➢ Polished on all faces
- ➤ Wrapped with 65 µm Enhanced Specular Reflector (ESR) film
- > 2.2 × 2.2 cm² window coupled with SiPM array

Crystal size	38×38×10 mm ³
Light yield	46000 ph/MeV
Density	6.63 g/cm ³
Effective Z	54
Energy resolution	6% @662 keV
Hygroscopic	No

Values from C&A Corporation

Silicon Photomultiplier

24

[4] J. Iwanowska et al., Performance of cerium-doped Gd₃Al₂Ga₃O₁₂ (GAGG) scintillator in gamma-ray spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. A. 712, 34–40 (2013)

Front-End Electronics

$$SNR = \frac{\max(Pulse(t))}{\sqrt{Vn_{SiPM}^2 + Vn_{TIA}^2}}$$

$$Pulse(t) = E \times LY \times CE \times PDE \times e \times G$$
$$\times \mathcal{L}^{-1}[H_{G}(s)H_{S}(s)H_{T}(s)](t)$$
$$Vn_{SiPM}^{2} = \left((I_{N}R_{F})^{2} + 4kTR_{F} + E_{N}^{2} + \frac{(E_{N}2\pi C_{D}R_{F}F_{0})^{2}}{3}\right) \times F_{0}$$
$$Vn_{TIA}^{2} = \bar{n} \int_{-\infty}^{+\infty} h^{2}(t) dt$$

[3] Wen, JX., Zheng, XT., Yu, JD. et al. Compact CubeSat Gamma-ray detector for GRID mission. NUCL SCI TECH 32, 99 (2021)

Data Acquisition Electronics

- ARM Cortex M0+ MCU
 - Automotive-grade
 - ➤ running at 40 MHz
 - Iow power consumption
- ➤ 16-bit 1MSPS external ADC
- eMMC data storage512 MB
 - ➢ SLC cell
- Advanced control functions
 - Adjustable SiPM bias supply
 - Charge injection module

Functional block diagram of DAQ and its connection with FEE, SiPM Carrier, and payload on-board computer board (POBC)^[3]

Firmware

Multi-task firmware based on real-time operating system (μC/OS-III)

➢ Basic functions

- Data acquisition, storage and transmission
- Instruction control
- Monitor functions
 - SiPM bias & current monitor
 - Temperature sensor
 - Close-loop control of SiPM bias supply
- ➤ Extra verification functions
 - SiPM I-V measurement
 - Charge injection test

GRID-02 Flight Model

SiPM Array

Front-end electronics (FEE)

Back-end electronics (BEE) & Control electronics (CE)

GRID-02 Flight Model

Calibration

Angular response - Am-241

Angular response - Cs-137

GRID-01 & GRID-02 卫星载荷

NORAD ID: 43663 Int'l Code: 2018-083B Perigee: 511.9 km Apogee: 528.7 km Inclination: 97.5 ° Period: 94.9 minutes Semi major axis: 6891 km RCS: Unknown Launch date: October 29, 2018 Source: People's

Republic of China (PRC) Launch site: Jiuquan Satellite Launch Center, China (JSC)

NORAD ID: 46838 Int'l Code: 2020-079M Perigee: 471.1 km Apogee: 481.2 km Inclination: 97.3 ° Period: 94.0 minutes Semi major axis: 6847 km RCS: Unknown Launch date: November 6, 2020

Source: People's Republic of China (PRC) Launch site: Taiyaun Space Center, China (TSC)

在轨科学观测 - 卫星遥测

- Undergraduate students on duty make observation plan every day
- 10 ~ 20 observations per day, 20 ~ 40 minutes each (depends on other payloads and CubeSat platform)
- Shutdown in South Atlantic Anomaly (SAA) and high-latitude region
- ✓ Targeting observation: point to Crab (Inertial pointing mode)
- ✓ Non-targeting observation: random orientation (Inertial or magnetic sun tracking mode)

Example observation plan during Nov. 29 2020 17:00 ~ Nov. 30 2020 12:30 (UTC) ³³

GRB 210121A: GRID-02 Detection

1400 1400 Counts SAA 1200 1200 1000 1000 800 800 SAA. 600 C S 600 400 400 200 200 0.60 +2:8e1 106 10 10⁵ 104 10 į 10³ ŝ r i 10² 10³ 10¹ 10⁰ 10² 10² 10³ 104 10¹ 10² 10³ 105 E/keV ADC/channel

> 6σ cut-off dark count noise

2021.01.21.18:40:25

GRB 210121A: GRID Detection

- "天格计划"是国际上同类微纳卫星伽马暴探测项目中,第一个成功 发射实现在轨科学观测的;也是其中唯一学生主力的项目;
- GRB 210121A是国际上首例由纳卫星伽马暴探测器探测到、取得科学发现和论文发表的伽马暴事例,
 - The Astrophysical Journal (IF 5.877);
- GRB 210121A的观测数据,重建出光子的能谱和时间,有力支持了 科学界对于伽马暴"火球"模型的猜想。

[5] X.I. Wang, X. Zheng, S. Xiao, et al., <u>GRB 210121A: A Typical Fireball Burst Detected by Two Small Missions</u>, ApJ. 922 (2021) 237.

- 学术论文发表在Astrophysical Journal、 Experimental Astronomy、 Nuclear Science and Techniques等刊物;
- 在IEEE NSS/MIC 2021等国际学术会议 进行口头报告。

>300小时观测数据 30+伽马暴候选体 通过 <u>国家空间科学数据中心</u> 开放共享

Preliminary Results from GRID-03b & GRID-04

GRID-03B & GRID-04 Catalog number: 51830 Launched 02/27/2022

"天格计划"的学生团队

2016年学生团队

2020年学生团队

- 四年间、两代完全不同的队员, 100余名本科生来自7个不同院系学科
- 团队学生分组协作,全面承担:科学载荷研制、探测器定标、在轨观测指令、科学数据分析 全流程
- 学术报告:团队学生在中国天文学年会、香山会议、COSPAR国际空间科学大会等学术会议进行口头报告
- 学生获奖: 团队学生先后获得北京市首都挑战杯一等奖、清华大学挑战杯特等奖、清华大学学生年度人物等荣誉
- **学生去向**:温家星(中物院-激光聚变)、卢迪安(中科院等离子体所)、高怀众(中国辐射防护研究院)、蒋宇辰(中国原子能院-核天体物理) ……

- 2018年3月28日, 天格计划第一次导师讨论会, 20所兄弟院校和科研单位的30余名专家
- 2019年12月8日, "天格计划" 2019年年会暨天格联盟成立会议
- 2020年,南京大学、四川大学、北京师范大学等,先后启动"天格"学生团队和探测器卫星 载荷研制

Future Planning of GRID

- GRID-05B (Tsinghua Univ.) Prof. Ming ZENG & Hua FENG
- GRID-06B (Nanjing Univ. & Sichuan Univ.) Prof. Bin-bin ZHANG, Prof. Zhonghai WANG & Rong ZHOU
- GRID-07 (Beijing Normal Univ.) Prof. Lin LIN, Yuanyuan LIU, Jianyong JIANG
- GRID-08B (Nanjing Univ. & Sichuan Univ.) Prof. Bin-bin ZHANG, Prof. Zhonghai WANG & Rong ZHOU

40

http://www.stardetect.cn

极光计划 & eXTP

天格计划 & GeCAM

Poalar2

SiPM 在轨辐射损伤

H

In-orbit Characterization Setup and Methods

Housekeeping data:

- Timestamp
- Bias voltage
- Current
- Temperature

Block diagram of the front-end electronics and characterization circuits of one channel in GRID detector. Details about GRID instrument design can be found in [2].

Scientific observation: ~20k seconds (5 ~ 6 hours) per day

Housekeeping data recorded to analyze SiPM dark current

Daily characterization experiments:

- I-V measurement at different bias voltage
- Charge injection test without and with bias voltage

Breakdown Voltage Determination

An example result of the daily I-V measurement at different bias voltages

Dark Current Increase

Figure 5: SiPM dark current (I_{dark}) at 28.5 V bias voltage as a function of time. The values are the sum of 16 SiPMs in the same channel and are unified to 5°C.

 Linear relationship between I_{dark} and radiation damage (dose or particle fluences) is found (model MicroFJ-60035-TSV):

GRID-02: ~ 93/96/98/110 μA / (year · chip) @5 °C & 28.5 V ~ 50 μA / (year · chip) @-20 °C & 28.5 V SIRI-1: ~ 132 μA / (year · chip) @28.5 V, temp. not mentioned (7.75 °C?)

• An approximate empirical equation around 5 °C:

 $I_{\text{dark}}(\mu A) = 16 \cdot (0.2678 \cdot Time(\text{Days}) + 2.091) \cdot e^{0.03475 \cdot (T - 273.15 - 5)}$

• with SHIELDOSE-2 model, SPENVIS calculates cumulative dose:

 $I_{\text{dark}}(\mu A) = 16 \cdot (195.5 \cdot Dose(Gy) + 2.091) \cdot e^{0.03475 \cdot (T - 273.15 - 5)}$

Mission	Operating	Operating Orbit		Dose in	Dark current	increase rate
	temperature	voltage		silicon	per SiPM chip (µA/year)	
	(° C)	(V)		(Gy)	Measured	Estimated
SIRI-1	7.75	28.5	567 × 589 km 97.7°	0.9	132	194
GRID-04	5	28.5	523 × 550 km 97.5°	0.9	182	176

Noise Assessment Through Charge Injection

• Overall noise includes dark count noise and electronics noise

$$\sigma_{\text{total}}^2 = \sigma_{\text{dark current}}^2 + \sigma_{\text{electronics}}^2$$

Noise Assessment Through Charge Injection

4.5

3.5

3

2.5

2

1.5

0.5

0

600

/ke/

• Campbell' s theorem gives

180

CH0

0

极光计划 & eXTP

天格计划 & GeCAM

Poalar2

空间实验平台架构

天格05B载荷架构图

天格05B实际案例

- 天格计划是一个以学生团队为主体的空间科学项目,以寻找与引力波或快速 射电暴成协的伽马暴为主要科学目标,由清华大学发起、国内多所高校和研 究所共同参与。近5年先后成功发射4颗探测器载荷,并观测到GRB 210121A等首批伽马射线暴事例。
- 微纳卫星空间探测技术发展迅速,微纳卫星空间天文科学观测成为了可能。
- 微纳卫星可以提供探测器电子学的在轨辐射损伤实验和空间技术验证平台。
- 极光计划、天格计划,与eXTP、GECAM、POLAR2等国家级空间科学项目 合作紧密,在科学观测、技术验证等方面有望发挥更多作用。

