

防化研究院核防护研究所 肖无云, xiaowuyun@sklnbcpc.cn 2022年11月11日

- •研究背景;
- •数字核脉冲处理;
- •建模与仿真;
- •片上系统开发;
- •数据处理;
- •总结与展望。

技术研究进展

- •核辐射监测要求:
 - •现场快速测量
 - •多种信息感知
 - •探测: 有无核辐射/放射性;
 - •防护:剂量/剂量率;
 - 分析: 放射性核素种类、活度;
 - 处置: 定位、分布范围、效果评价...
 - •辐射场/源复杂
 - 苛刻环境

•现状

- •多种类型:袖珍、手持、车载、机载、固定式、实验室用等;
- •功能单一:报警仪、辐射仪、剂量仪、沾染检查仪、谱仪、 计数器、成像仪等;
- •性能一般,信息化、智能化程度较低;
- •研制、生产、使用、维护、升级、退役等全寿期管理成本高;
- •不利于现场、快速、高质量完成监测任务。

- •解决方案
 - 模拟电路数字化:缩小体积重量,提高性能;
 - •片上系统集成:多功能一体化、芯片化;
 - •平台化设计:提高兼容性、适应性;
 - 方法升级: 计数到谱分析及多参数测量,
 信号/数据处理新技术等;
 - •从单点到网络化。

- •技术手段
 - •新型核辐射探测器;
 - ASIC;
 - •数字核脉冲处理;
 - •系统仿真设计;
 - •FPGA及其开发技术;

数字核脉冲处理

- •模拟电路数字化
 - •延迟线→寄存器/FIFO;
 - 放大器→乘法器/移位寄存器;
 - •积分电路→累加;
 - •微分电路→差分;
 - •电阻电容网络→数字滤波器;
 - •准高斯成形→梯形成形。

对电路依赖降低。

•处理能力更强;

- •脉冲窄,通过率高;
- •无温漂,性能稳定可靠;
- 体积小, 功耗低;
- 易于多功能集成;
- •设计、调试、使用方便;
- •可扩展、可移植性强;
- •易于升级,可远程维护。

•从高斯成形到梯形成形

1967, V. Radeka; SNR最大化; 阻容网络。

时频域综合约 束下的准最佳

1993, V. Jordanov; SNR准最佳; 脉宽窄, 脉冲通过率高; 有平顶, 弹道亏损免疫; 数字滤波。

肖无云等,数字化多道脉冲幅度分析中的梯形成形算法,清华大学学报,2005 肖无云等,基于FPGA的数字化核脉冲幅度分析器,核电子学与探测技术,2008

Wuyun Xiao, et al. A New Pulse Model for NaI(Tl) Detection System, NIMA 763 (2014)

Wuyun Xiao, et al. Model-Based Pulse Deconvolution Method for NaI(Tl) Detectors, NIMA 769, 2015 张羽中等. 双指数衰减法反演NaI(Tl)探测器信号脉冲, 核电子学与探测技术, 38(6), 2018

13 / 49

•反演闪烁谱仪

数字核脉冲处理

•核脉冲反演校正温度效应

Jianming Xie, et al. A new temperature correction method for NaI(Tl) detectors based on pulse deconvolution, 已投NIMA

/ 49

数字核脉冲处理

min:
$$\overline{\upsilon^2} = \int_{-\infty}^{+\infty} \pi (a^2 + \frac{b^2}{\omega^2}) |H(\omega)|^2 df$$
,
s.t.: $\int_{-t_f}^{+t_f} h(t) dt = 1$,
 $h(t) = 0$, $|t| \ge t_f$.

$$h(t) = \frac{1 - \cosh(t/t_{\rm c})/\cosh(\alpha)}{2[t_{\rm f} - t_{\rm c}\tanh(\alpha)]}, |t| \le t_{\rm f}$$

 $\alpha = \tau_{\rm f}/\tau_{\rm c}$

肖无云等,多道脉冲幅度分析中的数字基线估计方法,核电子学与探测技术,25(6),2005

•技术基础

- •核辐射与介质相互作用机制及截面已掌握, MC软件成熟;
- •探测器及核电子学模型与参数清楚;
- SIMULINK建模仿真工具强大。

•计算机仿真优点

- •无需探测器、核电子学等硬件,廉价;
- •灵活、便捷地调整模型与参数;
- •直观、动态地看运行结果;
- •高效地研究理论、方法、算法;
- •系统、深入理解掌握核探测过程;
- •特别适合教学演示。

•核探测系统建模

•核探测系统建模

辐射源+探测器

- 时间分布
- 幅度分布
- 脉冲模型
- 噪声特性
- 测量环境影响

模拟核电子学

•极性变换

- 幅度调整
- 基线控制
- 滤波成形
- 模数转换

数字核电子学

• 核脉冲甄别

- 数字滤波成形
- 基线恢复
- 核脉冲计数
- 核脉冲分类计数

数据采集处理 各种算法 结果显示等

Wuyun Xiao, et al. System simulation of digital pulse spectrometer, NIMA, 555(1-2), 2005

•数字化多道仿真

•溴化镧谱仪系统建模与仿真

- •硬件平台架构
 - •并行四通道;
 - •高低压电源;
 - •多种ADC可选;
 - •SOPC型FPGA;
 - •固件可编程;
 - •软件开放;
 - •可联机也可独立工作。

- FPGA固件架构
 - •信号处理IP核库;
 - 内部总线;
 - •片上软/硬微处理器。

• FPGA硬件描述

- •EDA工具: Quartus/ISE;
- •顶层:原理图输入;
- •模块: Verilog或VHDL;
- •标准化封装;
- •参数化调用;
- •全局时钟驱动。

•器件适配

🖑 Quartus II - D:/Altera/Projects/DECA/DECA - DECA - [Pin Planner]											
😻 Eile Edit View Eroject Assignments Processing Tools Mindow Help -								- 8 ×			
🛛 🗅 😂 🖬 🚳 🕹 🗠 ా 🗠 🙌 🗇 🗠											
	- [환C 환d 환a 환c 환w. 환D 환w. 환L 환D 환L 환C 환L 환L 환L 환d 환d 환d 환										😻 P
Œ											
		Named: * _ Groups									
		Node Name Top View									
	H-	> +	SysInput[130] Input								
E,	⊩										
-1							- /		h∛≙\. –		
							1				
_								Cyclo	ne		
\rightarrow								EP1C12Q	240C8		
7											
20					>		REPORT OF A				
1.00	1 A	i vaniec	•]*	<u> </u>		All Pins			-	Filter: Pins: all	
1X=		-		Node Name	Direction	Location	I/	(O Bank	Vref Group	I/O Standard	F <u>~</u>
		2	•07 - 20	BadInput	Output	PIN_7	1		B1_N0	LVTTL (default)	
28		3	- -	com_1×1	Output	PIN_235	2		BZ_NZ R2_N2	LVTTL (default)	
P		4		led1	Output	PIN_230	1		B1_N0	LVTTL (default)	
-		5	•	led2	Output	PIN 11	1		B1_N0	LVTTL (default)	
		6	D	sys clk	Input	PIN 153	3		B3 N1	LVTTL (default)	
F .		7		sys_rst	Input	PIN_131	3		B3_N2	LVTTL (default)	
		8		SysInput[13]	Input	PIN_48	1		B1_N2	LVTTL (default)	
		9		SysInput[12]	Input	PIN_47	1		B1_N2	LVTTL (default)	
		10		SysInput[11]	Input	PIN_46	1		B1_N2	LVTTL (default)	
		11	<u> </u>	SysInput[10]	Input	PIN_45	1		B1_N2	LVTTL (default)	
		12	<u> </u>	SysInput[9]	Input	PIN_44	1		B1_N2	LVTTL (default)	
	6	13		SysInput[8]	Input	PIN_43	1		B1_N2	LVTTL (default)	
	Ë		~	ογετηματ[7]	Impor	PIN_42	1		DI_NZ	LVTTL (deradic)	<u> </u>
x/Message: Image: Control Image: Control											
For Help, press F1 Idle NVM									NUM		

• 主机外观与内部结构

•性能测试: 输入输出线性

•性能测试:单脉冲展宽

•主要性能: HPGe能谱测量

张羽中等.精密多道脉冲幅度分析器设计,核电子学与探测技术,38(6期),2018

•主要性能:核脉冲通过率

1.2 Mcps下分辨率3.2%

•主要性能: PSD+PHA多参数粒子分辨

•主要性能:稳定性

李京伦等.新型数字多道脉冲幅度分析器设计,核电子学与探测技术,38(3),2018

•简单数据处理

- •获取并利用的信息很有限;
- •系统响应标定较简单;
- •数据处理与测量过程的协调关系较松散;
- •性能不高,难以考虑复杂影响因素;
- •实例:从计数率到剂量率: $\dot{D} = f\dot{n}$ 。

•信息复原:充分利用测量数据,最优估计辐射量

第I类Fredholm积分方程: $V_o(t) = \int_{-\infty}^{t} h(t - t') \cdot v_i(t') dt'$

•基于信息视角的系统设计

- •硬件:尽可能<mark>稳定</mark>地获取**全部**有用信息,降低不利干扰;
- •刻度:尽可能准确确定**系统响应**特性;
- •先验:尽可能掌握并利用**数学物理约束**条件;
- •软件:根据测量结果、系统响应及先验知识,通过最优化算法实现**信息复原**。

Ye Chen, et al. γ spectrum stabilization method based on nonlinear least squares optimization, Appl. Radiat. and Isot., 169, 2021

·全变差正则化平滑γ能谱

$$b = Ax + n$$

min: $f(x) = \frac{1}{2} ||Ax - b||_2^2$
 $+ \lambda \cdot \sum_{i=1}^{N-2} |x_{i+2} - 2x_{i+1} + x_i|$
s.t.: $x \ge 0$

调节λ,平衡相似性和连续性。

李京伦等. 全变差正则化法凸优化平滑γ能谱, 核电子学与探测技术, 38(1), 2018

陈晔等.约束非线性最优化迭代方法解析γ能谱重峰,核技术,44(2),2021

Jordanvov, Seeded Localized Averaging, 2005

• 非负约束最优化反演 b = Ax + nmin: $f(x) = \frac{1}{2} ||Ax - b||_2^2$ $= (-A^T b)^T x + \frac{1}{2} x^T (A^T A) x + \frac{1}{2} b^T b$ s.t.: $x \ge 0$ 非负约束

Jinglun Li, et al. Nonnegative constraint quadratic program technique to enhance the resolution of γ spectra, NIMA 887, 2018

•康普顿连续坪估计

- •机器学习识别放射性核素
 - •支持向量机(SVM);
 - k近邻(KNN);
 - •逻辑回归(LR);
 - 朴素贝叶斯(NB);
 - •决策树(DT);
 - •多层感知机(MLP)等。

Sheng Qi, et al. Comparison of machine learning approaches for radioisotope identification using NaI(TI) gamma-ray spectrum, Appl. Radiat. & Iso. 186, 2022

陈晔等. 核辐射测量SOPC上位机软件设计, 核电子学与探测技术, 40(5), 2020

•云计算

- •分布式监测;
- •无线通信;
- •跨平台Web软件;
- •云端数据分析与

管理。

G	GammaCloud					
Name (ID: <i>253</i>)	Description					
unnamed	no description					
Device Type	Device ID					
NAICBR	1					
Coordinates	Start Time					
longitude,dimensional	1900-01-01					
Real Time	Live Time					
44797.66	22197.89					
Upload Time	oload Time					
1900-01-11						
hannelData (1024 Channels)						
[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 69494.0, 107892.0, 2845), 0.0, 56427.0, 60515.0, 549.0, 400971.0,					
Energy Calibration						
e-cali						
WHM Calibration						
fwhm-cali						
Efficiency Calibration						
eff-cali						
	Save Changes Delete					

GammaCloud软件界面

guest 🔻

Preprocessor

SNIP Result

 $\overline{}$

•SOPC平台满足高性能和一机多能需求,易于开发、使用; 是核辐射监测技术发展的重要方向;

•SOPC技术特点:

- •固件、软件取代硬件, 算法越来越重要;
- 作为信息系统,测量环节与分析环节有机协同,前者重在信息获取,后者重在信息复原。

•SOPC发展方向:

- •核信息流变过程的精确模型化;
- •多重约束下的逆求解方法;
- •验证与提高健壮性。
- •SOPC应用:
 - •多功能核辐射监测仪器研制;
 - 核探测实验教学;
 - •核生化一体化监测。

敬请批评指正,谢谢!