原子核**结**构与相**对论**[重离子碰撞前沿交叉研](https://indico.ihep.ac.cn/event/17999/)**讨**会

Nuclear shape imaging in heavy ion collisions

Jiangyong Jia

July 31-August 6, 2023

Landscape of nuclear physics

Most nuclear experiments starts with nuclei

Collective structure of atomic nuclei

High-energy heavy ion collision

1) Extremely short passing time to take a snap-shot of the nuclear wavefunction in the two nuclei. 2) Large particle production in overlap region means QGP is dense and expand hydrodynamically.

Collective flow assisted nuclear structure imaging

Shape and radial dis. Volume, size and shape Chinage Chinage Conservables

- $\beta_2 \rightarrow$ Quadrupole deformation
- $\beta_3 \rightarrow$ Octupole deformation
- $a_0 \rightarrow$ Surface diffuseness
- $R_0 \rightarrow \text{ Nuclear size}$

 $N_{\rm part}$ $\langle R_\perp^2 \propto \langle r_\perp^2 \rangle$ $\mathcal{E}_n \propto \langle r_+^n e^{i n \phi} \rangle$

$$
\frac{d^2N}{d\phi dp_T} = N(p_T) \Biggl(\sum_n V_{\rm n} \ e^{-in\phi} \Biggr)
$$

- § Constrain the initial condition by comparing nuclei with known structure properties
- Reveal novel properties of nuclei by leveraging known hydrodynamic response.

Infer initial condition from flow correlations

Connecting initial condition to nuclear shape

Impact of nuclear shape on many-body correlations

$$
\rho(r,\theta,\phi) = \frac{\rho_0}{1+e^{(r-R(\theta,\phi))/a_0}} \quad R(\theta,\phi) = R_0(1+\beta_2[\cos\gamma Y_{2,0}(\theta,\phi) + \sin\gamma Y_{2,2}(\theta,\phi)] + \beta_3 Y_{3,0}(\theta,\phi) + \beta_4 Y_{4,0}(\theta,\phi))
$$

 \Leftrightarrow

- n In principle, can probe any moments of $p(1/R, \varepsilon_2, \varepsilon_3...)$ via $p([p_T], v_2, v_3...)...$
	- \blacksquare Mean $\langle d_{\perp} \rangle$ $d_\perp \equiv 1/R_\perp$
	- Variance: $\langle \varepsilon_n^2 \rangle$, $\langle (\delta d_{\perp}/d_{\perp})^2 \rangle$
	- **s** Skewness $\langle \varepsilon_n^2 \delta d_{\perp}/d_{\perp} \rangle$, $\langle (\delta d_{\perp}/d_{\perp})^3 \rangle$
	- **Kurtosis** $\langle \varepsilon_n^4 \rangle 2 \langle \varepsilon_n^2 \rangle^2, \left\langle (\delta d_{\perp}/d_{\perp})^4 \right\rangle 3 \left\langle (\delta d_{\perp}/d_{\perp})^2 \right\rangle^2$ $\langle v_n^4 \rangle 2 \langle v_n^2 \rangle^2, \left\langle (\delta p_{\rm T}/p_{\rm T})^4 \right\rangle 3 \left\langle (\delta p_{\rm T}/p_{\rm T})^2 \right\rangle^2$ …

 $\langle p_{\rm T} \rangle$ $\left\langle v_{n}^{2}\right\rangle ,\ \left\langle \left(\delta p_{\rm T}/p_{\rm T}\right)^{2}\right\rangle$ $\left\langle v_{n}^{2}\delta p_{\rm T}/p_{\rm T}\right\rangle\!,\:\left\langle\left(\delta p_{\rm T}/p_{\rm T}\right)^{3}\right\rangle$

Impact of nuclear shape on many-body correlations

$$
\rho(r,\theta,\phi) = \frac{\rho_0}{1+e^{(r-R(\theta,\phi))/a_0}} \quad R(\theta,\phi) = R_0(1+\beta_2[\cos\gamma Y_{2,0}(\theta,\phi) + \sin\gamma Y_{2,2}(\theta,\phi)] + \beta_3 Y_{3,0}(\theta,\phi) + \beta_4 Y_{4,0}(\theta,\phi))
$$

- n In principle, can probe any moments of $p(1/R, \varepsilon_2, \varepsilon_3...)$ via $p([p_T], v_2, v_3...)...$
	- \blacksquare Mean $\langle d_{\perp} \rangle \;\;\;\;\;\;\;\; d_{\perp} \equiv 1/R_{\perp}$
	- Variance: $\langle \varepsilon_n^2 \rangle$, $\langle (\delta d_{\perp}/d_{\perp})^2 \rangle$
	- **s** Skewness $\langle \varepsilon_n^2 \delta d_{\perp}/d_{\perp} \rangle$, $\langle (\delta d_{\perp}/d_{\perp})^3 \rangle$
	- **Kurtosis** $\langle \varepsilon_n^4 \rangle 2 \langle \varepsilon_n^2 \rangle^2, \langle (\delta d_{\perp}/d_{\perp})^4 \rangle 3 \langle (\delta d_{\perp}/d_{\perp})^2 \rangle^2$ …

$$
\begin{aligned} &\left\langle p_{\mathrm{T}}\right\rangle \\ &\left\langle v_{n}^{2}\right\rangle ,\;\left\langle \left(\delta p_{\mathrm{T}}/p_{\mathrm{T}}\right)^{2}\right\rangle \\ &\left\langle v_{n}^{2}\delta p_{\mathrm{T}}/p_{\mathrm{T}}\right\rangle ,\;\left\langle \left(\delta p_{\mathrm{T}}/p_{\mathrm{T}}\right)^{3}\right\rangle \\ &\left\langle v_{n}^{4}\right\rangle -2\big\langle v_{n}^{2}\big\rangle ^{2},\left\langle \left(\delta p_{\mathrm{T}}/p_{\mathrm{T}}\right)^{4}\right\rangle -3\Big\langle \left(\delta p_{\mathrm{T}}/p_{\mathrm{T}}\right)^{2}\right\rangle ^{2} \end{aligned}
$$

- ⁿ All have a simple connection to deformation:
	- \blacksquare Variances

$$
\begin{array}{c} \left\langle \varepsilon_2^2 \right\rangle \;\sim a_2 + b_2 \beta_2^2 + b_{2,3} \beta_3^2 \\ \left\langle \varepsilon_3^2 \right\rangle \;\sim a_3 + b_3 \beta_3^2 \\ \left\langle \varepsilon_4^2 \right\rangle \;\sim a_4 + b_4 \beta_4^2 \\ (\delta d_{\perp}/d_{\perp})^2 \rangle \;\sim a_0 + b_0 \beta_2^2 + b_{0,3} \beta_3^2 \end{array}
$$

$$
\begin{array}{ll}\left\langle \varepsilon_2^2 \delta d_{\perp}/d_{\perp}\right\rangle&\sim a_1-b_1\cos(3\gamma)\beta_2^3\\ \left\langle \left(\delta d_{\perp}/d_{\perp}\right)^3\right\rangle&\sim a_2+b_2\cos(3\gamma)\beta_2^3\\ \end{array}
$$

Low-energy vs high-energy method

- number Intrinsic frame shape not directly visible in lab frame at time scale $\tau > 1/\hbar \sim 10^{-21} s$
- Mainly inferred from non-invasive spectroscopy methods.

ⁿ High-energy collisions destructive imaging: probe entire mass distribution in the intrinsic frame via multi-point correlations. Shape frozen in nuclear crossing $(10^{-24} s \ll$ rotational time scale $10^{-21}s$)

Analogy: Coulomb Explosion Imaging

Instantaneous stripping of electrons (thin foil or x-ray laser), and then let atoms explode under mutual coulomb repulsion

Fig. 1. A schematic view of a Coulomb explosion experiment. When a swift molecule passes through a thin solid film, it loses all of its binding electrons. The remaining positive ions repel each other, thus transforming the microstructure (as seen in the magnified view) into a macrostructure that can be measured precisely with an appropriate detector. The measured traces (x, y, z) t) of each fragment nucleus for individual molecules are then transformed into the original molecular structure.

Strategy for nuclear shape imaging

Compare two systems of similar size but different structure

Ions collided at high-energy

Relativistic Heavy-Ion Collider Polarized Jet Target Electron lenses **Electron cooling RHIC PHEND** STAR

Most versatile collider machine → Dedicated heavy-ion machine \rightarrow Any pair of nucleus is possible:

p+p,p+Al, p+Cu,p+Au, d+Au, He3+Au, O+O, Cu+Cu, Cu+Au, Zr+Zr, Ru+Ru, Au+Au, U+U

→ Broad energy range 3 - 200 GeV

Collide ions 1 month/year

New ions species possible $2028+$

R. Alemany Fernandez, INT 2023

Isobar collisions at RHIC

 96 Ru+ 96 Ru and ^{96}Z r+ ^{96}Z r at $\sqrt{s_{NN}}$ =200 GeV

■ A key question for any HI observable O:

$$
\boxed{\frac{O_{^{96}\mathrm{Ru}+^{96}\mathrm{Ru}}}{O_{^{96}\mathrm{Zr}+^{96}\mathrm{Zr}}}\overset{?}{=}1}
$$

Deviation from 1 must have an origin in the nuclear structure, which impacts the initial state and then survives to the final state.

n Expectation

$$
\mathcal{O} \approx b_0 + b_1 \beta_2^2 + b_2 \beta_3^2 + b_3 (R_0 - R_{0,ref}) + b_4 (a - a_{ref})
$$

2109.00131

$$
R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\text{Ru}}}{\mathcal{O}_{\text{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a
$$

Only probe structure differences

Structure influences everywhere

 β_{2Ru} ~ 0.16 increase v₂, no influence on v₃ ratio

96Ru

Quadrupole

96Ru

 $\begin{array}{l} \beta_2=0.162\ \beta_3\sim 0 \end{array}$

Compare with AMPT -- a proxy for hydro

Compare with AMPT -- a proxy for hydro

 $\langle v_2^2 \rangle \sim a_2+b_2\beta_2^2+c_2\beta_3^2$ $\langle v_3^2 \rangle \sim a_3+b_3\beta_3^2$ $\left\langle \mathbf{v_2^2}\right\rangle^{1/2}-\mathbf{ratio}$ $\left<\mathbf{v}_3^2\right>^{1/2} - \mathbf{ratio}$ 5 2 1 0.2% 5 2 1 0.2% Ratio \bullet v_{2,Ru} / v_{2,Zr} STAR Data $\overline{\Theta}$ V_{2.Ru} / V_{2.Zr} AMPT β ₂ $\bm{{\mathsf{v}}}_{\mathsf{2},\mathsf{Ru}}$ / $\bm{{\mathsf{v}}}_{\mathsf{2},\mathsf{Zr}}$ AMPT $\bm{{\mathsf{p}}}_{\mathsf{2},\mathsf{3}}^{\scriptscriptstyle \top}$ 1 1.1 STAR Preliminary 0.95 1.05 STAR Preliminary $-v_{3,Ru}/v_{3,Zr}$ STAR Data **Tesaccional** \leftrightarrow $v_{3.Ru}/v_{3.Zr}$ AMPT β $0.9₁$ $\bm{{\mathsf{v}}}_{\mathsf{3},\mathsf{Ru}}$ / $\bm{{\mathsf{v}}}_{\mathsf{3},\mathsf{Zr}}$ AMPT $\bm{{\mathsf{p}}}_{\mathsf{2},\mathsf{3}}^{\mathsf{c}}$ 1 100 200 300
/ _{No}offline 0 100 200 <u>200</u> $N_{\text{trk}}^{\text{offline}}$ (InI<0.5) $(h|<0.5)$

 β_{2Ru} ~ 0.16 increase v₂, no influence on v₃ ratio

 β_{37r} ~ 0.2 decrease v₂ in mid-central, decrease v₃ ratio

 Δa_0 = -0.06 fm increase v₂ mid-central, small impact on v₃

Radius ΔR_0 = 0.07 fm only slightly affects v_2 and v_3 ratio.

Compare with AMPT -- a proxy for hydro

Sharper surface enhance v_2 in mid-central collisions arXiv: 2206.10449

Isobar ratios cancel final state effects

- ⁿ Vary the shear viscosity by changing partonic cross-section in AMPT
	- Flow signal change by 30-50%, the v_n ratio unchanged.

Robust probe of initial state!

14

15

Extracting the 238U deformation from STAR

Low-energy estimate with rigid rotor assumption from B(E2) data $\beta_{2,LD} = \frac{4\pi}{5R_1^2Z}$

 $\beta_{2U,LD} = 0.287 \pm 0.007$ $\gamma_{U,LD} = 6^{\circ} - 8^{\circ}$ 1312.5975 *PRC54, 2356 (1996)*

Imaging the radial structures See talks by Haojie and Chunjian

■ Radial parameters R_0 , a_0 are properties of one-body distribution, constrained by **<p_T>, <N_{ch}>,** σ_{tot} **, , v₂^{RP}∼v₂{4}**

Constrain neutron skin and symmetry energy

Also accessed via photo-nuclear diffractive process in UPC or e+A

STAR Signal $\pi^+\pi^-$ pairs vs. models Au + Au $\sqrt{s_{NN}}$ = 200 GeV Model I: $R = 6.38$ fm, $a = 0.535$ fm ----- Model II: $R = 6.9$ fm, $a = 0.535$ fm 0.2 0.05 0.15 0.2 0.25 0.1 P_T (GeV)

 $\Delta R_{\text{Au}} = R_n - R_n =$ 0.17 ± 0.03 (stat.) ± 0.08 (sys.) fm

 $\Delta R_{\rm U} = R_n - R_n =$ 0.44 ± 0.05 (stat.) ± 0.08 (sys.) fm

Science Advance 9, 3903 (2023)

Opportunities at the intersection of nuclear structure and hot QCD

Many examples in [https://arxiv.org/abs/2209.11042,](https://arxiv.org/abs/2209.11042) but here is my list

- Probe octupole and hexadecapole deformations via v3 and v4 in central collisions.
- § Gauge shape of odd-mass nuclei by comparing with neighboring even-even nuclei.
- Separate average shape from shape fluctuations via multi-particle correlations
- Constrain the radial structure of nuclei, including the neutron skin
- Structure in small systems including alpha clustering (e.g. $^{16}O+^{16}O$ vs $^{20}Ne+^{20}Ne$)

See recent [INT program 23-1A](https://www.int.washington.edu/programs-and-workshops/23-1a)

Summary and outlook

- High-energy collisions image nuclear shape at ultra-short time scale of 10⁻²⁴s; Large particle multiplicity enables many-particle correlation event-by-event to probe many-nucleon correlations in nuclei.
- Collisions of carefully-selected isobar species (at LHC) can reveal the many-body nucleon correlations & constrain the heavy ion initial condition from small to large nuclei

2102.08158

