原子核结构与相对论重离子碰撞前沿交叉研讨会

Nuclear shape imaging in heavy ion collisions

Jiangyong Jia

July 31-August 6, 2023

Landscape of nuclear physics

Most nuclear experiments starts with nuclei

Collective structure of atomic nuclei

Emergent phenomena of the many-body quantum system Radii-landscape clustering, halo, skin, bubble... β_2 -landscape quadrupole/octupole/hexdecopole deformations 0.2 Non-monotonic evolution with N and Z -0. PRC 89, 054320 (2014) -0.2 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 20 R (fm) mergence of new proton halo magic numbers ? 4.9 β_3 -landscape ubble" nuclei gunu 80formation of clusters Potor eformation known nuclei mergence of new drip lines stable nuclei 200 180 120 140 160 eutron sk Neutron number $ho(r, heta,\phi)=rac{
ho_0}{1+e^{(r-R(heta,\phi))/a_0}}$ $R(\theta,\phi) = R_0(1+\beta_2[\cos\gamma Y_{2,0}(\theta,\phi) + \sin\gamma Y_{2,2}(\theta,\phi)] + \beta_3 Y_{3,0}(\theta,\phi) + \beta_4 Y_{4,0}(\theta,\phi))$ $0 \le \gamma \le \pi/3$

High-energy heavy ion collision

Extremely short passing time to take a snap-shot of the nuclear wavefunction in the two nuclei.
 Large particle production in overlap region means QGP is dense and expand hydrodynamically.

Collective flow assisted nuclear structure imaging

Shape and radial dis.

- $\beta_2 \rightarrow \ {
 m Quadrupole \ deformation}$
- $eta_3
 ightarrow ext{ Octupole deformation}$
- $a_0
 ightarrow \, {
 m Surface \ diffuseness}$
- $R_0
 ightarrow \, {
 m Nuclear \ size}$

Volume, size and shape $N_{
m part}$ $R_{\perp}^2 \propto \left\langle r_{\perp}^2
ight
angle$ $\mathcal{E}_n \propto \left\langle r_{\perp}^n e^{in\phi}
ight
angle$

Observables

 $rac{d^2N}{d\phi dp_T} = oldsymbol{N}(oldsymbol{p}_T)iggl(\sum_{n}oldsymbol{V_n} e^{-in\phi}iggr)$

- Constrain the initial condition by comparing nuclei with known structure properties
- Reveal novel properties of nuclei by leveraging known hydrodynamic response.

Infer initial condition from flow correlations

Connecting initial condition to nuclear shape

Impact of nuclear shape on many-body correlations

$$ho(r, heta,\phi) = rac{
ho_0}{1+e^{(r-R(heta,\phi))/a_0}} \quad R(heta,\phi) = R_0(1+eta_2[\cos\gamma Y_{2,0}(heta,\phi)+\sin\gamma Y_{2,2}(heta,\phi)]+eta_3Y_{3,0}(heta,\phi)+eta_4Y_{4,0}(heta,\phi))$$

- In principle, can probe any moments of $p(1/R, \varepsilon_2, \varepsilon_3...)$ via $p([p_T], v_2, v_3...)...$
 - Mean $\langle d_{\perp}
 angle = 1/R_{\perp}$
 - Variance: $\langle \varepsilon_n^2 \rangle$, $\left\langle (\delta d_\perp/d_\perp)^2 \right\rangle$
 - Skewness $\langle arepsilon_n^2 \delta d_\perp/d_\perp
 angle, \left\langle (\delta d_\perp/d_\perp)^3 \right\rangle$
 - Kurtosis $\langle \varepsilon_n^4 \rangle 2 \langle \varepsilon_n^2 \rangle^2, \left\langle (\delta d_\perp/d_\perp)^4 \right\rangle 3 \left\langle (\delta d_\perp/d_\perp)^2 \right\rangle^2$ $\langle v_n^4 \rangle 2 \langle v_n^2 \rangle^2, \left\langle (\delta p_{\rm T}/p_{\rm T})^4 \right\rangle 3 \left\langle (\delta p_{\rm T}/p_{\rm T})^2 \right\rangle^2$

 $egin{aligned} &\langle p_{\mathrm{T}}
angle \ &\langle v_n^2
angle, \; \left\langle \left(\delta p_{\mathrm{T}} / p_{\mathrm{T}}
ight)^2
ight
angle \ &\langle v_n^2 \delta p_{\mathrm{T}} / p_{\mathrm{T}}
ight
angle, \; \left\langle \left(\delta p_{\mathrm{T}} / p_{\mathrm{T}}
ight)^3
ight
angle \ &\langle v_n^4
angle - 2 &\langle v_n^2
angle^2, \left\langle \left(\delta p_{\mathrm{T}} / p_{\mathrm{T}}
ight)^4
ight
angle - 3 &\left\langle \left(\delta p_{\mathrm{T}} / p_{\mathrm{T}}
ight)^2
ight
angle^2 \end{aligned}$

Impact of nuclear shape on many-body correlations

$$ho(r, heta,\phi) = rac{
ho_0}{1+e^{(r-R(heta,\phi))/a_0}} \quad R(heta,\phi) = R_0(1+eta_2[\cos\gamma Y_{2,0}(heta,\phi)+\sin\gamma Y_{2,2}(heta,\phi)]+eta_3Y_{3,0}(heta,\phi)+eta_4Y_{4,0}(heta,\phi)]$$

- In principle, can probe any moments of $p(1/R, \varepsilon_2, \varepsilon_3...)$ via $p([p_T], v_2, v_3...)...$
 - Mean $\langle d_{\perp}
 angle = 1/R_{\perp}$
 - Variance: $\langle \varepsilon_n^2 \rangle$, $\left\langle (\delta d_\perp/d_\perp)^2 \right\rangle$
 - Skewness $\langle arepsilon_n^2 \delta d_\perp/d_\perp
 angle, \left\langle (\delta d_\perp/d_\perp)^3 \right\rangle$
 - Kurtosis $\langle \varepsilon_n^4 \rangle 2 \langle \varepsilon_n^2 \rangle^2, \left\langle (\delta d_\perp/d_\perp)^4 \right\rangle 3 \left\langle (\delta d_\perp/d_\perp)^2 \right\rangle^2$

$$egin{aligned} &\langle p_{\mathrm{T}}
angle \ &\langle v_n^2
angle, \ &\left\langle (\delta p_{\mathrm{T}}/p_{\mathrm{T}})^2
ight
angle \ &\left\langle v_n^2 \delta p_{\mathrm{T}}/p_{\mathrm{T}}
ight
angle, \ &\left\langle (\delta p_{\mathrm{T}}/p_{\mathrm{T}})^3
ight
angle \ &\left\langle v_n^4
ight
angle - 2 &\langle v_n^2
ight
angle^2, &\left\langle (\delta p_{\mathrm{T}}/p_{\mathrm{T}})^4
ight
angle - 3 &\left\langle (\delta p_{\mathrm{T}}/p_{\mathrm{T}})^2
ight
angle^2 \end{aligned}$$

- All have a simple connection to deformation:
 - Variances

. . .

$$egin{aligned} &\langle arepsilon_2^2
angle &\sim a_2 + b_2 eta_2^2 + b_{2,3} eta_3^2 \ &\langle arepsilon_3^2
angle &\sim a_3 + b_3 eta_3^2 \ &\langle arepsilon_4^2
angle &\sim a_4 + b_4 eta_4^2 \ &\langle (\delta d_\perp/d_\perp)^2
angle &\sim a_0 + b_0 eta_2^2 + b_{0,3} eta_3^2 \end{aligned}$$

$$egin{aligned} &\left\langle arepsilon_2^2 \delta d_\perp / d_\perp
ight
angle &\sim a_1 - b_1 \cos(3\gamma) eta_2^3 \ &\left\langle \left(\delta d_\perp / d_\perp
ight)^3
ight
angle &\sim a_2 + b_2 \cos(3\gamma) eta_2^3 \end{aligned}$$

Low-energy vs high-energy method

- Intrinsic frame shape not directly visible in lab frame at time scale $\tau > I/\hbar \sim 10^{-21} s$
- Mainly inferred from non-invasive spectroscopy methods.

 High-energy collisions destructive imaging: probe entire mass distribution in the intrinsic frame via multi-point correlations. Shape frozen in nuclear crossing (10⁻²⁴s << rotational time scale 10⁻²¹s)

Collective flow assisted imaging

Analogy: Coulomb Explosion Imaging

Instantaneous stripping of electrons (thin foil or x-ray laser), and then let atoms explode under mutual coulomb repulsion

Fig. 1. A schematic view of a Coulomb explosion experiment. When a swift molecule passes through a thin solid film, it loses all of its binding electrons. The remaining positive ions repel each other, thus transforming the microstructure (as seen in the magnified view) into a macrostructure that can be measured precisely with an appropriate detector. The measured traces (x, γ, t) of each fragment nucleus for individual molecules are then transformed into the original molecular structure.

Strategy for nuclear shape imaging

Compare two systems of similar size but different structure

lons collided at high-energy

→Dedicated heavy-ion machine
→Any pair of nucleus is possible:

p+p,p+Al, p+Cu,p+Au, d+Au, He³+Au, O+O, Cu+Cu, Cu+Au, Zr+Zr, Ru+Ru, Au+Au, U+U

→ Broad energy range 3 - 200 GeV

• Collide ions 1 month/year

• New ions species possible 2028+

R. Alemany Fernandez, INT 2023

New ion species												Не					
Li	Ве										(В	С	N	0	F	Ne
N	Mg											AI	Si	P	S	CI	" Ar
K	Cat	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	В	ĸ
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Co	In	ŝn	Sb	Те	1	Xe
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Coperti	Nh	FI	Мс	Lv	Ts	Og

Isobar collisions at RHIC

 96 Ru+ 96 Ru and 96 Zr+ 96 Zr at $\sqrt{s_{NN}} = 200$ GeV

• A key question for any HI observable O:

$$rac{O_{
m ^{96}Ru+^{96}Ru}}{O_{
m ^{96}Zr+^{96}Zr}}\stackrel{?}{=}1$$

Deviation from 1 must have an origin in the nuclear structure, which impacts the initial state and then survives to the final state.

Expectation

$$\mathcal{O} \approx b_0 + b_1 \beta_2^2 + b_2 \beta_3^2 + b_3 (R_0 - R_{0,\text{ref}}) + b_4 (a - a_{\text{ref}})$$

2109.00131

$$R_{\mathcal{O}} \equiv \frac{\mathcal{O}_{\mathrm{Ru}}}{\mathcal{O}_{\mathrm{Zr}}} \approx 1 + c_1 \Delta \beta_2^2 + c_2 \Delta \beta_3^2 + c_3 \Delta R_0 + c_4 \Delta a$$

Only probe structure differences

Structure influences everywhere

• $\beta_{2Ru} \sim 0.16$ increase v_2 , no influence on v_3 ratio

⁹⁶Ru

Quadrupole

⁹⁶Ru

 $egin{aligned} eta_2 &= 0.162 \ eta_3 &\sim 0 \end{aligned}$

Compare with AMPT -- a proxy for hydro

 $\beta_{2Ru} \sim 0.16$ increase v₂, no influence on v₃ ratio

 $\beta_{37r} \sim 0.2$ decrease v₂ in mid-central, decrease v₃ ratio

 $\beta_{2Ru} \sim 0.16$ increase v₂, no influence on v₃ ratio

 $\beta_{37r} \sim 0.2$ decrease v₂ in mid-central, decrease v₃ ratio

 $\Delta a_0 = -0.06$ fm increase v₂ mid-central, small impact on v₃

Radius $\Delta R_0 = 0.07$ fm only slightly affects v₂ and v₃ ratio.

Compare with AMPT -- a proxy for hydro

Sharper surface enhance v₂ in mid-central collisions arXiv: 2206.10449

(lŋl<0.5)

Isobar ratios cancel final state effects

- Vary the shear viscosity by changing partonic cross-section in AMPT
 - Flow signal change by 30-50%, the v_n ratio unchanged.

Robust probe of initial state!

Extracting the 238U deformation from STAR

Low-energy estimate with rigid rotor assumption from B(E2) data $\beta_{2,LD} = \frac{4\pi}{5R_{*}^{2}Z} \sqrt{\frac{B(E2)}{e^{2}}}$

 $\beta_{2\mathrm{U,LD}} = 0.287 \pm 0.007$ $\gamma_{\mathrm{U,LD}} = 6^{\circ} - 8^{\circ}$ 1312.5975 *PRC54,* 2356 (1996)

Imaging the radial structures

See talks by Haojie and Chunjian

• Radial parameters R_0 , a_0 are properties of one-body distribution, constrained by $\langle p_T \rangle$, $\langle N_{ch} \rangle$, σ_{tot} , $v_2^{RP} \langle v_2 | 4 \rangle$

Constrain neutron skin and symmetry energy

Also accessed via photo-nuclear diffractive process in UPC or e+A

B STAR Signal $\pi^{+}\pi^{-}$ pairs vs. models Au + Au $\sqrt{s_{NN}} = 200 \text{ GeV}$ Model I: R = 6.38 fm, a = 0.535 fm0.2 0 0.05 0.1 0.15 0.2 0.25 P_{T} (GeV) $\Delta R_{
m Au} = R_n - R_p = 0.17 \pm 0.03 \; ({
m stat.}) \; \pm 0.08 \; ({
m sys.}) \; {
m fm}$

 $\Delta R_{
m U} = R_n - R_p = 0.44 \pm 0.05 \; ({
m stat.}) \; \pm 0.08 \; ({
m sys.}) \; {
m fm}$

Science Advance 9, 3903 (2023)

Opportunities at the intersection of nuclear structure and hot QCD

Many examples in <u>https://arxiv.org/abs/2209.11042</u>, but here is my list

- Probe octupole and hexadecapole deformations via v3 and v4 in central collisions.
- Gauge shape of odd-mass nuclei by comparing with neighboring even-even nuclei.
- Separate average shape from shape fluctuations via multi-particle correlations
- Constrain the radial structure of nuclei, including the neutron skin
- Structure in small systems including alpha clustering (e.g. ¹⁶O+¹⁶O vs ²⁰Ne+²⁰Ne)
 See recent INT program 23-1A

Summary and outlook

- High-energy collisions image nuclear shape at ultra-short time scale of 10⁻²⁴s; Large particle multiplicity enables many-particle correlation event-by-event to probe many-nucleon correlations in nuclei.
- Collisions of carefully-selected isobar species (at LHC) can reveal the many-body nucleon correlations & constrain the heavy ion initial condition from small to large nuclei

A	isobars	A	isobars	A	isobars	Α	isobars	Α	isobars	A	isobars
36	Ar, S	80	Se, Kr	106	Pd, Cd	124	Sn, Te, Xe	148	Nd, Sm	174	Yb, Hf
40	Ca, Ar	84	Kr, Sr, Mo	108	Pd, Cd	126	Te, Xe	150	Nd, Sm	176	Yb, Lu, Hi
46	Ca, Ti	86	Kr, Sr	110	Pd, Cd	128	Te, Xe	152	Sm,Gd	180	Hf, W
48	Ca, Ti	87	Rb, Sr	112	Cd, Sn	130	Te, Xe, Ba	154	Sm,Gd	184	W, Os
50	$\mathrm{Ti},\mathrm{V},\mathrm{Cr}$	92	Zr, Nb, Mo	113	Cd, In	132	Xe, Ba	156	Gd,Dy	186	W, Os
54	Cr, Fe	94	Zr, Mo	114	Cd, Sn	134	Xe, Ba	158	Gd,Dy	187	Re, Os
64	Ni, Zn	96	Zr, Mo, Ru	115	In, Sn	136	Xe, Ba, Ce	160	Gd,Dy	190	Os, Pt
70	Zn, Ge	98	Mo, Ru	116	Cd, Sn	138	Ba, La, Ce	162	Dy,Er	192	Os, Pt
74	Ge, Se	100	Mo, Ru	120	Sn, Te	142	Ce, Nd	164	Dy,Er	196	Pt, Hg
76	Ge, Se	102	Ru, Pd	122	Sn, Te	144	Nd, Sm	168	Er,Yb	198	Pt, Hg
78	Se, Kr	104	Ru, Pd	123	Sb, Te	146	Nd, Sm	170	Er,Yb	204	Hg, Pb

2102.08158

