Probing the nuclear structure with relativistic heavy ion collisions

原子核结构和高能核核碰撞前沿交叉研讨会

宋慧超

北京大学物理学院

08/01/2023

Landscape of nuclear physics

degrees of freedeom

Landscape of nuclear physics

Relativistic Heavy Ion Collisions

Relativistic heavy ion collisions

- -the formation and properties of QGP,
- -the deconfinement & chiral phase transition
- -the QCD phase diagram
- -the QCD vacuum

Relativistic Heavy Ion Collisions

The formation of the QGP

QGP evolution -Viscous hydrodynamics

Conservation laws:

$$\partial_{\mu}T^{\mu\nu}(x) = 0. \qquad \partial_{\mu}N^{\mu}_{i}(x) = 0,$$

2nd order I-S equ:

$$\begin{split} \dot{\Pi} &= -\frac{1}{\tau_{\Pi}} \bigg[\Pi + \zeta \theta - l_{\Pi q} \nabla_{\mu} q^{\mu} + \Pi \zeta T \partial_{\mu} \big(\frac{\tau_{\Pi} u^{\mu}}{2\zeta T} \big) \bigg], \\ \Delta_{\nu}^{\mu} \dot{q}^{\nu} &= -\frac{1}{\tau_{q}} \bigg[q_{\mu} + \lambda \frac{nT^{2}}{e+p} \nabla^{\mu} \frac{\nu}{T} + l_{q\pi} \nabla_{\nu} \pi^{\mu\nu} + l_{q\Pi} \nabla^{\mu} \Pi - \lambda T^{2} q^{\mu} \partial_{\mu} \big(\frac{\tau_{q} u^{\mu}}{2\lambda T^{2}} \big) \bigg], \\ \Delta^{\mu\alpha} \Delta^{\nu\beta} \dot{\pi}_{\alpha\beta} &= -\frac{1}{\tau_{\pi}} \bigg[\pi^{\mu\nu} - 2\eta \nabla^{\langle \mu} u^{\nu \rangle} - l_{\pi q} \nabla^{\langle \mu} q^{\nu \rangle} + \pi_{\mu\nu} \eta T \partial_{\alpha} \big(\frac{\tau_{\pi} u^{\alpha}}{2\eta T} \big) \bigg], \\ \text{Input: "EOS"} \quad \boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}(\boldsymbol{p}) \qquad \text{initial and final conditions} \end{split}$$

Initial conditions viscous hydro

hadron cascade

Predictions power of hydrodynamics

Hottest Matter on Earth

Most Vortical Fluid

¹⁹⁷Au+¹⁹⁷Au、²³⁸U+²³⁸U、²⁰⁸Pb+²⁰⁸Pb、¹²⁹Xe+¹²⁹Xe、⁹⁶Zr+⁹⁶Zr、 ⁹⁶Ru+⁹⁶Ru、⁶⁴Cu+⁶⁴Cu、¹⁶O+¹⁶O、p+²⁰⁸Pb、p+p

Relativistic heavy ion collision can directly probe the deformation of nuclei

- Relativistic heavy collisions start from nuclei

initial conditions: (with deformations)

initial conditions: (with deformations) Relativistic heavy ion collision can directly probe the deformation of nuclei

- Relativistic heavy collisions start from nuclei

-Collision time < 10⁻²⁴ s directly probe the ground state of nuclei

Collision time < 10⁻²⁴ s

initial conditions: (with deformations)

heavy ion collision at intermediate energies excites nuclei during the collision Relativistic heavy ion collision can directly probe the deformation of nuclei

- Relativistic heavy collisions start from nuclei

-Collision time < 10⁻²⁴ s directly probe the ground state of nuclei

Collision time < 10⁻²⁴ s

Relativistic heavy ion collision can directly probe the deformation of nuclei

- Relativistic heavy collisions start from nuclei

-Collision time < 10⁻²⁴ s directly probe the ground state of nuclei

-Well calibrated calculations to focus on the initial state effects from the succeeding evolution

Predictions power of hydrodynamics

Relativistic heavy ion collision can directly probe the deformation of nuclei

- Relativistic heavy collisions start from nuclei

-Collision time < 10⁻²⁴ s directly probe the ground state of nuclei

-Well calibrated calculations to focus on the initial state effects from the succeeding evolution

Probe the deformation of ⁹⁶Ru and ⁹⁶Zr at RHIC isobar run

⁹⁶Ru+⁹⁶Ru and ⁹⁶Zr+⁹⁶Zr Collisions @ RHIC isobar run

-to search the Chiral Magnetic Effect (CME) and probe nontrivial structure of the QCD vacuum

-Obviously different early magnetic field for Ru+Ru and Zr+Zr collisions

Search CME with Isobar collisions

between the two isobar systems. Observed differences in the multiplicity and flow harmonics at the matching centrality indicate that the magnitude of the CME background is different between the two species. No CME signature that satisfies the predefined criteria has been observed in isobar collisions in this blind analysis.

-Observed differences in both multiplicity and v2 imply that CME background are different for ⁹⁶Ru+⁹⁶Ru and ⁹⁶Zr+⁹⁶Zr Collisions at matching centralities

Deformation of ⁹⁶Ru and ⁹⁶Zr

PHYSICAL REVIEW C

VOLUME 42, NUMBER 3

SEPTEMBER 1990

Strong octupole and dipole collectivity in 96 Zr: Indication for octupole instability in the A = 100 mass region

⁹⁶Zr has very large octupole deformation from $B(E3; 0_1^+ \rightarrow 3_1^-)$

Isobar collisions to probe the deformation of ⁹⁶Ru & ⁹⁶Zr

Hydrodynamic calculation with initially deformed nuclei

Initial conditions (TRENTO)

-Sample nucleon position in deformed nuclei with:

 $\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{(r-R(\theta,\phi))/a_0}}$ Quadrupole: Octupole: $R(\theta,\phi) = R_0 \left(1 + \frac{\beta_2}{\beta_2} \left[\cos\gamma Y_{2,0} + \sin\gamma Y_{2,2}\right]\right)$ $+\beta_3 \sum_{m=-3}^{3} \alpha_{3,m} Y_{3,m} + \beta_4 \sum_{m=-4}^{4} \alpha_{4,m} Y_{4,m}$ Well calibrated calculations Initial conditions viscous hydro hadron cascade Hadron Gas

Hydrodynamic calculation with initially deformed nuclei

Initial conditions (TRENTO)

-Sample nucleon position in deformed nuclei with:

 $\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{(r-R(\theta,\phi))/a_0}}$

β_2	β_3	R_0	а
Ru-para-I 0.12	0.00	5.093	0.487
Ru-para-II (0.16)	0.00	5.093	0.471
Zr-para-I 0.00	0.16	5.021	0.524
Zr-para-II 0.00	0.20	5.021	0.517

Parameters are refer to:

G. Fricke, et al. Atom. Data Nucl. Data Tabl. 60, 177 (1995).B. Pritychenko, et al. Atom. Data Nucl. Data Tabl. 107, 1 (2016).T Kib´edi and R. H Spear, Atom. Data Nucl. Data Tabl. 80, 35 (2002).

(H. Xu, et al., Phys. Lett. B 819, 136453 (2021)J. Jia, et al.arXiv: 2111.15559 [nucl-th])

V₂ and V₃ for Ru+Ru and Zr+Zr collisions

-With fine tuning parameters, iEBE-VISHNU fits V2 & V3 for Ru+Ru collisions

-Using β₂ β₃ in table1, it "predicts" V₂ &
V₃ for Zr+Zr collisions & the related ratio
-- (the data are roughly described).

"standard"	Ru	Zr
a _o	0.46	0.52
β ₂	0.162	0.060
β ₃	0.00	0.200

ac{3}for Ru+Ru and Zr+Zr collisions

ac{3} is sensitive to quadrupole and octupole deformations

$$ac_2{3} = \langle v_2^2 v_4 \cos 4(\Phi_2 - \Phi_4) \rangle,$$

S. Zhao, H. Xu, Y. Liu, H. Song. PLB2023, arXiv: 2204.02387

Study the deformation of ⁹⁶Ru and ⁹⁶Zr in Nuclear Structure

Model calculation for Nuclear Deformation

Deformation of ⁹⁶Ru & ⁹⁶Zr – re-evaluation and updates

Gogny energy density functional ((Tiaxial) T R. Rodríguez EMMI RRTF 2022

Skyrme EDF (with rotational correction)

W Ryssens EMMI RRTF 2022

Beyond-mean-field correction is very important

Rong, Lu, arXiv:2201.02114

Deformation of ⁹⁶Zr – shape coexistence

TABLE I. The structure of the wave functions for the lowest four 0^+ states of 96 Zr.

Spherical Prolate Oblate $I[\hbar]$ 0^{+}_{1} 94% 4%1% 0^+_2 19% 45% 35% $0^+_3 \\ 0^+_4$ 30% 54% 15% 36% 16% 47%

A. Petrovici et al PRC101, 024307 (2020)

Phys.Rev. Lett. 121, 192501 (2018) Also refer to T.Togashi, Quantum Phase Transition in the Shape of Zr isotopes," Phys. Rev. Lett. 117, no.17, 172502 (2016)

Properties of ⁹⁶Ru and ⁹⁶Zr – experimental measurements

• only one measurement for $B(E2; 0^+_1 \rightarrow 2^+_1)$ but compilations also cite a publication for 1965 "Coulomb Excitation of the First 2⁺ Levels of ⁹⁰Zr and ⁹⁶Zr" with an almost two times larger B(E2)S. Raman et al., At. Data Nucl. Data Tables **78** (2001) 1, Y. P. Gangrskii, I. K. Lemberg, Yadern. Fiz. **1** (1965) 1025.

Probe the deformation of ⁹⁶Ru and ⁹⁶Zr

-- a short summary

-⁹⁶Ru and ⁹⁶Zr: two ideal nuclei for interdisciplinary research between relativistic heavy ion phyiscs and nuclear structure

-RHIC isobar collisions provide rich and high statistical run data for various flow analysis to constrain the deformation of ⁹⁶Ru and ⁹⁶Zr from heavy ion physics side

-Need more efforts to study the deformation of ⁹⁶Ru & ⁹⁶Zr from both experimental and theoretical sides in nuclear structure

Probe the α -cluster of ¹⁶O at RHIC and the LHC

¹⁶O+¹⁶O collisions and p+¹⁶O collisions originally aim to study the possible formation of QGP in small systems

α-cluster of ¹⁶O from nuclear structure

-ACM calculations show that the low-lying states of 16O can be described as rotation-vibration of a 4 α cluster with tetrahedral symmetry.

R.Bijker and F.Iachello, Phys. Rev. Lett. 112, no.15, 152501 (2014)

-ab initio lattice calculations demonstrate the nucleons are arranged in a tetrahedral alpha clusters in the ground state

E.~Epelbaum, et al Phys. Rev. Lett.112, no.10, 102501 (2014)

(a) Initial state "A",

8 equivalent orientations.

(b) Initial states "B" and "C", 3 equivalent orientations.

Nuclear structure physics infer the α -cluster configuration of ¹⁶O from the measured spectrum

Relativistic heavy ion collision to probe the structure of ¹⁶O

Hydrodynamic calculation w/wo clustering

Initial conditions (TRENTO)

-Woods-Saxon:

$$\rho(r,\theta,\phi) = \frac{\rho_0}{1 + e^{(r-R(\theta,\phi))/a_0}}$$

-Alpha-Cluster:

$$f_i(\mathbf{r}) = A \exp\left[-\frac{3(\mathbf{r} - \mathbf{r}_i)^2}{2r_{\alpha}^2}\right]$$

	distribution	l	r_{α}
I	Woods-Saxon	•	, u
II	alpha cluster	2.8	2.0
III	alpha cluster	3.2	1.1
IV	alpha cluster	3.42	1.1

Y. Wang, S. Zhao, B. Cao, H. Xu and H. Song. Paper in preparation. Please also refer to the work from Y G Ma's groups

Probe neutron skin at RHIC and the LHC

Neutron Skin & neutron star

EOS of nuclear matter

$$\epsilon(
ho,lpha) = [\epsilon_{SNM}(
ho_0) + S(
ho_0)lpha^2)] + lpha^2 {oldsymbol L} { rac{
ho-
ho_0}{3
ho_0}} + {1\over 2} (K_0 + lpha^2 K_{sym}) ({ rac{
ho-
ho_0}{3
ho_0}})^2$$

L: the first order term in EOS; symmetry energy; Large L thick neutron skin

Probe the Neutron Skin at low energy nuclear physics

Parity-Violating Electron Scattering in Jefferson Lab

Please also refer to Jinlong Zhang' talk on Aug.4

χEFT (2020)

 $\gamma EFT(2013)$

Skins(Sn)

 $\alpha_{\rm D}(\rm RPA)$

200

OMC

Ab-initio(CC)

(b)

250

Relativistic heavy ion collision to probe the neutron skin

Probing the neutron skin of ¹⁹⁷Au and ²⁰⁸Pb

semi-isobaric double ratio

A scaling behavior was found in double ratio when Au and Pb have neutron skins of the same size, which suggest Au and Pb have similar neutron skin.

Q. Liu, H. Xu and H. Song. Paper in preparation.

Please also refer to H Xu' talk on Aug.4

-Rich nuclear structure: deformation, cluster, neutron skin; shape coexistence, γ-soft (shape phase transition)

-Rich configurations for QGP initial conditions

Please also refer to L Pang talk today

Summary and Outlook

-Sensitive observables have been found to probe the deformation of ⁹⁶Ru & ⁹⁶Zr, cluster of ¹⁶O, neutron skin of ²⁰⁸Pb & ⁹⁶Au, respectively

-More observables are needed to study the deformation, cluster and neutron skin of various colliding nuclei

-Machine learning and Bayesian analysis are needed to precisely extract the information of nuclear structure in heavy ion collisions