EIC Physics - a view point from EicC

原子核结构与相对论重离子碰撞前沿交叉研讨会 2023.7.31-8.6

Outline

- Introduction to Electron Ion Colliders
- - proton 1D structure
 - proton 3D structure •
 - nuclear effects

Selected topics for nucleon/nucleus structure

Nucleon partonic structure

Gold Foil

Modern machines to probe the nucleon partonic structure

Lepton-lepton colliders

Hadron-hadron colliders

BEPC, SuperKEKB

- No hadron in the initial-state
- Hadrons are emerged from energy
- Not ideal for studying hadron structure
- Hadrons in the initial-state Hadrons are emerged from
- energy
- Currently used for studying hadron structure

RHIC, LHC

lepton-hadron colliders

HERA, JLab

- Hadrons in the initial-state
- Hadrons are emerged from energy
- Ideal for studying hadron structure

The modern experiments for nucleon structure

Electron Ion Colliders -> the next generation facility specifically for nucleon structure!

slide from Yutie Liang

Proposed Electron-ion colliders

RHIC → US-EIC

LHC → LHeC

Atlantic

United States

South Pacific Ocean

North
 Pacific
 Ocean

Hawaiian U.s.A.

slide from Jinlong Zhang

C	2
L	כ

Time evolution of EicC

中国电子 – 离子对撞机 (EicC)

2012: 领域内开始讨论 2020.2, 2021.6:白皮书(中文,英文) 2021-2023: 概念设计研究 参与单位: ~45

Electron-Ion Collider in China (EicC)

Electron-Ion Collider in China (EicC)

HIAF under construction

a nuclear facility proposed to be built in Huizhou, China EIC in China

2004年11月

Scientific goals at EICs

Х

The origin of proton spin

Nucleon 3D imaging

Complementarity between EIC and EicC

n of gluons \Rightarrow gluon density tamed

k_T

 $\sim Q$

BK adds:

Unintegrated gluor edepends on Ranco the majoritytof glu(xP, k_T transverse momer (common dainition)

> **Experimental** measurements

_				
Pr	ot	0	n	N

1D momentum distribution: Parton distribution functions (PDFs) Operator definition of quark PDF

- Light cone momentum fraction:
- Wilson line to ensure gauge invariance $\mathscr{W}(0, y^{-}) = \mathscr{P}e^{-ig\int_{0}^{y^{-}} d\eta^{-}A^{+}(\eta^{-})}$

Probability interpretation

- The probability density of finding a parton inside a proton
- Satisfies energy conservation

$$x = k^+ / p^+$$

$$\sum_{a=q,g} \int_0^1 dx x f_{a/p}(x) = 1$$

Parton distribution functions

PDFs are key ingredient in high energy and nuclear physics

- Understand the fundamental structure of QCD bound states (JLab, EIC, EicC...) Provide essential baseline for hard probes in heavy ion collisions (RHIC, LHC)
- Precision test of standard model (LHC)
- Compute backgrounds in searches for BSM physics (LHC)

Methods to obtain and understand PDFs

- Nonperturbative models (DSE, χ EFT, LFQ, Ads/CFT ...)
- QCD global analysis (measurements + pQCD)
- Lattice QCD (lattice QFT + high performance computing)
- Quantum information science (quantum computing)

QCD global analysis of world data

Nucleon partonic structure - spin configuration Naive parton model $\langle p \uparrow | \hat{S} | p \uparrow \rangle = \frac{1}{18} \left\{ \left[\left(\frac{1}{2} - \frac{1}{2} + \frac{1}{2} \right) + \right] \right\}$ $+\left[\frac{1}{2}+\frac{1}{2}+4\frac{1}{2}\right]+$

proton spin 1/2 is consistent with naive parton model, but contradict with experiments.

 Proton spin decomposition Jaffe, Manohar; Ji

$$\frac{1}{2}\hbar = \left\langle P, \frac{1}{2} | J_{QCD}^{z} | P, \frac{1}{2} \right\rangle = \frac{1}{2} \int_{0}^{1} dx \Delta \Sigma(x, Q^{2}) + \int_{0}^{1} dx \Delta G(x, Q^{2}) + \int_{0}^{1} dx (\sum_{q} L_{q}^{z} + L_{g}^{z})$$
total
quark spin
q

Spin is one of the fundamental properties of matter We don't know yet how the spin of proton arises in terms of its quarks and gluons - spin crises.

$$\left\{ \left(-\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + 4\left(\frac{1}{2} + \frac{1}{2} - \frac{1}{2}\right) \right]$$
$$\left[\frac{1}{2} + \frac{1}{2} + 4\frac{1}{2} \right] = \frac{1}{2}$$

what do we know about the proton spin? Current knowledge about proton spin decomposition from world data

It is more than the number $\frac{1}{2}$! It is the interplay between the intrinsic properties and interactions of quarks and gluons

What can we do in future to pin down the proton spin? \bullet Polarized structure function measurement g_1 Pion/Kaon d hadron fragmentation Leading order cross section lacksquarePolarized PDFs $Q^2)D^h_q(z,Q^2) + \Delta \bar{q}(x,Q^2)D^h_{\bar{q}}(z,Q^2)\Big]$

$$g_1^h(x,Q^2,z) = \frac{1}{2} \sum_q e_q^2 \left[\Delta q(x,Q^2) \right]$$

Extracted nucleon structure information: polarized PDFs (helicity distribution)

What can we do in future to pin down the proton spin? SIDIS for flavor decomposition Anderle, Hou, Yuan, HX, Zhao, JHEP 2021

EicC white paper

EIC Yellow Report

Nucleon partonic structure - 3D imaging

gluons

SIDIS: $Q >> P_{T}$

Nucleon partonic structure - 3D imaging

TMDs: explore the flavor-spin-motion correlation

Nucleon partonic structure - 3D imaging

Unpolarized proton

Figure 6: *Left:* The transverse momentum profile of the Sivers TMD for up quarks for five x values accessible at the EIC, and corresponding statisistical uncertainties. *Right:* Transvesseense her and size shots and a size shots and a size of the state of the s direction indicated in blue) for three values in x. The color coding of the three panels indicates the probability of finding the up quark.

By Andrea Signori

Transversely polarized proton

Nucleon 3D imaging at EicC - Sivers effect

Quark transverse momentum kT (GeV)

Liu, Zhao, Zheng, 2023

u/d Sivers EicC vs world data

LO analysis

EicC SIDS data:

- Pion(+/-), Kaon(+/-)
- ep: 3.5 GeV X 20 GeV
- eHe-3: 3.5 GeV X 40 GeV
- Pol.: e(80%), p(70%), He-3(70%)
- Lumi: ep 50 fb⁻¹, eHe-3 50 fb⁻¹

EicC, precise measurements.

"Old" and long standing problems of nuclear partonic structure

One-dimensional nuclear partonic structure

EMC Collaboration, 1983

Power of EicC for nuclear partonic structure - 1D

Nuclear partonic structure - nuclear quark distribution

Power of EicC for nuclear partonic structure - 1D Nuclear partonic structure - nuclear gluon distribution

"Old" and long standing problems of nuclear partonic structure

Three-dimensional nuclear partonic structure

Cronin effect 1 ь π⁺ ∎ π⁻ R_{w/Be}(pr) Eine=200 GeV Eps=40D GeV 1 <u>а</u> 71⁺ ∎ गं E_m=300 GeV Em.=800 GeV 7.B ັໝ 25 S.D 12 pr (GeV) $R(p_T) = \frac{B}{A} \frac{d\sigma_{pA}/d^2 p_T}{d\sigma_{pB}/d^2 p_T}$ $p + A \rightarrow hadron(p) + X$

E100 Collaboration, PRD 11, 3105 (1975)

Naive Gaussian model $F_{i/p}(x,k_T) = f_{i/p}(x) \frac{e^{-k_T^2/\langle k_T^2 \rangle}}{\pi \langle k_T^2 \rangle}, \qquad \langle k_T^2 \rangle_A \to \langle k_T^2 \rangle_p + \left\langle \frac{2\mu^2 L}{\lambda} \right\rangle \xi^2$ -1.01.0 -0.5 0.5 0.0 0.0 kv -0.5 0.5 1.0 -1.0

Nuclear partonic structure - 3D

From collinear (1D) to TMD (3D)

Collaboration	Process	Baseline	Nuclei	N _{dat}	χ^2
HERMES [36]	SIDIS (π)	D	Ne, Kr, Xe	27	16.3
RHIC [44]	DY	р	Au	4	2.0
E772 [42]	DY	D	C, Fe, W	16	20.1
E866 [43]	DY	Be	Fe, W	28	43.3
CMS [45]	γ^*/Z	NA	Pb	8	9.7
ATLAS [46]	γ^*/Z	NA	Pb	7	13.1
Total				90	105.2

Nuclear partonic structure - 3D imaging

TMD factorization for cross section

$$\frac{d\sigma^A}{dx\,dQ^2\,dz\,d^2P_{h\perp}} = \sigma_0\,H(Q)\,\sum_q e_q^2\int_0^\infty \frac{b\,db}{2\pi}J_0\left(\frac{bP_{h\perp}}{z}\right)$$

$$f_{q/n}^A(x,b;Q) = \left[C_{q\leftarrow i}\otimes f_{i/n}^A
ight](x,\mu_{b_*})\exp\left\{-S_{ ext{pert}}(x,b;Q)
ight],$$
 $D_{h/q}^A(z,b;Q) = rac{1}{z^2}\left[\hat{C}_{i\leftarrow q}\otimes D_{h/i}^A
ight](z,\mu_{b_*})\exp\left\{-S_{ ext{pert}}(z,\mu_{b_*})
ight](z,\mu_{b_*})\exp\left\{-S_{ ext{pert}}(z,\mu_{b_*})
ight\}$

Non-perturbative parametrization

$$S_{\rm NP}^f(b,Q,A) = S_{\rm NP}^f(b,Q) + a_N \left(A^{1/3} - 1\right) b^2$$

$$S_{\rm NP}^D(z,b,Q,A) = S_{\rm NP}^D(z,b,Q) + b_N \left(A^{1/3} - 1\right) \frac{b^2}{z^2}$$

nuclear 3D imaging - global extraction from world data Alrashed, Anderle, Kang, Terry, **HX**, PRL 2022

Reasonable good overall description on world data from HERMES, FNAL, RHIC, LHC

2	1
J	

Three-dimension imaging in nuclei

Three-dimensional nuclear partonic structure

 $R_{u/p}^{\mathrm{Au}}\left(x,k_{\perp},Q_{0}\right)=\frac{f_{u/p}^{\mathrm{Au}}\left(x,k_{\perp},Q_{0}\right)}{f_{u/p}\left(x,k_{\perp},Q_{0}\right)}$

First time quantitative determination of nuclear TMDs

Alrashed, Anderle, Kang, Terry, HX, PRL 2022

Identification of transverse momentum broadening in nuclei

Hard probe of neutron skin at EIC

✦ Jet charge distribution in eA collisions

 $Q_J = \sum_{i} \left(\frac{p_{i,T}}{p_J}\right)^{\kappa} Q_i$

Hard probe of neutron skin at EIC

✦ Jet charge distribution in eA collisions

Summary

◆EICs are the ultimate machines to explore the inner world of proton/nuclei at fm scale

- Proton 1-D and 3-D imaging
- Proton spin
- Nuclear effects

Many more topics are not covered, such as gluon saturation, proton mass, GPDs, exotic states, detector R&D

EIC, EicC, JLab are complementary to each other

EicC团队/组织

Accelerator: 刘杰、冒立军、杨建成

EicC Accelerators 刘杰、申国栋、杨建成
Ion Sources 孙良亭
Ion Machine 常铭轩、申国栋、王磊
Electron Machine 张子民、赵贺
Polarization 李民祥、申国栋
Cooling 马伏、冒立军、赵贺
IR 刘杰
Common System 王儒亮、郑亚军

Physics:肖博文、邢宏喜、赵宇翔、周剑 Inclusive 张金龙、林德旭、高俊、刘晓辉 SIDIS 杨帅、李昕、赵宇翔、刘天博、肖博文、邢宏喜 Heavy Flavor 张一飞、王亚平、郭爱强、邢宏喜、孙鹏、周剑 Exclusive 熊伟志、梁羽铁、郭奉坤、曹须、吴佳俊

Thanks and you are more than welcome to join EicC!

— IR+Magnet 郭爱强、张金龙

— Luminosity and polarimetry 勾伯兴、张金龙

— Far-Forward detector 林挺、郭爱强、梁羽铁、熊伟志

— DAQ 陈凯、刘国明

— Simulations 梁羽铁、张一飞

Software (EicCRoot): 梁羽铁

Computing: 南方核科学计算中心(广州)

Platform: 南方核科学理论研究中心(惠州)

36

What can we do in future to pin down the proton spin? Parton spin contribution to proton spin

Anderle, Hou, Yuan, HX, Zhao, JHEP 2021

PRL119.142002, 2017

